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• Anisotropic

• Singular:

At least one eigenvalue −→ 0 or ∞ at some points
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• F : Ω −→ Ω a smooth transformation:

σ(x) pushes forward to a new conductivity, σ̃ = F∗σ,

(F∗σ)jk(y) =
1

det[∂F j

∂xk ]

n∑
p,q=1

∂F j

∂xp

∂F k

∂xq
σpq

with the RHS evaluated at x = F−1(y)
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• F is a diffeomorphism, then

∇(σ̃ · ∇)ũ = 0 ⇐⇒ ∇(σ · ∇)u = 0,

where u(x) = ũ(F (x)).

• For many TO designs, F is singular

• Removable singularity theory can =⇒ ∃ one-to-one correspondence

{Solutions of ∇ · (σ̃∇ũ) = 0 } ↔ { Solutions of ∇ · (σ∇u) = 0 }
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Electromagnetic wormholes [GKLU,2007]

• Invisible tunnels (optical cables, waveguides)

• Change the topology of space vis-a-vis EM wave propagation

• Based on “blowing up a curve” rather than
“blowing up a point”

• Inside of wormhole can be varied to get different effects

• Produces global effect on waves encountering the WH
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Wormhole manifold M vs. wormhole device N ⊂ R
3

• M = (M1, g1) ∪ (M2, g2)
F−→ N = (N1, g̃1) ∪ (N2, g̃2) ⊂ R

3

• M1 = R
3 \ (B1 ∪ B2) ⊃ γ1, F1 : M1 \ γ1 −→ N1 ⊂ R

3 exterior of WH

• M2 = S
2 × [0, 1] ⊃ γ2, F2 : M2 \ γ2 −→ N2 ⊂ R

3 tunnel

• Missing: K = thickened wall of tunnel, where impose SHS condition

• g̃ ↔ ε̃ = μ̃ = |g̃|1/2g̃−1 : anisotropic, and singular at surfaces of tunnel
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Ideal 3D cloaking for the Helmholtz equation with sources

• Formulate in terms of Riemannian metric

• Conductivity tensors σ ( and ε, μ, . . . ) ↔ Riemannian metrics g:

σjk = |g|1/2gjk ↔ gjk = |σ|−1/(n−2)σjk

• (Δg + ω2)u(x) = h(x) , with source h
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• Cloaking manifold (virtual space)

M1 = B2 = {|x| ≤ 2}, g1 = geucl

(M2, g2) = (B1, gany)

• Singular transformation

F1 : M1 \ {0} −→ N1 = B2 \ B1 ⊂ R
3, F1(x) = (1 + |x|

2 ) x
|x|

F2 : M2 −→ N2 = B1, F2(x) = x (or any diffeom.)



• Cloaking device (physical space)

N = N1 ∪ N2 = B2 with g̃ = (g̃1, g̃2) = ((F1)∗g1, (F2)∗g2)

Cloaking surface Σ = {|x| = 1}

g̃ nonsingular on Σ−, singular on Σ+: λ1, λ2 ∼ 1, λ3 ∼ (r − 1)2



Thm. (3D Cloaking for Helmholtz) Let h̃ = (h̃1, h̃2) be supported away

from Σ. Then there is a 1-1 correspondence between [finite energy]

[distributional] solutions ũ = (ũ1, ũ2) of

(Δg̃ + ω2)ũ = h̃ on N

and solutions u = (u1, u2) = ũ ◦ F = (ũ1 ◦ F1, ũ2 ◦ F2) of

(Δg1 + ω2)u1 = h1 := h̃1 ◦ F1 on M1

(Δg2 + ω2)u2 = h2 := h̃2 on M2, ∂νu2 = 0 on ∂M2
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• “Virtual surface” at Σ: acts as a perfectly reflector

• Dichotomy: cloaking vs. trapped states

(I) If ω2 is not a Neumann eigenvalue of (M2, g2),
waves cannot penetrate Σ, and ũ2 ≡ 0 on B1:

Cloaking works as advertised

or

(II) If ω2 is an eigenvalue, then ∃ waves ≡ 0 on B2 \ B1

and = a Neumann eigenfunction on B1:

Trapped states
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3D Acoustic cloak

(Helmholtz) |g|−1/2
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∂j(|g|1/2gjk∂ku) + ω2u = 0

⇐⇒

(Acoustic)
∑
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∂j(|g|1/2gjk∂ku) + ω2|g|1/2u = 0

with mass density ρjk = |g|1/2gjk, bulk modulus λ = |g|1/2.



3D Acoustic cloak

(Helmholtz) |g|−1/2
∑
j,k

∂j(|g|1/2gjk∂ku) + ω2u = 0

⇐⇒

(Acoustic)
∑
j,k

∂j(|g|1/2gjk∂ku) + ω2|g|1/2u = 0

with mass density ρjk = |g|1/2gjk, bulk modulus λ = |g|1/2.

• Same as H. Chen and C.T. Chan, Appl. Phys. Lett. 91 (2007), 183518,
and S. Cummer, et al., Phys. Rev. Lett. 100 (2008), 024301.

• Σ− acts as a sound-hard virtual surface, and dichotomy holds...



Quantum Mechanical Cloak for Matter Waves

At energy E, let ω =
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E:

(Schrödinger) −
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Quantum Mechanical Cloak for Matter Waves

At energy E, let ω =
√

E:

(Schrödinger) −
∑
j,k

∂j(|g|1/2gjk∂kψ) + E(1 − |g|1/2)ψ = Eψ

with effective mass m̂jk = |g|1/2gjk, V̂ = E(1 − |g|1/2

• Same as Zhang, et al., Phys. Rev. Lett. 100 (2008), 123002.

• Ditto, ditto, ...
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Approximate Cloaking

• Avoid anisotropic, singular material parameters

• Replace with isotropic, nonsingular parameters

• Price: cloaks only approximately (but to arbitrary accuracy)

• Believe: should work for other singular TO designs



General acoustic-like equations

• Incorporate magnetic potential b into eqn. −→ ∇b = ∇ + ib

(*) ∇b · σ1∇bu + q|g|1/2u = h

• Truncated equations: For 1 < R ≤ 3
2 , replace σ1 by

σR(x) =
{

(F1)∗(δjk), x ∈ B2 \ BR

2δjk, x ∈ BR



• Quadratic forms a1 and aR

• Monotonicity: aR[u] ↘ as R ↘ 1 ( NOT TRUE FOR n = 2 )

• Lemma Γ − limR−→1aR = a1 on L2
g

• Then truncate |g|1/2, ... , get nonsingular, anisotropic acoustic eqns
whose solutions approximate those of the original eqn.

• Homogenization: approximate these by isotropic equations, ditto



Approximate quantum cloaking

• Fix V0 with supp(V0) ⊂ B1, and magnetic potential b(x)

Then, if E �∈ SpecD(−∇2
b ;B2)∪SpecN (−∇2

b +V0;B1), there exist approximate
cloaking potentials {V E

n }∞n=1 such that

lim ΛV0+V E
n

f = Λ0f, ∀f ∈ H1/2(∂B2)



Approximate dichotomy:

• (I) If E is far from a SpecN (−∇2
b + V0;B1), then the V E

n act as
approximate quantum cloaks: matter waves at energy E will pass by roughly
undisturbed;

or

• (II) If E is close to an eigenvalue, then V E
n supports almost trapped states,

largely concentrated in B1.

• Magnetically tunable: switch between (I) and (II) by varying b(x)



Red: wave passing cloak. Blue: almost trapped state
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