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Outline

l. Introduction ((_//
|

Use test models to study the skills of filtering the turbulent signals.

@ These test models have exactly solvable statistics. Vodels and
@ They mimic the atmosphere and ocean behaviors. Hathematical

A. Test models

B. Conditional Moments

. . and CGFPE
Main features of Atmosphere and Ocean Sciences:

Filtering the

turbulent signals
@ Intermittent instability. A Two Moment Fiter

B. Non-Gaussian Filter

@ Unresolved/unobserved variable/process.
® Model error.

Summary

Goal

Generate the signals from the system with intermittent instability
and unresolved process.

@ Study the filtering skill of using imperfect forecast models.

@ Compare the filtering skill using Gaussian and non-Gaussian
filters in a perfect model setting.
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Different types of filter (w.r.t. the prior/background distribution).

1. Forecast (Prediction) 2. Analysis (Correction)
(prior)
g osteion) 1im 'A/‘%,um (prior)
¢ Ut L1 (POSterior)y

M e w

|

\ *9

observation ("m+1) observation (v, 4 1)
ty tmi1 tm mtl

Assume linear observation operator and Gaussian observation noise.
e Kalman Filter: linear and Gaussian system

Upt1 = Fum + o1 With constant F.

e Extended Kalman Filter: nonlinear non-Gaussian system with
linear tangential approximation

Um+1 :f(um)+0-m+] — Um+1 zf('j{m|m)“'vf(ﬁm\m) (um_ﬁm|m)+a—m+l .

e Two moments filter (or Nonlinear Extended Kalman Filter):
nonlinear non-Gaussian system with exactly solvable mean and
covariance. Note that model error still exists when using two
moments filter to filter the non-Gaussian signal!

e Non-Gaussian filter: The information in the higher order
moments is included in filtering the signals.
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Il. Models and Mathematical Tools
A. Test Models

d o

?? = r‘(’y7 t)u =+ l(’y, t) ar O'u('Y7 t)WM(t)y
d .

d;ty = F(7,1) + 04 (7, )Wy (8),

@ Resolved/unresolved variable:

e yis the resolved variable.
e ~ is the unresolved variable.

@ Intermittent instability in u:

e Positive (v, 1) corresponds to instability.
e Negative r(~,1) corresponds to stability.

® Model error:

e A complicated dynamics is used to generate the true signal.

e Some simplified dynamics are used as the forecast model.
To obtain the statistics of (1), there’s no need to solve the 2-D

Fokker-Planck equation nor use the Monte Carlo simulation. Instead,

the statistics can be solved with some cheap ways using the

conditional moments.

((T//
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B. Conditional Moments & Coupled Generalized Fokker-Planck Eqns ((//
Distribution and Moment T

e Joint distribution:  p(u, 7).
. o Introduct
e Marginal distribution: iroduction
Models and
Mathematical
m(y) = / plu,y)du,  m(u) = / p(u,y)dy. Tools
A. Test models
e Conditional distribution:  p(u|vo).
e Conditional Moment Filtering the
turbulent signals
At one fixed v : My (1) = /uNp("yo, u)du, i
Summary

As a function of v : My(vy) = /uNp(% u)du.

Remark: Mo(v) = [ p(u,v)du = (7).
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Test Models

Y — (s 10,0 + oulr, W), "
DL = Ft) + o ()W 1),

Proposition

The vector of conditional moments My (v, ¢) of order N associated with
the probability density of (1) satisfies the coupled generalized
Fokker-Planck equations (CGFPE)

o My, 1) =LirMy (1) + rle, ONMy (3,1
; )

1
+Nl(77 Z)MNfl(’Y?t) + EN(N - 1)0—3(77 t)MN*Q(’%t):

where My = 7 (~,t) and we prescribe M_; = 0 and M_, = 0 and
0 10,
LeeMu(7,1) = =5 (F(y, OMu(7,1)) + 5872(07(% DMy (7,1)).

The moment equation (2) can be solved recursively.

((T//
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With the conditional moments, ((f/

Mo(y,1) = / DO, )bty My, 1) = / up (s )clie, Moy, ) = / oty nde, ||

the mean and covariance of system (1) are solved via Introduction

Models and

= / / up(u,, t)dudy = / ( / up(u, 7, t)du) dy = / Mi(y,0)dy,  peemateal

A. Test models

= // vp(u,, t)dudy = /“r (/p(um t)du) dy = /’YMO(% 1)d~, _

Filtering the
turbulent signals
Var // u p 0o dud’y — (l) A. Two Moments Filter
B. Non-Gaussian Filter

= / (/ w*p(u, 7, t)du) dy — (1) = /MZ(’Y,t)d'y — (1), Summary

Var(vy //’YP (,, t)dudy — 5 (1)

= [ ( [t r)du) dy =70 = [ Mol )y =70,

Cov(u,~)(t //u'ypufy, Ydud~y — uy

= /'y (/ up(u,, t)du) dy —uwy = /'yMl (v, t)dy — uy.
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lll. Filtering the turbulent signals @
|

Assume the true signal is generated from the following system,
du = (—yu + f)dt + cudW,,

2 3 (3) Introduction
dy = (—ay + by —cy’ +fy)dt + (A — By)dW. + odW,
Equilibrium PDF of u Models and
TuePOF | 2 -~ 2 T T T T T T T T T T Mathematical
1| L= - - Gaussian| 8 Al | Tools
. A. Test models
=0 0 12 ° B. Conditional Moments
and CGFPE
-1 1 -1k 1
2 ol " . . . . . , . , . .
o 2 4 10"0 10“ 0 20 40 60 80 100 120 140 160 180 200 220
P log scale t
Equilibrium PDF of y A. Two Moments Filter
g B. Non-Gaussian Filter
2N 2
T Summary
- 1 ' 1
of -~ 0
g
lD 05 1 11°er 10° 10° [ 20 40 60 80 100 120 140 160 180 200 220

lna scale t

p
e Assume linear observations with ¢ = [1,0], and therefore
Vil = U1 + Oy -
e Observation time step: Ar = 0.5, less than the averaged
decorrelation time 7,, = 1.2362 of u and decorrelation time
Toprr = 3.64 Of .
e Observation noise level: R’ equals 12.5% of the averaged energy
of the true signal.
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Let u, be the true signal and #,,,, be the filter estimate.

Measurement of the filtering skill. (ﬁ//
e Root mean square (RMS) error

Introduction
T
1 _ Models and
RMSE = T—T Z (Hm - um|m)2' Mathematical
- U Tools
A. Test models
. B. Conditional Moments
e Pattern correlation (PC) and CGFPE

(Cn — () o = ()
/= )2 { G — i) ammry

PC =
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1. The perfect forecast model,
du = (—yu + fu)dt + 0, dW,,
dy = (_a,}/ + b’yz _ 673 +f’y)dt + (A _ B’y)dWC + (TdW»,, Introduction

A. Two Moments Filter (ﬁ//
|

fu=20 Models and
Perfect model: RMSE=0.0643, PC=0.9707 Mathematical
1 2 .8
o 0 o0 Tools

A. Test models

B. Conditional Moments
and CGFPE

- o
o Observation
Posterior mean

"iu 3 i i i 7 e i %0 1% 700 Filtering the
15t NA NP AN turbulent signals
) PANAR N

B. Non-Gaussian Filter

0 ) ) . O]
50 155 160 165 170 175 180 185 190 195 200
t

Summary
fu = 0.55in(0.57)

Perfect model: RMSE=0.0705, PC=0.9979

L I A LN L L |
Ta0 145 150 155 160 165 170 175 180

Perfect in u Obs error
fu=0 0.0643 (0.9707) 0.0864
fu = 0.55sin(0.51) 0.0706 (0.9979) 0.0864
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2. Mean stochastic model (MSM), in which the damping in u is set to
be the averaged value of « and therefore no unresolved dynamics is
included,

du = (—3"u + f,)dt + 0., dW,.

fu=0

MSM: RMSE=0.0792, PC=0.9681

Roo209% o,

-05 P
B
%
. | | | I I | | I 1 ,
Ts0 155 160 165 170 175 180 185 190 195 200
2, .
1sfhy Y e N e A
s AR ! ] SN TR
osf D ; \ N Voan
L s ' . AT
oF e NN e Vs N O
| P S A N I | M Tt e |
Tso 155 160 165 170 175 180 185 190 105 200
t

fu = 0.55in(0.5¢)

MSM: RMSE=0.2239, PC=0.9951

L L L L \
140 145 150 155 160 165 170 175 180

MSMin u Perfect in u Obs error
fu=0 0.0792 (0.9681) 0.0643 (0.9707) 0.0864
fu = 0.55in(0.5¢) 0.2239 (0.9951) 0.0706 (0.9979) 0.0864
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3. The imperfect forecast model of + is a linear Gaussian model, such
that the forecast model becomes the simplified SPEKF-type model,

du = (—yu + f)dt + cudW,,
dy = & (v — 4")dt + oY dw,,.

Remark: The evolution of the mean and covariance of SPEKF model can be solved analytically.
fu=0

SPEKEF: d, = 0.24,0, = 30, RMSE=0.0645, PC=09704

L L L L
-1
T50 155 160 165 170 175

fu = 0.55in(0.5¢)

SPEKF: d, = 0.29,0, = 3, RMSE=0.0715, PC=0.9978

175

L L L
Ta0 145 150 155 160

L
165 170

L
175

SPEKF in u Perfect in u Obs error
fu=0 0.0645 (0.9704) 0.0643 (0.9707) 0.0864
fu = 0.55in(0.5¢) 0.0715 (0.9978) 0.0706 (0.9979) 0.0864

Introduction

Models and
Mathematical
Tools

A. Test models

B. Conditional Moments
and CGFPE
Filtering the
turbulent signals

B. Non-Gaussian Filter

Summary

12/21



Robustness of the parameters in SPEKF model with £, = 0. ((f/

du = (—yu + f,)dt + 0. dWy,

dy = & (y — 4")dt + o2 aw,,.
y=dy(y—4")dt+ o5 dW, Introduction
RMS error Pattern correlation Models and

0.09 0.972

o~ SPEKF Mathematical
‘| ——Perfect reference | 0.971 Tools
__008F] . Ops A. Test models
Damping MSM reference 0.97 B. Conditional Moments
0.07 and CGFPE
0.969
Filtering the
0.06 — = 0.968% = = turbulent signals
107 107 10" 10° 10" 10° 107 10" 10° 10' 9
d;“,'/ﬁ &' B. Non-Gaussian Filt
00 0.972 . Non-Gaussian Filter
Summary
0.0§ 0.97
0.07 A 0.968
0.0 0.966 -
10" 10’ 10' 10" 10° 10"
o}l fou oM fo

Figure 1: Robustness of the parameters in SPEKF. Top: filtering skill dependence of d’ﬂ‘f with fixed ratio
o /o, = 3. Bottom: filtering skill dependence of o2/ with fixed ratio d?f /5 = 0.2.
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B. Special type of nhon-Gaussian filter for the test model. (/
Approximation of the prior distribution p,(u,~, 1): (_/

e Complete recovery of the marginal distribution in ~ via

Moy (77 t) = /P(’Y, u, z)du_ Introduction
Models and
- " . . Mathematical
e Conditional Gaussian for each fixed v by making use of Tools

A. Test models
B. Conditional Moments

M) = [wlnunds M) = [t S
Filtering the
turbulent signals

— — Gaussian fit

0.1 A. Two Moments Filter

0.08]

006 Summary

0.04]

0.1

Non-Gaussian approximation
p, (WY

0.05
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Comparison of the full PDF and its non-Gaussian and Gaussian

approximation at the equilibrium in the dynamical regime of filtering

turbulent signals.

Equilibrium joint distribution

u
15
1
o 205 .
05
RN
P
94 2 0 2 4 92 0 2 4
u ¥
1 ” 1
205
0

Marginal distribution of u Marginal distribution of y

— True PDF
— — Gaussian fit
a
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Comparison of two moments filter and non-Gaussian filter.

Two moments filter

Perfect model two moments filter: RMSE=0.0643, PC=0.9707

I
175
t

Non-Gaussian filter

Perfect model non-Gaussian filter: RMSE=0.0641, PC=0.9709

I | I % I I I I I ]
T50 155 160 165 170 175 180 185 190 195 200

0 | PRS2 T I LN T yoo ]
150 155 160 165 170 175 180 185 190 195 200
t
RMSE (PC) inu | Obs error

Two Moments
Non-Gaussian

0.0643 (0.9707)
0.0641 (0.9709)

0.0864
0.0864
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Filtering skill as a function of observation time step (top) and observation noise (bottom) using

different filters with respect to the resolved variable « (unforced case: f, = 0).

RMS error Pattern correlation
013 1
—e—Perfect model two moments filter
—— Perfect model non-Gaussian filter| ¢ .
h 0.995
0.12f| o gpEKF k Introduction
- ¢-MSM 0.99
011 Obs noise Models and
0.985, Mathematical
o1 ! Tools
098
0.09 LA A. Test models
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0.08 # K and CGFPE
0.97, .
0.07 » Filtering the
0.965 . L turbulent signals
0.06 0.96 \e -~ A. Two Moments Filter
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RMS error Pattern correlation
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Filtering skill as a function of observation time step (top) and observation noise (bottom) using

different filters with respect to the resolved variable « (unforced case: f;, = 0.5sin(0.57)).

RMS error Pattern correlation
0.4 1.001
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Comparison of the unresolved variable ~.

Eqilibrium PDF of y

Perfect model two moments filter

2 oF : — . : : , ; 5
R e ol 1d AT A R ' A uent P
A Ll R e i A i B e Yy o
- y
0 o
4 o . . , | . , , |
0 05 1 0 25 50 75 100 125 150 175 200 225 250
t

I I
75 100 125 150
t

1. Path-wise solution.

L I
175 200 225 250

RMS error
Pattern correlation

Two moments filter
0.6184
0.5345

Non-Gaussian filter
0.6853
0.5713

2. Information criteria.

The Shannon entropy, S(U,), of the residual U, = um — yjm, U ~ p, is

given by

S(Un) = — / P(Un) 10 p(Un) .

It expresses the uncertainty in the filter estimate z,,,, about the true

state u,, at time z,,.

Shannon entropy

Two moments filter
0.7901

Non-Gaussian filter
0.7356
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IV. Summary ((_//
|

In this work, we studied Introduction
@ Filtering skill using two moments filter with different prediction Models and
[
models. Tools
. . . . . . . A. Test models
@ Filtering skill using two moments and non-Gaussian filter in a e —
and CGFPE

perfect model setting.
Filtering the

turbulent signals
A. Two Moments Filter
B. Non-Gaussian Filter

Main conclusions are summarized as follows: summary

@ For the two moments filter, SPEKF has comparable filtering skill
with the perfect model filter while MSM filter has low filtering skill.

@ The special non-Gaussian filter has very little improvement of
the filtering skill with respect to the resolved variable u.

@ Filter estimates of the unresolved variable ~ are quite different
using two moments filter and non-Gaussian filter.
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