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Dynamical modeling based on energy dissipation

The elastic stress can be derived from general energy using
virtue work principle

The viscous stress can be derived by understanding dissipation

The kinematics

The following is our some related works:

Dongzhuo Zhou, Pingwen Zhang and Weinan E, Modified
models of polymer phase separation PHYSICAL REVIEW E
73 (6): Art. No. 061801 Part 1 JUN (2006)

Dan Hu, Pingwen Zhang and Weinan E, The continuum
theory of a moving membrane, PHYSICAL REVIEW E (2007)



Dynamical modeling based on energy dissipation

Bottom up

The microscopic dynamical model is given

We hope to get the macroscopic dynamical model

Today, I will focus on
The Thermodynamic Closure Approximation of Kinetic Theories
for Complex Fluids
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Modeling of Complex Fluids

1 Continuity theories

Oldroyd-B model, Leslie-Ericksen theory etc
relatively simple and efficient in numerical simulation
only accurate in some special cases

2 Kinetic theories or molecular theories

FENE model, the Doi kinetic theory etc
more accurate than continuity theories
computing is expensive in nonhomogeneous system

3 Tensor models
describe local structure by an order tensor
a compromise between accuracy and efficiency
grab microstructure while serving as constitutive equation



Two approaches to tensor models

1 Landau theory
Define a phenomenal free energy in terms of order parameter or
order tensor. For example, the Landau-de Gennes theory for
LCPs:

A[S ] =
1

V

∫
dr
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]
Then the dynamics of S can be written formally as

dS
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= ∇ ·
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)
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∂A

∂S
+ Fext



Two approaches to tensor models

2 Reduced from kinetic theory by closure approximation

the Doi theory for LCPs

df

dt
=

1

De
R · (Rf + fRU)−R · (m× κ ·mf ) (1)

U is Maier-Saupe potential

U(m, t) = U0

∫
|m×m′|2f (m′, t)dm′

multiple mm on the both sides of (1) and integrate, one get

dM

dt
= − 2

De

[
(3M − I ) + 2U0(M ·M −M : Q)

]
(2)

where M = 〈mm〉, Q = 〈mmmm〉.



Two approaches to tensor models

FENE model

df

dt
=

2

ξ
∇q · (∇qf + f∇qV )−∇q · (κ · qf ) (3)

where V is FENE potential

V (q) = −HQ2
0

2
ln

(
1− q2

Q2
0

)
the stress introduced by polymer is

τ e = 〈q∇q(ln f + V )〉 = −I + 〈 Hqq

1− q2/Q2
0

〉

multiple qq on the both sides of (3) and integrate, one get

dM

dt
= κ ·M + M · κ− 4

ξ
τ e



What’s the differences between two approaches?

Landau theory is phenomenal, ignore some microscopic
configuration entropy

Landau theory ensure energy dissipation in isothermal system

the second approach need closure approximation, but give
more credible results

not all closure approximations ensure energy dissipation



Choice of closure approximations

Several closures were introduced in the passed thirty years

quadratic closure (Doi 1981): Q = MM

HL1, HL2 closure approximation (Hinch, Leal 1976) details

Bingham closure approximation (Chaubal and Leal 1998)

Q =

∫
mmmm

1

Z
exp(B : mm)dm,

where

∫
mm

1

Z
exp(B : mm) = M.

FENE model: FENE-P (Perterlin 1966), FENE-L (LieLens et
al 1999) etc

quasi-equilibrium closure approximation ( Ilg et al 2002, 2003)

Which one is better ?



Criterions of good closure approximations

We present four criterions of good closure approximations

1 non-negative CDF f ≥ 0

2 energy dissipation in isothermal system

T
dS

dt
= − d

dt

( ∫
1

2
ρu · udx + A[M]

)
≥ 0.

and consistent with that of exact kinetic theory

3 good accuracy of approximation

4 low computational expense



Quasi-equilibrium closure approximation (QEA)

Background

Quasi-equilibrium approximation is a basic principle of statistical
physics.

The very first use of the entropy maximization dates back
Gibbs’ classical work: Elementary Principles of Statistical
Mechanics (Dover, 1960).

The use of the quasi-equilibrium to reduce the description of
dissipative system can be traced to the works of Grad on the
Boltzmann equation (1949).

QEA was employed in closure approximation of kinetic theory
for flexible and rod-like polymer dynamics by Ilg et al.

P. Ilg, I. V. Karlin, H.C. Öttinger, Canonical distribution functions in polymer
dynamics. (I). Dilute solutions of flexible polymers, Physica A 315 (2002)

P. Ilg, I.V. Karlin, M. Kröger, H.C. Öttinger, Canonical distribution functions in

polymer dynamics. (II). Liquid-crystalline polymers, Physica A 319 (2003)



Quasi-equilibrium closure approximation (QEA)

Consider a system with free energy

A[f ] =

∫
f ln f +

1

2
Uf (m)f + V (m)f dm

Uf is mean-field potential and V is external potential. Then the
dynamics of the system given by

df

dt
= ∇m[D(m) · ∇mµ], µ =

δA[f ]

δf
. (4)

The energy dissipation is

−dA[f ]

dt
= −(

δA

δf
,
df

dt
) = (∇µ,D(m)∇µ) ≥ 0.



Quasi-equilibrium closure approximation (QEA)

One can get the dynamics of macro-variables Si =
∫

si (m)f (m)dm
from equation (4)

dSi

dt
=

∫
si (m)∇[D(m) · ∇µ]dm, i = 1, . . . , n. (5)

The right sides of (5) usually involves more macro-variables, often
are higher order term, How to make it closed?

A basic idea is to close it without introducing more information on
distribution function. Thus the higher order macro-variables are
ensembled by the most probable distributions, which are obtained
by taking maximum entropy or minimum of free energy

min A[f ]

s.t.

∫
si (m)f (m)dm = Si , i = 1, . . . , n.



Quasi-equilibrium closure approximation (QEA)

By the method of Lagrange multipliers, we get

µ = ln f + Uf (m) + V (m) =
n∑

i=1

λi si (m)

Then the quasi-equilibrium distribution reads

f = exp
(
− V (m)− Uf (m) +

n∑
i=1

λi si (m)
)
.

Suppose the relationship of Uf (m) and f are given by

Uf (m) =
∑
i ,j

SiAijsi (m),

where A is a symmetric matrix.



Quasi-equilibrium closure approximation (QEA)

Then

fS(m) = exp
(
− V (m)−

∑
i ,j

SiAijsi (m) +
∑

i

λi si (m)
)
,

where

∫
si (m)fS(m)dm = Si , i = 1, . . . , n.

Define the macroscopic free energy by A[S ] = A[fS ], then

∂A[S ]

∂Si
= λi .

And the energy dissipation hold for reduced equation (5)

−dA[S ]

dt
= −

∑
i

∂A[S ]

∂Si

dSi

dt
= −

∑
i

λi

(
si (m),

df

dt

)
|f =fS

= −(
∑

i

λi si (m),∇D(m)∇µ)|f =fS = (∇µ,D(m)∇µ) ≥ 0.
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FENE-QE model

Given second-order moment M, we take the QE distribution

fM(q) =
1

Z
exp(−V (q)) exp(R : qq)

as the reference CDF to estimate polymer stress

τ e = 〈q∇qµ〉 = R ·M + M · R

Then the closed equation reads

dM

dt
= κ ·M + M · κ− 4

ξ
(R ·M + M · R), (6)

where R are determined by

∫
qq exp(−V ) exp(R : qq)dq = M.



FENE-QE model

Equation (6) together with incompressible Navier-Stokes equation

du

dt
+∇p = ∇ · τ e +

1

Re
∆u

∇ · u = 0.

compose a well-defined system. The energy dissipation of the
system reads

T
dS

dt
= − d

dt

[ ∫
Ω

1

2
ρν2dx + A[M]

]
=

∫
Ω

1

Re
|∇u|2dx +

∫
Ω

8

ξ
Tr(R ·M · R)dx

≥ 0.



Implementation of FENE-QE

Calculate R from M is equal to solving a system of the non-linear
equations. Note: Z also depends on R.

M = G (R) =
1

Z

∫
qq

[
1− (

q

Q0
)2

]HQ2
0/2

exp {R : qq}dq

Newtonian iteration:

Rn+1 = Rn −∇G (Rn)
−1G (Rn), n = 0, 1, 2, · · · (7)

Difficulties

Numerical integration of 2- or 3- dimensional variables.

Ill posed function to be integrated, when index HQ2
0/2 is

small and R is big.



Implementation of FENE-QE

Strategy of Ilg et al

By Legendre transform, the independent variables are changed
from M to R

dR

dt
= (Q −MM)−1 :

dM

dt
.

Ilg et al proposed a first-order integration scheme for this equation.
It need to evaluate Q and M in each time step.

The computing cost is still expensive for nonhomogeneous system
simulation.



FENE-QE-PLA

Our choice: piecewise linear approximation (PLA) to G−1

M and R can be diagonalized at the same time. So we only
consider the case when both M and R are diagonal matrices.

1 Generate a grid on the range of G .

2 Calculate the value of G−1 at each grid point by Newtonian
iteration.

3 Given any value of M, calculate G−1(M) by linear
interpolation of four neighboring grid points



FENE-QE-PLA

Grid generation

one-dimensional case
First divide the domain of G (R) into an uniform gird
{R0,R1, · · · ,RN}, then evaluate every G (Ri ). The series
{G (R0),G (R1), · · · ,G (Rn)} gives a grid on the range of
G (R).

two-dimensional case
Tensor product of 1-dimensional grid. The ij th grid point is
{G (Ri ),G (Rj)}

Rectangular grids (not necessarily uniform) are usually better than
non-rectangular grids. Furthermore, it is easy to carry out bisect
search method on rectangular grids.



Numerical results

Numerical comparison of three second-order moment closed FENE
models

FENE-P (Bird et al 1987)
R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of

Polymeric Liquids, Vol. 2: Kinetic Theory, Wiley, New York, 2nd edn., 1987.

FENE-QE (Ilg et al 2002)

FENE-QE-PLA

FENE-YDL
P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure

approximation to the FENE model of polymeric fluids, SIAM J. Multiscale

Model. Simul., 3 (2005) 895–917.



Numerical results– steady shear flow

steady shear flow

scheme central difference
fourth-order explicit Runge-Kutta

parameters u = (κy , 0), ξ = 40, H = 100 and Q0 = 1



Numerical results– steady shear flow
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Figure: Comparison of the contour plots of the CDFs at κ = 3.



Numerical results– steady shear flow
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Figure: Comparison of the contour plots of the CDFs at κ = 15.



Numerical results– steady shear flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 1.10× 10−2 4.02× 10−3 4.07× 10−4 4.17× 10−4

3 1.37× 10−2 3.68× 10−2 9.45× 10−4 9.07× 10−4

6 2.21× 10−2 1.38× 10−1 4.43× 10−3 4.24× 10−3

9 3.49× 10−2 2.72× 10−1 1.34× 10−2 1.29× 10−2

15 6.99× 10−2 5.45× 10−1 5.73× 10−2 5.65× 10−2

20 9.97× 10−2 7.40× 10−1 1.20× 10−1 1.19× 10−1

Table: L1 Norm of Error of CDFs



Numerical results– steady shear flow
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Figure: Comparison of the Normal Stress Difference



Numerical results– steady shear flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 1.10× 10−3 2.08× 10−6 7.23× 10−6 3.76× 10−5

3 1.03× 10−2 1.96× 10−4 2.66× 10−5 2.57× 10−4

6 4.79× 10−2 3.71× 10−3 6.31× 10−4 1.05× 10−3

9 1.28× 10−1 2.23× 10−2 5.32× 10−3 4.65× 10−3

15 4.78× 10−1 2.32× 10−1 6.68× 10−2 6.57× 10−2

20 1.00× 100 8.93× 10−1 2.46× 10−1 2.31× 10−1

Table: Error of the Normal Stress Difference compared to Fokker-Planck

equation



Numerical results– steady shear flow
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Figure: Comparison of the shear stress.



Numerical results– steady shear flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 1.90× 10−3 1.32× 10−5 1.90× 10−6 1.35× 10−5

3 6.02× 10−3 4.35× 10−4 7.13× 10−6 7.43× 10−5

6 1.41× 10−2 4.12× 10−3 2.17× 10−4 3.66× 10−4

9 2.54× 10−2 1.69× 10−2 1.18× 10−3 7.67× 10−4

15 5.86× 10−2 1.13× 10−1 9.13× 10−3 8.46× 10−3

20 9.62× 10−2 3.52× 10−1 2.72× 10−2 2.10× 10−2

Table: Error of the Shear Stress compared to Fokker-Planck equation



Numerical results– steady shear flow
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Figure: Comparison of the Elastic Energy



Numerical results– steady shear flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 2.11× 10−2 9.85× 10−3 1.30× 10−5 1.20× 10−5

3 3.03× 10−2 1.20× 10−2 2.51× 10−5 2.74× 10−5

6 6.72× 10−2 2.16× 10−2 3.92× 10−4 8.57× 10−5

9 1.45× 10−1 4.58× 10−2 3.23× 10−3 1.81× 10−3

15 4.47× 10−1 2.04× 10−1 3.96× 10−2 3.88× 10−2

20 6.69× 10−1 5.85× 10−1 1.41× 10−1 1.33× 10−1

Table: Error of the elastic energy compared to Fokker-Planck equation



Numerical results– elongational flow

elongational flow

u = (κx ,−κy)



Numerical results– elongational flow
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Figure: Contour Plots of CDFs for κ = 3



Numerical results– elongational flow
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Figure: Contour Plots of CDFs for κ = 6



Numerical results– elongational flow
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Numerical results– elongational flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 1.21× 10−2 1.64× 10−2 8.55× 10−4 8.55× 10−4

2 1.75× 10−2 7.39× 10−2 9.00× 10−4 9.00× 10−4

3 3.22× 10−2 1.88× 10−1 9.83× 10−4 9.83× 10−4

4 7.55× 10−2 3.83× 10−1 1.09× 10−3 1.09× 10−3

5 1.99× 10−1 6.62× 10−1 1.25× 10−3 1.23× 10−3

6 5.25× 10−1 9.93× 10−1 1.42× 10−3 1.42× 10−3

7 1.01× 100 1.46× 100 3.56× 10−3 1.73× 10−3

8 1.32× 100 1.74× 100 2.44× 10−3 2.44× 10−3

Table: Error of L1 norm of the CDFs



Numerical results– elongational flow
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Figure: Comparison of the Normal Stress Difference



Numerical results– elongational flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 9.25× 10−3 2.38× 10−4 3.33× 10−5 3.33× 10−5

2 3.32× 10−2 2.57× 10−3 7.01× 10−5 7.01× 10−5

3 1.25× 10−1 1.26× 10−2 1.44× 10−4 1.44× 10−4

4 5.90× 10−1 3.29× 10−2 2.29× 10−4 2.83× 10−4

5 3.07× 100 2.69× 10−1 2.57× 10−4 1.59× 10−4

6 3.88× 100 3.87× 100 6.90× 10−4 6.34× 10−4

7 8.07× 100 1.48× 101 3.81× 10−3 1.95× 10−3

8 2.59× 101 2.79× 101 4.68× 10−2 4.68× 10−2

Table: Error of the Normal Stress Difference compared to Fokker-Planck

equation



Numerical results– elongational flow
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Figure: Comparison of the Elastic Energy



Numerical results– elongational flow

κ FENE-P FENE-YDL FENE-QE FENE-QE-PLA

1 2.47× 10−2 3.22× 10−4 3.53× 10−5 3.53× 10−5

2 4.51× 10−2 1.87× 10−3 5.20× 10−5 5.20× 10−5

3 8.32× 10−2 6.56× 10−3 8.86× 10−5 8.86× 10−5

4 3.35× 10−1 1.09× 10−2 1.20× 10−4 1.54× 10−4

5 1.56× 100 1.68× 10−1 2.05× 10−5 9.33× 10−6

6 1.99× 100 1.88× 100 3.59× 10−4 3.28× 10−4

7 2.58× 100 6.50× 100 3.55× 10−4 6.38× 10−4

8 8.58× 100 1.14× 101 1.36× 10−2 1.36× 10−2

Table: Error of the elastic energy compared to Fokker-Planck equation



Numerical results– Lid driven cavity

Lid driven cavity

The simulation area is a 2-dimensional square cavity [0, 1]× [0, 1]
whose top wall moves with a velocity distribution of

u(x , y = 1, t) = 16 κ a(t) x2(1− x)2

Here κ is a constant and to start up the flow smoothly, a(t) is
chosen as a time dependent factor of

a(t) =

{
0.1 t 0 ≤ t < 10

1 t ≥ 10



Numerical results– Lid driven cavity
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Figure: Stream line of lid-driven cavity, κ = 1 at t = 40



Numerical results– Lid driven cavity

Figure: Horizontal velocity (left) and its error plot (right) on line x = 1
2 ,

κ = 1 at t = 40



Numerical results– Lid driven cavity

Figure: Vertical velocity (left) and its error plot (right) on line y = 1
2 ,

κ = 1 at t = 40



Numerical results

Computational cost comparison

model homogeneous lid-driven cavity
shear κ = 20 mesh 50× 50, κ = 1

FENE-QE 285s
FENE-QE-PLA < 1s 716s
FENE-P < 1s 96s
FENE-YDL < 1s 102s
BCF 1.7× 104 × 10 s

Table: Computational cost comparison. Closure models are tested on a

PC with a 3GHz Intel Pentium IV CPU. BCF (N = 4000) is run on ten

3.2GHz Intel Xeon CPUs.
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System configuration

assumption about macromolecules: rigid rod-like, very long.

nonhomogeneous, configuration distribution function (CDF)
depends on spatial variables and orientational variables:
f (x,m, t)

non-local intermolecular potential

U(x,m, t) =

∫
Ω

∫
|m′|=1

G (x−x′,m,m′)f (x′,m′, t)dm′dx′.

hydrodynamic-kinetic coupled incompressible isothermal
system



Free energy

The free energy of the system is given by (for simplicity, kT is
omitted)

A[f ] =

∫
Ω

∫
|m|=1

f ln f +
1

2
fUdmdx,

Then the chemical potential is

µ =
δA

δf
= ln f + U.



Kinetic equation

The equation for f (x,m, t) reads

∂f

∂t
+ u · ∇f = ∇ ·

{[
D‖mm + D⊥(I −mm)

]
·
(
f∇µ

)}
+R ·

(
Dr (m)

(
fRµ

))
−R ·

(
m× κ ·mf

)
,

D‖, D⊥: coefficients for translational diffusion parallel and
perpendicular to the locale molecules orientation.

Dr (m) is coefficient for orientational diffusion.

R = m× ∂/∂m, κ = (∇u)T .



Hydrodynamic equations

continuity equation (assume ρ weak depends on ν = 〈1〉)

∇ · u = 0

momentum equation

ρ
[∂u

∂t
+ (u · ∇)u

]
+∇p = ηs∆u +∇ · τ s +∇ · τ e + Fe ,

ηs is the solvent viscosity, Fe is body force, τ e is polymer
elastic stress, τ s is polymer viscous stress.

τ s = ξrD : 〈mmmm〉,

D = (κ + κT )/2 is the strain rate tensor, ξr is the coefficient
of friction for solvent.



Elastic stress and body force

The elastic stress and body force read (virtual work principle)

τ e = −〈mm×Rµ〉,

Fe = −
∫
|m|=1

∇Uf (x,m, t)dm = −〈∇U〉.



Non-local excluded volume potential

We assume the mean-field intermolecular interaction takes form

G (x− x ′,m,m′) = U0
g(x′−x,m) + g(x′−x,m′)

2
|m×m′|2

g(x′−x,m) =
1

ε1ε2
2

g
(∣∣(x′−x) ·m

∣∣2
ε2
1

+
|x′−x|2 −

∣∣(x′−x) ·m
∣∣2

ε2
2

)
Some special form:

In homogeneous system, leads to Maier-Saupe potential:

UMS(m, t) = U0

∫
|m′|=1

|m×m′|2f (m′, t)dm′

= U0(νI −M) : mm



Non-local excluded volume potential

In nonhomogeneous system, can lead to Marrucci-Greco
potential (weak distortion)

U(x,m, t)

= U0

[
(1−c1∆)(νI−M) : mm +

c2

2
mm :∇2(νI−M) :mm

+
c2

2
∇2 : (MI − Q) : mm

]
isotropic long range interaction ε1 = ε2 = ε
(one-constant approximation)

g(x′ − x,m) =
1

ε3
g
( |x′ − x|2

ε2

)
= gε(x

′ − x)

U = U0 gε∗(νI −M) :mm



Energy dissipation

Energy dissipation of the hydrodynamic-kinetic coupled system

T
dS

dt
= − d

dt

( ∫
Ω

1

2
ρu · udx + A[f ]

)
=

∫
Ω

ηs∇u : ∇u + ξr 〈(mm : κ)2〉dx

+

∫
Ω

∫
|m|=1

{
Dr (m)Rµ · Rµ

+∇µ ·
[
(D‖−D⊥)mm+D⊥I

]
· ∇µ

}
f dmdx

It is non-negative provided:

ηs ≥ 0, ξr ≥ 0, D‖ ≥ 0, D‖−D⊥ ≥ 0, Dr (m) ≥ 0.



Second-order moment model

dM

dt
= D⊥

[
∆M + U0 ∇ ·

[
∇(νI −M)∗gε :Q

]]
+(D‖−D⊥)

[
∇∇ :Q + U0 ∇ ·

[
∇(νI −M)∗gε

...P
]]

−2D̄r

[
(3M − νI )− U0

(
M∗gε ·M + M ·M∗gε − 2M∗gε :Q

)]
+κ ·M + M · κT − 2κ : Q

Q = 〈m4〉, P = 〈m6〉. One-constant approximation and
pre-average of Dr (m) are adopted. Meanwhile the stress and body
force can be expressed by moments,

τ e = (3M− νI )− U0

(
M ·M∗gε + M∗gε ·M − 2M∗gε :Q

)
,

Fe = −∇
(
νI −M

)
∗gε : M,

τp = ξrκ : Q.



Second-order moment model – Bingham closure

Given M, we take the Bingham distribution as reference CDF

fM(m) =
1

z
exp(m · B ·m),

where B is a symmetric second order tensor. z is a normalized
parameter. B, z are determined by

M =

∫
|m|=1

fM(m)mmdm

Q,P are approximated by

Q =

∫
|m|=1

fM(m)m4 dm,

P =

∫
|m|=1

fM(m)m6 dm.



Second-order moment model – energy dissipation

The energy dissipation of the reduced model reads

T
dS

dt
= − d

dt

{∫
Ω

1

2
ρu · udx + A[M]

}
=

∫
Ω

(
ηs∇u : ∇u + ξr 〈(mm : κ)2〉

∣∣
f =fM

)
dx

+

∫
Ω

∫
|m|=1

{
D̄rRµ · Rµ

∣∣
f =fM

+∇µ ·
[
(D‖−D⊥)mm+D⊥I

]
· ∇µ

∣∣
f =fM

}
fM dmdx

It is non-negative provided

ηs ≥ 0, ξr ≥ 0, D̄r ≥ 0, D⊥ ≥ 0, D‖ − D⊥ ≥ 0.



Fourth-order moment model

Fourth-order model for anisotropic long range potential

Marrucci-Greco potential

U = Ū :: mmmm

Ū = U0

[
(1+c1∆)(νI−M)I+ c2

2

(
∇2(νI−M)+∇2 : (MI−Q)I

)]
.

Polymer stress

τ e =
[
(3M − νI ) + 4ŪrsijPrsijkl − ŪriijQrjkl − ŪrijjQrikl

−ŪrijkQrijl − ŪrijlQrijk

]
,

τp = ξrκ : Q.

Body force Fe = 0, and the kinetic model satisfy energy
dissipation.



Fourth-order moment model

dQ

dt
=

dQ1

dt
+

dQ2

dt
+

dQ3

dt

dQ1

dt
= ∇ ·

[
D⊥

(
∇Q +∇Ū :: M8

)
+ (D‖−D⊥)

(
∇·P +∇Ū

... :M10

)]
dQ2

dt
= D̄r

[
〈R · R(mmmm)〉 − Ū :: 〈Ri (mmmm) · Ri (mmmm)〉

]
dQ3

dt
= −κT : 〈mm×R(mmmm)〉

[dQ3

dt

]
ijkl

= 4κrsPrsijkl−κriQrjkl−κrjQrikl−κrkQrijl−κrlQrijk



Fourth-order moment model

Given Q, we take the reference CDF as

fQ(m) =
1

z
exp(mm : Y : mm)

Y is a fourth-order symmetric tensor, and determined by

Q =

∫
|m|=1

fQ(m)mmmmdm

Then P,M8,M10 are approximated by

P =

∫
|m|=1

fQ(m)m6 dm M8 =

∫
|m|=1

fQ(m)m8 dm

M10 =

∫
|m|=1

fQ(m)m10 dm



Fourth-order moment model

The energy dissipation of the system reads

T
dS

dt
= − d

dt

( ∫
Ω

1

2
ρu · udx + A[Q]

)
=

∫
Ω

ηs∇u : ∇u + ξrκ : Q : κ dx

+

∫
Ω
∇µ̄ ::

〈
D⊥m8 + (D‖−D⊥)m10

〉∣∣
f =fQ

:: (∇µ̄)T dx

+

∫
Ω

D̄r µ̄ :: 〈Ri (mmmm)Ri (mmmm)〉
∣∣
f =fQ

:: µ̄T dx,

where µ̄ = Y − lnz II + Ū .
It is non-negative, provided ηs ≥ 0, ξr ≥ 0, D̄r ≥ 0, D⊥ ≥ 0 and
D‖ − D⊥ ≥ 0.



Issue of implementation

Efficient algorithms of evaluating Q(M),P(M) according to
Bingham closure are needed to make the closure
approximation practical

Legendre integrator scheme of Ilg et al (2000, 2003) is not
efficient enough for nonhomogeneous simulation

Fortunately, Q(M),P(M) are not depended on the dynamics.
There are two approaches to evaluate them



Issue of implementation – Bingham closure

Evaluating in local coordinate system [Chaubal and Leal 1998]

M = Diag(s1, s2, 1−s1−s2), B = Diag(l1, l2, 1−l1−l2).

Q has 6 non-zero components:

Q1111,Q2222,Q3333,Q1122,Q1133,Q2233,

but only 3 are independent, because of
∑

j Qiijj = Mii = si
Fit Q1111,Q2222,Q3333 by polynomials of s1, s2:

Qiiii = k0 + k1s1 + k2s
2
1 + k3s

3
1 + . . . + k9s1s

2
2 .

the coefficients ki determined by least-square method, while
Qiiii , s1, s2 are obtained by integral on given (l1, l2) samples.



Issue of implementation – Bingham closure

Explicit form [Grosso et al 2000]. A general expression of Q in
terms of M:

Qijkl = β1G(δijδkl) + β2G(δijMkl) + β3G(MijMkl)

+β4G(δijMkmMml) + β5G(MijMkmMml)

+β6G(MimMmjMknMnl)

where G is symmetrization operator

G(Xijkl) =
1

24
(Xijkl + Xijlk + . . .).

βi depend on the two independent invariants of M:

I2 =
1

2
(1−M : M), I3 = det(M).

and βi are fitted by polynomials with least-square method.



Issue of implementation – Bingham closure

These two approaches could be extended to higher-order
quasi-equilibrium closure approximation

Employ piecewise linear approximation (PLA) or other
numerical skills if Q(M),P(M) are singular in some special
system



Numerical results of Bingham closure model

Bingham closure agrees with the exact kinetic theory
qualitatively for homogeneous and nonhomogeneous system,
except for its failure to predict flow-aligning at high Deborah
number and high nematic potential strength

It agrees with the exact kinetic theory quantitatively when
nematic potential strength in the middle region.

The position of homoclinic bifurcation predicted by Bingham
closure is different with the exact kinetic theory in
two-dimensional problem. The difference is not clear in
three-dimensional problem.

In general, Bingham closure is more accurate than other
closures, e.g. Doi’s quadratic closure, HL1, HL2 etc



Homogeneous bifurcation diagram
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Figure: The horizontal axis is nematic potential strength U0; the vertical

axis is the Deborah number De. Blue lines are of exact kinetic theory, Red

lines are of Bingham closure.



Nonhomogeneous results

Bingham closure can predict the five modes of director
configurations in Couette flow as exact kinetic model

(a) ES: elastic-driven steady state

(b) T: tumbling state

(c) TWD: tumbling-wagging composite with inside defects

(d) W: wagging state

(e) VS: viscous-driven steady state



Modes of director dynamics
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Figure: Five flow modes. Colors represent the director angle. The hori-

zontal axis is dimensionless time and the vertical axis is the distance to

lower slab. The parameters are U0 = 6 (a)De = 0.01; (b) De = 1.0; (c)

De = 2.0; (d) De = 4.0; (e) De = 6.0.



Defect dynamics
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Figure: Typical TWD modes in Couette flow at U0 = 5.5,De = 1.5. (a)

exact kinetic model, (b) Bingham closure. Colors represent the director

angle. The horizontal axis is dimensionless time and the vertical axis is the

distance to lower slab.



Defect dynamics in Poiseuille flow
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Figure: Typical orientational configuration in Poiseuille flow. U0 =

5.5,De = 1.0. (a) exact kinetic model, (b) Bingham closure. Colors

represent the director angle. The horizontal axis is dimensionless time and

the vertical axis is the distance to lower slab.



Error of Bingham closure
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Figure: The error of Bingham closure in every time step of exact kinetic

simulation. U0 = 5.5,De = 1.5. The horizontal axis is dimensionless time

and the vertical axis is the distance to lower slab. Colors represent the

total error of five components of Q evaluated by Bingham closure
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Conclusion and comments

We present four criterions for closure approximations.

Quasi-equilibrium closure approximation of FENE model
(FENE-QE) satisfies the first three criterions

Piecewise linear approximation is introduced to reduce the
computational cost of FENE-QE without losing accuracy

A general nonhomogeneous model of LCPs is presented. And
reduced moments models keeping energy dissipation are
proposed by quasi-equilibrium closure

The second-order Bingham closure model agrees with the
exact nonhomogeneous kinetic model qualitatively, except for
the failure to predict flow-aligning when nematic potential
strength and Deborah number are very high

The closure problem of kinetic models of LCPs are more
difficult than FENE model of dumbbell polymer (nonlinear,
phase transition). Higher-order tensor models are needed to
give more accurate results



The End

Thank You !



Appendix A

The HL1 and HL2 closures (Hinch and Leal 1976)

HL1

B : Q =
1

5
[6M · B ·M − B : MM + 2I (M −M ·M) : B]

HL2

B : Q = MM : B + 2M · B ·M − M ·M : (κ + κT )

M : M
M ·M

+ρ
[ 52

315
B − 8

21

(
B ·M + M · B − 2

3
(A :M)I

)]
where ρ = exp[(2− 6M :M)/(1−M :M)].

In this two equation, B is any traceless tensor. Q is fourth-order
moment of CDF. go back



Appendix B

Energy dissipation of Bingham closure model of LCPs

Definition of free energy

A[M] =

∫
Ω

∫
|m|=1

fM ln fM +
1

2
UfMdmdx

=

∫
Ω
(B − lnz I ) : M +

U0

2
gε∗(νI −M) : M dx.

The chemical potential under reference CDF reads

µM = µ̄M : mm,

where µ̄M = (B − lnz I ) + ŪM and ŪM = U0gε∗(νI −M)



Appendix B

Calculate the energy dissipation

T
dS

dt
= − d

dt

{∫
Ω

1

2
ρu · udx + A[M]

}
= −

∫
Ω

ρu · utdx−
∫

Ω

d
dt

(B − lnzI ) : M dx

−
∫

Ω
(B − ln zI ) :

dM

dt
+

U0

2

d

dt

[
ŪM :M)

]
dx

= −
∫

Ω
u ·

[
ηs∆u +∇ · τ s +∇ · τ e + Fe −∇p

]
dx

−
∫

Ω

dν

dt
dx−

∫
Ω

µ̄M :
dM

dt
dx

−U0

2

∫
Ω

d

dt
ŪM : M − ŪM :

dM

dt
dx



Appendix B

=

∫
Ω

ηs∇u : ∇u + ξrκ : Q : κ dx

+2D̄r

∫
Ω
(µ̄M)ij(δikMlj + Milδkj − 2Qijkl)(µ̄M)kl dx

+

∫
Ω
∇µ̄M

...
(
(D‖−D⊥)P + D⊥〈mmImm〉

)...(∇µ̄M)T dx

It is non-negative provided ηs > 0, ξr > 0, D̄r > 0, D⊥ > 0 and
D‖ − D⊥ > 0.
In the calculation, Identity (B − lnz I )t : M = νt and mass
conservation

∫
Ω νdx = Constant are employed.



Appendix C

Energy dissipation of fourth-order tensor model of LCPs

A[Q] =

∫
Ω

∫
|m|=1

fy ln fy +
1

2
fyU dmdx

=

∫
Ω
(Y − ln zII ) :: Q +

1

2
Ū :: Q dx

T
dS

dt
= − d

dt

( ∫
Ω

1

2
ρu · udx + A[Q]

)
= −

∫
Ω

ρu · utdx−
∫

Ω
(Y − ln zII ) ::

dQ

dt
+

1

2

d

dt

(
Ū :: Q

)
dx

=

∫
Ω

ηs∇u : ∇u + ξrκ : Q : κ dx

+

∫
Ω
∇µ̄ ::

[
D⊥M8 + (D‖−D⊥)M10

]
:: (∇µ̄)T dx

+

∫
Ω

D̄r µ̄ :: 〈Ri (mmmm)Ri (mmmm)〉 :: µ̄T dx
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