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Chain Conformations Close to a 
Surface

Surface

Far away:  allowed

Close:  not allowed

For adsorbing surfaces:
strongly preferred

For polymers, the bulk internal thermodynamic state 
is entropy driven. The more the allowed 

configurations, the higher the entropy and the Lower 
the free energy---Inversely, the higher the 

restrictions, the less the entropy and the higher the 
free energy. Approach to a surface lowers the 

number of possible internal configurations; 
alternatively, it may add enthalpic contributions.



Chain Conformations and 
Rheology of a Polymer Solution 
Close to a Surface: Challenges

• The presence of a surface brings inhomogeneity into a problem 
due to the potential for long range surface interactions over a 
characteristic length Ls (for polymers this coincides with the radius 
of guration, RG)

• Especially when a polymer medium is involved, the presence of a 
surface changes also the local structure in an nonlocal way:  the 
polymer conformation problem cannot any longer be dealt only 
macroscopically---a multiscale analysis is warranted

• The flow problem becomes coupled with both the direct and 
indirect (through changes in the polymer conformation) surface-
induced changes

• The Hamiltonian formalism can accommodate inhomogeneities
(direct dependencies on spatial location) and multiscale
phenomena both at equilibrium and in the presence of flow

• Next:  We develop the general equations and present applications 
involving a non-interacting (neutral) surface, both under 
equilibrium and under flow



General Equations: Variables
• We assume an incompressible (constant total mass 

density, ρ0 (n0=NAρ0/MW0 being the number density), 
inhomogeneous (variable polymer concentration, 
n=chain number density is variable) system on top of an 
interacting surface.  Thus, we have:
– ρ1, the polymer density (n1=NAρ1/MW1, assuming MW1=N MW0)
– v, the velocity (M = ρ0v = momentum density)
– s, the entropy density (alternatively, T, temperature)
– C, the conformation tensor where

• C = <RR> (second moment of the end-to-end distribution function) 
= n1c

• At equilibrium, c=kBT/K where K is the equilibrium 
equivalent entropic elastic energy constant of the 
polymer chain



Dynamic Equations: Two-Fluid 
Dilute+Non-Homogeneous System
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Hamiltonian
• The Hamiltonian (extended Helmholtz free energy 

of the system) is assumed to have the form:
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where ae, am and as represent the contrbutions to the free energy density corresponding 
to elasticity, mixing and enthalpic surface interactions, respectively.
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Of those free energy contributions the most straightforward is the last one which has the 
form (under the assumption that only the environment at the surface is affected):

where us is energy of adsorption for the solvent molecules, φs is the surface 
polymer volume fraction, χs is the Flory χ parameter at the surface, χ=-(up – us), ℓ is a
characteristic molecular unit length of the solvent molecules and the segment polymer 
chain (assumed to be the same) and the surface is assumed to be perpendicular to the
y axis at y=0



The Mixing Contribution
• The mixing contribution to the free energy is provided by 

an extension of the Flory-Huggins expression:
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where φ is the polymer volume fraction and Z(N-1) is an N-long chain relative partition
function (defined later) representing the relative number of chains (with respect to the 
bulk) that can develop freely at a particular location without hitting the surface.

At homogeneous equilibrium and in the bulk, we have a homogeneous distribution of the 
polymer chain segments with the solvent molecules (assumed here of the same volume)
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However, in a inhomogeneous medium, the connection between the local polymer chain 
segment volume fraction and the number density of the polymer chains is more 

complicated:  In order to describe it we need detailed knowledge of the polymer chain 
conformation.  This is achieved through knowledge of the propagator, G(y,n;y0) 



The Propagator G(r,n;r0)
• It is defined so that G(r,n;r0) d3r is proportional to the number fraction 

of the n-member multisegment chains that starting at distance r0 they 
end within d3r of r.  

• If no excluded volume effects are considered, G(r,n;r0) satisfies a 
diffusion equation describing a random polymer chain conformation:

with initial condition
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and boundary conditions dictated by the specification of the problem; in the above 
equation ℓ is the chain segment length.  Then, the relative chain partition function, Z(n,r0) 
is defined by the integral of the propagator G(r,n;r0) as
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Note that from the initial conditions of the propagator Z(0,r0) = 1



The Relationship of φ(y) with n1

• First we need to be specific on what we count by n1:  let us assume, chain 
segment ends.  Also, we limit our discussion to problems symmetric on x,z.

• The expression for φ can then be obtained by summing up all contributions of 
all chains, over all possible number of chain segments from the origin, k=0, 1, 
2, … N-1 (for an N-bead chain).  

• Each such contribution needs to take into account all possible chain end 
positions, y0, thus involving an integration over that variable.

• The weight in such integration needs to take into account the conditional 
probability P(y,k;y0,N) that a N-bead chain starting from y0 has its k-th segment 
at the desired location y.  The final expression thus is:

with the factor ½ used to take into account the double counting of the chains (two ends)
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Then, taking into account the definition of the propagator G(y,n;y0) and the relative chain 
partition function, Z(n,y0), the conditional probability P(y,k;y0,N) is defined as
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The Elastic Contribution
• In general this would have been provided directly in terms 

of the conformation tensor C as:

• However, this does not provide a segment length 
resolution!  An alternative expression is needed.

• To evaluate the alternative definition we go back to Flory’s 
original definition of chain elasticity based on an 
expression for the entropy loss as a result of the flow 
deformation (which was derived for simple deformations*) 
and to generalize it for an arbitrary flow deformation
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*P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)



Generalized Flory’s Expression for 
the Entropy 

• First, we need to connect the conformation tensor c to that 
of a general deformation field tensor α.  This is done based 
on elasticity theory through the relationship

where c0 represents the chain conformation before the 
application of the flow deformation

• Then, we evaluate the entropy changes using a Boltzmann 
expression based on the changes in the propagator from G
to G’ induced by the deformation field α
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The Modified Propagator G’(r,n;r0,α)
• If no excluded volume effects are considered, G’(r,n;r0,α) satisfies a 

modified diffusion equation describing a biased random polymer chain 
conformation along preferential directions, ξ, η, and ζ:
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and boundary conditions dictated by the specification of the problem.  In the above 
equation D1, D2 and D3 are proportional to the squares of the eigenvalues of the matrix 
α with the new coordinates ξ, η, and ζ along the direction of the corresponding 
eigenvectors

It can be shown, that for a homogeneous system, the new approach leads exactly to the 
same expressions for the elastic component of the free energy as before



Application to a Neutral Surface*

• Key:  The propagator equation can be solved exactly with 
the proper boundary conditions (zero probability on the 
surface)

• The solution is also factorized in the three directions, 
G=GxGyGz with
– Gx and Gz represented by Gaussian functions (like in the bulk)
– Gy represented by the subtraction of two Gaussian terms at (y-y0) 

and (y+y0)
• This solution leads to equilibrium profiles represented by the 

error function for both the partition function and the chain 
number density in agreement to previous work

• In the presence of flow, G’ can also be solved analytically; 
however the full solution to the problem requires a numerical 
solution to a system of 1-d ODEs

* Mavrantzas and Beris, 1999, JCP 110:628-638









Conclusions

• Complex, multiscale problems can also be handled using 
the Hamiltonian formalism

• Care needs to be exercised in formulating the free energy
• It is possible to involve microscopic information that requires 

the solution of microscopic governing equations subject to 
parameters coupled with respect to the macroscopic 
problem

• In this way the resolution of the approach can be 
significantly enhanced:  For polymer flows, details down to 
chain segment length scale can be resolved

• Remaining challenges:  Introduction of more faithful 
dissipation characteristics of the deformation field:  Recent 
work* suggests that they also need to be position-
dependent

* Jendrejack, Schwartz, de Pablo and Graham, 2004, JCP 120:2513-2529
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