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Fiber Spinning of Semicrystalline Polymer Melts
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Semicrystalline Morphologies in Polymers
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Most of the continuum models have a high 
degree of  empiricism and lack capability to 
predict  semicrystalline morphology.



Micro-Macro Hierarchical Approach[1]

Predictions:

Morphology

Macroscopic Model:

•Amorphous melt rheology and chain deformation 

• Nonequilibrium thermodynamic potentials

Processing conditions

• Temperature

• Take-up roll speed 

Microscopic Simulations

• Chain conformations and microscopic 
thermodynamic information under the influence of 
flow deformation for different semicrystalline 
morphologies using a microscopic model

1 Mukherjee, Wilson , Beris, Flow-induced non-equilibrium thermodynamics of lamellar semicrystalline polymers, J. Non-Newt. Fluid Mech., 120 (1-3): 225-240 (2004).



Outline
• Objective: Examine/improve the internal consistency in 
micro-macro modeling following a hierarchical approach 
applied to a dense amorphous linear polymer system

• Microscopic modeling

Lattice subdivision-based Monte Carlo method

• Macroscopic modeling

Conformation tensor based models using Non-
Equilibrium Thermodynamics

• Microscopic modeling under non-equilibrium conditions

•Conclusions



Microscopic Modeling: Lattice Models

• Originally developed by Flory and 

Yoon[1]

• Has been found to be useful in the 

study of dense semicrystalline polymers

• Various lattice based approaches:

Random walk models

Exact enumeration methods

Monte Carlo methods

Mean-field models

[1] Flory and Yoon, Polymer 18 (1977), pp. 509-513
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Lattice-based Metropolis Monte Carlo Scheme

• A modular lattice subdivision approach.

• At any Monte Carlo step perform any of
Monte Carlo moves:

• Internal sublattice optimization

• Isomerization

• Accept the new state with a probability

Eη energetic penalty on tight folds non-
dimensionalized with respect to the 
Boltzmann factor kBT
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Initial Macroscopic Modeling of the Dense Amorphous
Polymer Phase: Phan-Thien Tanner Model[2]

• Based on a network model

• Can also be described from bracket formulation of non-equilibrium 

thermodynamics [3]

• The internal structure is described by the conformation tensor, ,the 

second moment of the end-to-end n-segment chain distance.
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[2] Phan-Thien N, Tanner R.I.,  J.Non-Newtonian Fluid Mech.,2(1977) 353-365

[3]A.N. Beris, B.J. Edwards, Thermodynamics of Flowing Systems, Oxford University Press, New York, 1994



Phan-Thien Tanner (PTT)Model
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Internal structure dependent relaxation time

Constitutive equation
η - extensional viscosity 
λ - relaxation time
G - elastic modulus

0λ  - zero shear rate 
      relaxation time

~ 0.05 for PEα

A*- free energy of the system (non-dimensionalized by kBT)
M- total number of entanglements in the system
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Hamiltonian Functional Formalism*
*Beris and Edwards, Thermodynamics of Flowing Systems, Oxford UP, 1994

• For any arbitrary functional F, its time evolution 
can be described as the sum of two contributions:
– a reversible one, represented by a Poisson bracket:

• {F,H}

– an irreversible one, represented by a dissipative 
bracket:

• [F,H]

• The final dynamic equations are recovered 
through a direct comparison with the expression 
derived by differentiation by parts:

{ , } [ , ]dF F dF H F H dVdt dt
δ

δ= + = ⋅∫ x
x



Advantages of Hamiltonian 
Formalism (1)

• It only requires knowledge of the following:
– A set of macroscopic variables, taken uniformly as volume 

densities.  The include, in addition to the equilibrium 
thermodynamic ones (the component mass density, ρi, for 
every component i, the entropy density si), the momentum 
density, ρv, and any additional structural parameter, again 
expressed as a density

– The total energy of the system or any suitable Lagrange 
transform of it, typically the total Helmholtz free energy, 
expressed as a functional of all other densities with the 
temperature substituting for the entropy density

– The Poisson bracket, {F,H}
– The dissipation bracket, [F,H]



Advantages of Hamiltonian 
Formalism (2)

A set of macroscopic variables can easily be assumed depending on the 
physics that we want to incorporate to the problem
The total Helmholtz free energy can also easily be constructed as the sum 
of kinetic energy plus an extended thermodynamic free energy that 
typically includes an easily derived expression (in terms of the structural 
parameters) in addition to a standard equilibrium expression
The Poisson bracket, {F,H} is rarely needed by itself: only when an 
equation is put together for the first time characteristic of the variables 
involved in this system; otherwise, its effect is probably already known from 
previous work:  it corresponds to a standard reversible dynamics.  For 
viscoelastic flows, this corresponds to the terms defining an upper 
convected derivative
The dissipation bracket, [F,H] is the only one to contain major new 
information and is typically where our maximum ignorance lies.  Barren any 
other information (say, by comparison against a microscopic theory) the 
main information that we can use is a linear irreversible thermodynamics 
expression:  according to that, the dissipation bracket becomes a bilinear 
functional in terms of all the nonequilibrium Hamiltonian gradients with an 
additional nonlinear (in H) correction with respect to δF/δs (entropy 
correction) that can be easily calculated so that the conservation of the 
total energy is satisfied:  [H,H] = 0.



Final Equations for Single 
Conformation Viscoelasticity

• For an isothermal system, we get the standard dynamics 
for a viscoelastic medium (together with the divergence-
free velocity constraint):
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Key Question:  Consistency with 
the Underlying Microscopic Physics

• Approach:
– Solve the Continuum Macroscopic Model for a well 

defined flow to obtain:
• Structural information: Conformation Tensor, c
• Thermodynamic information: (Non-equilibrium) Free 

Energy, A and Free Energy potentials, δA/δc
– For the given flow, and the given potentials, solve 

directly for the corresponding microscopic structure
• Use a specially developed Non-Equilibrium Monte-Carlo 

approach applied to a 3d Lattice model with full periodicity
– Attest on the consistency through a direct 

comparison of the microscopic/macroscopic results
– Interpret results and suggest improvements to the 

macroscopic model repeating the procedure if 
necessary



Uniaxial Extensional flow for PTT
Solve the equations for uniaxial extensional flow at steady state
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Notice that at equilibrium (We*~ 0), these potentials go to zero!



Non-equilibrium Thermodynamic Bias

Need to formulate the proper non-equilibrium thermodynamic 
guidance to drive  the microscopic simulations

Ansatz:
Accept the new microstate with a probability
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Evaluation of the Non-equilibrium Bias

2. Use it to evaluate the Non-equilibrium 
forcing term 
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Consistency at low We* between Microscopic and PTT Models



Serious Qualitative Inconsistency at higher We*
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Modified FENE-P/PTT Model
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Uniaxial Extensional flow for FENE-P/PTT
Solve the equations for uniaxial extensional flow at steady state

Diagonal Conformation tensor
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This model is also compatible to the same microscopic simulations!



Comparison between FENE-P/PTT, PTT and MC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

C
zz

We*

 PTT
MC-data
 FENE-P/PTT

Maximum limit



0 2 4 6 8 10
-20

0

20

40

60

80

100

120

140

Fr
ee

 E
ne

rg
y

We*

 FENE-P/PTT
 PTT

Inconsistencies in the free energy

The total free energy difference 
between fully extended and fully
random state cannot be more than
logW ≈L2



Bounded Free Energy FENE-PB/PTT Model
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Uniaxial Extensional flow for FENE-PB/PTT
Solve the equations for uniaxial extensional flow at steady state

Diagonal Conformation tensor

ε

2
ε

−

*
xx

* * *
xx yy

*
zz

* *
xx zz* *

*

*
*

1

c 0 0
0 c c 0
0 0 c

B Bc and c ,
Bf We Bf 2We

where, We is (asbefore) unrestricted!

( )
We is the Weissenberg number −

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

= =
+ −

λ
=

ε

c

   

 

c
   

x                 

y

z

Same Non-equilibrium thermodynamic potentials as before! 
* * *

* *
* * *
xx yy zz

A A M AWe ;  MWe
c c 2 c
δ δ δ

= = − =
δ δ δ Macro-micro bridges

The microscopic simulations are also compatible to this model!



0 2 4 6 8 10
-20

0

20

40

60

80

100

120

140

Fr
ee

 E
ne

rg
y

We*

 FENE-P/PTT
 PTT
 FENE-PB/PTT

Maximum limit for FENE-PB/PTT

FENE-PB/PTT has always a finite free energy



There is good agreement between FENE-PB/PTT and MC
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Efficient 3-D lattice-subdivision based Monte Carlo simulations have 

enabled us to check for microscopic consistency various continuum 

viscoelastic models for dense linear polymer models.

Previous models have shown to be defective at high levels of 

molecular extension.  A new phenomenological model has been 

developed (FENE-PB/PTT) that is consistent to finite levels on both the 

molecular extension and the total free energy.

Preliminary results show that the new model captures well the sudden 

changes accompanying the coil-to-stretch transition at high extensions.

Conclusions
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Evaluating Microscopic Thermodynamic Information

A*(Eη,We*) can be evaluated incrementally close to static equilibrium as:
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