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Chain Conformations Close to a ()
Surface »

For polymers, the bulk internal thermodynamic state
is entropy driven. The more the allowed
configurations, the higher the entropy and the Lower
the free energy---Inversely, the higher the
restrictions, the less the entropy and the higher the
free energy. Approach to a surface lowers the
number of possible internal configurations;

Far away: allowed alternatively, it may add enthalpic contributions.

For adsorbing surfaces:
strongly preferred

—

Close: not allowed

Surface

N



Chain Conformations and
Rheology of a Polymer Solution
Close to a Surface: Challenges

The presence of a surface brings inhomogeneity into a problem
due to the potential for long range surface interactions over a
characteristic length L (for polymers this coincides with the radius
of guration, R)

Especially when a polymer medium is involved, the presence of a
surface changes also the local structure in an nonlocal way: the
polymer conformation problem cannot any longer be dealt only
macroscopically---a multiscale analysis is warranted

The flow problem becomes coupled with both the direct and
indirect (through changes in the polymer conformation) surface-
induced changes

The Hamiltonian formalism can accommodate inhomogeneities
(direct dependencies on spatial location) and multiscale
phenomena both at equilibrium and in the presence of flow

Next: We develop the general equations and present applications
involving a non-interacting (neutral) surface, both under
equilibrium and under flow



General Equations: Variables )

« We assume an incompressible (constant total mass
density, py (Ng=Np,/ MW, being the number density),
Inhomogeneous (variable polymer concentration,
n=chain number density is variable) system on top of an
interacting surface. Thus, we have:

— P4, the polymer density (n,=N,p,/MW,, assuming MW,=N MW,)
— v, the velocity (M = p,v = momentum density)
— s, the entropy density (alternatively, T, temperature)
— C, the conformation tensor where
+ C = <RR> (second moment of the end-to-end distribution function)
=n.,c

» At equilibrium, c=kgT/K where K is the equilibrium
equivalent entropic elastic energy constant of the
polymer chain



Dynamic Equations: Two-Fluid )
Dilute+Non-Homogeneous System
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Hamiltonian )

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A:IV(%pv2+ae+am +as)dV

where a,, a,, and a, represent the contrbutions to the free energy density corresponding
to elasticity, mixing and enthalpic surface interactions, respectively.

Of those free energy contributions the most straightforward is the last one which has the
form (under the assumption that only the environment at the surface is affected):

a, =N, (U, - 2,2)5(%/))

where ug is energy of adsorption for the solvent molecules, @ is the surface

polymer volume fraction, X is the Flory x parameter at the surface, x=-(u, — uy), fis a
characteristic molecular unit length of the solvent molecules and the segment polymer
chain (assumed to be the same) and the surface is assumed to be perpendicular to the
y axis at y=0



The Mixing Contribution O

« The mixing contribution to the free energy is provided by
an extension of the Flory-Huggins expression:

a, =k.T(n,log| — |41 (- @) log(L—9)) + N, z0(L— )
nZ(N —1)

where @ is the polymer volume fraction and Z(N-1) is an N-long chain relative partition
function (defined later) representing the relative number of chains (with respect to the
bulk) that can develop freely at a particular location without hitting the surface.

At homogeneous equilibrium and in the bulk, we have a homogeneous distribution of the
polymer chain segments with the solvent molecules (assumed here of the same volume)

¢:(nlN%

However, in a inhomogeneous medium, the connection between the local polymer chain
segment volume fraction and the number density of the polymer chains is more
complicated: In order to describe it we need detailed knowledge of the polymer chain
conformation. This is achieved through knowledge of the propagator, G(y,n;y,)



The Propagator G(r,n;r,) O

 ltis defined so that G(r,n;r,) d°r is proportional to the number fraction
of the n-member multisegment chains that starting at distance r, they
end within d3r of r.

* If no excluded volume effects are considered, G(r,n;r,) satisfies a
diffusion equation describing a random polymer chain conformation:

2 2 2 2
0 / (ea 0 0 ]CBOnnn%)

—G(r,n;r,) = + +
on ° ox*  oy? o7
with initial condition

G(r,0:1,) = 8(X—X)8(y — ¥o)5(2— 2,)

and boundary conditions dictated by the specification of the problem; in the above
equation { is the chain segment length. Then, the relative chain partition function, Z(n,r,)
is defined by the integral of the propagator G(r,n;r,) as

Z(n,r,) E_[VG(r,n;ro)dSr

Note that from the initial conditions of the propagator Z(0,r,) = 1



The Relationship of ¢(y) with n, @

 First we need to be specific on what we count by n.: let us assume, chain
segment ends. Also, we limit our discussion to problems symmetric on x,z.

* The expression for ¢ can then be obtained by summing up all contributions of
all chains, over all possible number of chain segments from the origin, k=0, 1,
2, ... N-1 (for an N-bead chain).

« Each such contribution needs to take into account all possible chain end
positions, y,, thus involving an integration over that variable.

« The weight in such integration needs to take into account the conditional
probability P(y,k;y,,N) that a N-bead chain starting from y, has its k-th segment
at the desired location y. The final expression thus is:

N-1
N2 (Y) = 2 | 5 (Yo) P(Y.K; Yo, Ny,
k=0
with the factor %2 used to take into account the double counting of the chains (two ends)

Then, taking into account the definition of the propagator G(y,n;y,) and the relative chain
partition function, Z(n,y,), the conditional probability P(y,k;y,,N) is defined as

Z(N-1-k,y)
Z(N-1y)

P(Y.K; Yo, N) =G(y.K; y,)



The Elastic Contribution 2

* In general this would have been provided directly in terms
of the conformation tensor C as:

a, = % (KtrC—nk,T log (det((K%kBT)D)

 However, this does not provide a segment length
resolution! An alternative expression is needed.

* To evaluate the alternative definition we go back to Flory’s
original definition of chain elasticity based on an
expression for the entropy loss as a result of the flow
deformation (which was derived for simple deformations™)
and to generalize it for an arbitrary flow deformation

*P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)



Generalized Flory's Expression for @)
the Entropy B

* First, we need to connect the conformation tensor ¢ to that
of a general deformation field tensor a. This is done based
on elasticity theory through the relationship

c=0-¢,-0

where ¢, represents the chain conformation before the
application of the flow deformation

 Then, we evaluate the entropy changes using a Boltzmann
expressmn based on the changes in the propagator from G
to G’ induced by the deformation field a

% =ke N (y)j Gé?NN—llr)r)

<10 G'(r'N-Lr,a) Z(N-1r) £r
) G(r'N-Lr) Z'(N-1r;a)




The Modified Propagator G(r,n;r,,a) )

* If no excluded volume effects are considered, G(r,n;r,,a) satisfies a
modified diffusion equation describing a biased random polymer chain
conformation along preferential directions, ¢, n, and C:

0 0° 0° 0°
—G'(r,n;ry,0)=| D, —+D, —+D,— |G'(r,n;r,,0)
on o0& on o¢

with initial condition

G'(r,0;r5, @) = 5(X—X%,)5(y — )0 (2 - 2,)

and boundary conditions dictated by the specification of the problem. In the above
equation D1, D2 and D3 are proportional to the squares of the eigenvalues of the matrix
a with the new coordinates &, n, and { along the direction of the corresponding
eigenvectors

It can be shown, that for a homogeneous system, the new approach leads exactly to the
same expressions for the elastic component of the free energy as before



Application to a Neutral Surface* @

Key: The propagator equation can be solved exactly with
the proper boundary conditions (zero probability on the
surface)

The solution is also factorized in the three directions,

G=G,G,G, with

— G, and G, represented by Gaussian functions (like in the bulk)

— G represented by the subtraction of two Gaussian terms at (y-y0)
and (y+y0)

This solution leads to equilibrium profiles represented by the

error function for both the partition function and the chain

number density in agreement to previous work

In the presence of flow, G’ can also be solved analytically;
however the full solution to the problem requires a numerical
solution to a system of 1-d ODEs

* Mavrantzas and Beris, 1999, JCP 110:628-638



1.2

4.0

FIG. 3. The density of chain middle points n, ,, as a function of the distance
v from the wall for various shear stresses 7, and for two values of the
viscosity parameter 8, 8=0.1 (a) and B=10.5 (b), respectively. The distance
v 1s scaled with the root-mean-square equilibrium end-to-end distance in the
bulk R,. The upper set of curves corresponds to the ““fully Gaussian ap-
proximation’” whereas the lower set to the “‘exact’™” form for the distribution

function near the wall.
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FIG. 4. The component (R;R ) (a). the component (R, R,) (b) of the sec-
ond moment of the distribution function perpendicular to the wall. and the
tan(e) (c). as a function of the distance from the surface of the middle point
of the chain for various shear stresses 7, . For the highest value of the shear
stress (7,,=0.80). the corresponding results obtained with the use of the
Gaussian assumption are also indicated. Also S=0.1. In all cases. distances
from the wall are scaled with the root-mean-square equilibrium end-to-end
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finite wvalue. This is the first instance where the apparent
character of the slip phenomena has directly been verified
experimentally. Quantitative comparison of their results with
our model predictions. howewver, is not feasible at the present
time. because additional electrostatic interactions between
the charged PMA molecules and an electric double layer at
the wall existed in the experiments for which the present
model cannot account. A rough comparison has nevertheless
been attempted where the parameters (data) entering into our
model have been taken from the experimental work of
Mueller-Moehnssen ef al.'® For the lowest polymer concen-
tration (0.005% wt.) examined in the experiments. the ex-
perimentally measured slip coefficient & was found to be 4
X 1077 em’/dyn/s whereas the model prediction is (0.8
+0.1) %1077 em’/dyn/s. It is seen. therefore, that by simply
accounting for conformational changes near the wall. 1s
enough to capture the correct order of magnitude of the slip
phenomena. Moreover. the model prediction i1s lower than
the experimentally measured wvalue. which 1s quite pleasing,
because the additional electrostatic repulsions for which the
model cannot presently account are expected to enhance the
depletion and slip phenomena in the interfacial area. For a



Conclusions )

Complex, multiscale problems can also be handled using
the Hamiltonian formalism

Care needs to be exercised in formulating the free energy

It is possible to involve microscopic information that requires
the solution of microscopic governing equations subject to
parameters coupled with respect to the macroscopic
problem

In this way the resolution of the approach can be
significantly enhanced: For polymer flows, details down to
chain segment length scale can be resolved

Remaining challenges: Introduction of more faithful
dissipation characteristics of the deformation field: Recent
work™* suggests that they also need to be position-
dependent

* Jendrejack, Schwartz, de Pablo and Graham, 2004, JCP 120:2513-2529
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