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Start with an example

We have
˛
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˛

˛

1

||r||
−

M
X

m=1

wme−pm||r||2
˛

˛

˛

˛

≤
ε

||r||
,

for δ ≤ ||r|| ≤ 1, where pm, wm > 0 and M = O(− log δ).
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Error (log10) of approximating the Poisson kernel for 10−9 ≤ ||r|| ≤ 1, M = 89.
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The Poisson kernel

Due to the homogenuity of the Poisson kernel, we have

tn; l
ii′,jj′,kk′ = 2−2n tlii′,jj′,kk′ ,

where

tlii′,jj′,kk′ = tl1,l2,l3
ii′,jj′,kk′ =

1

4π

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

||x + l|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx,

and

Φii′(x) =

∫ 1

0

φi(x+ y)φi′(y)dy , i, i′ = 0, . . . , k − 1 ,

are the cross-correlation functions of the scaling functions of the multiwavelet basis.

2



Separated representation of the Poisson kernel

Theorem: For any ε > 0 the coefficients tlii′,jj′,kk′ have an approximation with a low
separation rank,

rlii′,jj′,kk′ =
M
∑

m=1

wm

b
Fm,l1

ii′ Fm,l2
jj′ Fm,l3

kk′ ,

such that

|tlii′,jj′,kk′ − rlii′,jj′,kk′| ≤ 2ε

π
max

i
|li| ≥ 2

|tlii′,jj′,kk′ − rlii′,jj′,kk′| ≤ Cδ2 +
2ε

π
max

i
|li| ≤ 1

Fm,l
ii′ =

∫ 1

−1

e−pm/b2(x+l)2 Φii′(x) dx ,

b =
√

3 + ||l||, and δ, M = O(− log δ) + O(− log ε), pm, wm, m = 1, . . . ,M are
from the separated representation of the kernel.
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The projector on the divergence-free functions

For the projector on the divergence-free functions, we have

˛

˛

˛

˛

1

||r||3
−

M
X

m=1

wme−pm||r||2
˛

˛

˛

˛

≤
ε

||r||2
,

for δ ≤ ||r|| ≤ 1, where pm, wm > 0 and M = O(− log δ).
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Error of the approximation with 110 terms over the domain 10−7 ≤ ||r|| ≤ 1.
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Other Examples

1. eiKr/r ≈ ∑

mwme
τmr2

for the Helmholtz kernel, K ∼ 100

2. J0(x) ....

3. sin(x)/x

4. DN(x)

5. π cot(πx)

6. log(sin(πx))

7. tanh(x)

8. ...
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Quantum Chemistry

With R. Harrison, G. Fann and T. Yanai

• Complete elimination of the basis error

• Implementation for one-electron models (HF, DFT)

• Most accurate computations up to now (within these models)

• Correct scaling of cost with system size

• Much smaller computer code than“Gaussians”(<— R. Harrison)

With R. Cramer, V. Cheruvu and F. Pérez

• Adaptive PDE solvers

• Operator calculus in 3D
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Examples: elements, small molecules...

Adaptive subdivision of space for the benzene molecule C6H6

(from R. Harrison, G. Fann and G. Beylkin)
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Current timing results for 3D adaptive Poisson solver

Platform: Pentium 4-2.8 GHz with 1 GB of RAM for which flops.c gives ∼
950 MFLOPS for add-multiply code.

All timings made for ε = 5 × 10−3.

Nnod 6 8 10 12

Nblocks 512 120 120 64
t (s) 36 12.1 19.3 10.4

t/block (s) 0.07 0.1 0.16 0.16
MFLOPS 171 317 430 505

Some comments:

• MADNESS (R. Harrison et. al, ORNL) already implements improvements which make
it at least 50X faster than our code (our improvements will be different but should
produce a similar speedup)
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• Already very competitive with multigrid codes for small ε, where multigrid slows down
dramatically.

• Need to test against FMM-adaptive results in 2d (Greengard & Etheridge 2001).

• Python overhead measured at ∼ 1 − 2%.
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Problem

• Multiresolution representation of operators

◦ Classes of operators represented by banded matrices acting at different scales

• Curse of dimensionality

◦ Number of entries in a banded matrix: O(bM)
◦ Cost of multiplication of two banded matrices: O(b2M)
◦ Number of entries in a banded operator in dimension d: O(bdMd)
◦ Cost of multiplication of two banded operators in dimension d: O(b2dMd)
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The Separated Representation

The standard separation of variables: f(x1, x2, . . . , xd) = φ1(x1) ·φ2(x2) · . . . ·φd(xd)

Definition: For a given ε, we represent a matrix A = A(j1, j
′
1; j2, j

′
2; . . . ; jd, j

′
d) in

dimension d as
r

∑

l=1

slA
l
1(j1, j

′
1)A

l
2(j2, j

′
2) · · ·Al

d(jd, j
′
d),

where sl is a scalar, s1 ≥ · · · ≥ sr > 0, and Al
i are matrices with entries Al

i(ji, j
′
i) and

norm one. We require the error to be less than ε:

||A −
r

∑

l=1

sl A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d|| ≤ ε.

We call the scalars sl separation values and the rank r the separation rank.

The smallest r that yields such a representation for a given ε is the optimal separation
rank.
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Beyond the definition

• How to construct such representations?

• How to use them?

• What is the class of operators that yields a small separation rank for a given ε?

Trivial examples:

• Identity: I = I1 ⊗ I2 ⊗ · · · ⊗ Id

• Laplacian: T = ∆1 ⊗ I2 ⊗ · · · ⊗Id+I1 ⊗ ∆2 ⊗ · · · ⊗Id+. . .+I1 ⊗ I2 ⊗ · · · ⊗∆d

Non-trivial examples to follow...
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First example: a new trigonometric identity

Consider the function sin(x1 + x2 + . . . + xd) and represent it in the separated form.
The usual trigonometric formulas produce 2d−1 terms.

Lemma:

sin(

d
∑

j=1

xj) =

d
∑

j=1

sin(xj)

d
∏

k=1,k 6=j

sin(xk + αk − αj)

sin(αk − αj)
,

for all choices of α1, α2, . . . , αd , such that sin(αk − αj) 6= 0 for all j 6= k.

Observations:

• Only d terms

• Separated representation is not unique

• It can be ill-conditioned!
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Condition number of separated representation

Definition:

We call the ratio

κ =

∑r
l=1 sl

||A|| ,

the condition number of separated representation.

It is a natural definition since ||sl Al
1 ⊗ Al

2 ⊗ · · · ⊗ Al
d|| = sl.

We need to maintain κµ||A|| ≤ ε, where µ is the machine roundoff.
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Similarities and differences with SVD

If d = 2 then the separated representation can be obtained via SVD.

(Actually, we use a much simpler algorithm since we do not insist on orthogonality between
vectors in a given direction).

If d ≥ 3 then the analogy with SVD breaks down: by changing ε we change all terms in
the representation rather than add/delete terms

Many attempts to treat separated representation as a generalization of SVD but the
construction depends on ε !
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The Poisson kernel in higher dimensions

Theorem: For any ε > 0, the Poisson kernel

1

(d− 2) Ωd

1

|x|d−2
,

when applied to functions with the Fourier transform supported in the annulus
(
∑d

i=1 ξ
2
i )

1/2 ∈ [
√
δ,
√
D], can be approximated to within ε by

r
∑

l=1

αl

d
⊗

i=1

1√
4πτl

exp(−x2
i/4τl),

where the separation rank grows as r = O (log(D/(δε))).

For functions with the Fourier transform in the“cubic annulus”, the separation rank grows
as r = O (log(d2D/(δε))).
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Multiparticle Schrödinger operator

The Hamiltonian for the multiparticle Schrödinger operator is the sum of three terms

H = −
N

∑

i=1

∆i −
N

∑

i=1

Vi +
N−1
∑

i=1

N
∑

m=i+1

Wim,

where the 3D Laplacian corresponding to electron i is defined as ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i
, the

nuclear potential Vi is operator of multiplication by 1/ri and the electron-electron potential
Wim is multiplication by 1/|ri − rm|.
T = −∆1 ⊗ I2 ⊗ · · · ⊗ IN − I1 ⊗ ∆2 ⊗ · · · ⊗ IN − . . .− I1 ⊗ I2 ⊗ · · · ⊗ ∆N

V = −V1 ⊗ I2 ⊗ · · · ⊗ IN − I1 ⊗ V2 ⊗ · · · ⊗ IN − . . .− I1 ⊗ I2 ⊗ · · · ⊗ VN

W = . . . has O(N2) terms.

Thus, the nominal separation rank grows as O(N 2).

It turns out that ...
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Separation rank of the Schrödinger operator

Theorem:

The representation of T + V to within ε in the operator norm has separation rank

r=O(
log(N || − ∆1 − V1||/ε)

log(1/µ) − log(N || − ∆1 − V1||/ε)
).

Let us symmetrically separate Wim =
∑rw

k=1W
k
i W

k
m + O(ε). For each value of k the

operator has the form A =
∑N−1

i=1

∑N
m=i+1Ai Am.

Theorem:

The representation of A to within ε in the operator norm has separation rank

r=O(
log(N2 ||A1||2/ε)

log(1/µ) − log(N2 ||A1||2/ε)
).

Thus, the separation rank of the Schrödinger operator grows only as log(N)
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Constructive proof

Consider

G(t) = || − ∆1 − V1||
N

⊗

i=1

(Ii + t
−∆i − Vi

|| − ∆1 − V1||
),

and note that G′(0) = T + V. Using finite difference formula of order r, we approximate

G
′(0) ≈

r
∑

j=1

αjG
′(tj).

Similarly, we using Ai instead of −∆i − Vi in the definition of G, we note that
G′′(0) = 2A/||A1|| and use the same approach.

(This approximation was first discovered numerically).
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Linear algebra for separated representations

• Addition and multiplication of operators in separated form leads to operators of the
same form

• O(d · r ·M2) or O(d · r ·M) to store

• O(d · r̃r̂ ·M3) (or better) to multiply operators

• Separation rank grows, e.g. r̃r̂ for multiplication of operators

We need to reduce the separation rank.
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Reduction of separation rank via alternating least squares

Core algorithm:

We start with the initial approximation of separation rank r′ < r̃r̂,

r′
∑

l=1

sl A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d,

and then iteratively refine it. We refine one direction, k, at a time, and then alternate
the directions, k = 1, 2, . . . , d. To refine in direction k, we fix the vectors in the other
directions and then solve for new Al

k and sl to minimize the residual. It is easy to show
that the residual decreases at each step. Each refinement requires solving a linear least
squares problem to minimize the residual.

We detect if the residual does not change anymore and, if it is not small enough, increase
the separation rank r′ , etc.
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Some details

• Convergence is not guaranteed but the algorithm performs well in practice

• The condition number of separated representation is included into least squares

• The algorithm loses 1/2 of the digits, so that the best accuracy obtainable is ε =
√
µ,

where µ is the machine roundoff

• One iteration cost roughly O(d · r̃3 ·M).

• Several preliminary steps to reduce computational cost

• We have discovered a new trigonometric identity and an approximation technique using
this algorithm
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Example

Simplified single-atom N-electron model

H = −∆ + 2N
N

∑

i=1

cos(xi) +
N

∑

i=1

N
∑

k>i

cos(xi − xk)

• The number of“particles”N = 30

• We use power method for A = CNI − H, where CN ≈ ||H||/2

• Nominal computational cost: 1080
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Results of computation

Fk is the scalar multiple of the eigenvector corresponding to the smallest eigenvalue.

F0 is chosen with the separation rank one.

Accuracy is increased gradually.

ε iterations r(Fk) time (sec)

1e-2 521 1 2.7e+1
1e-3 2557 2 1.4e+2
1e-4 4130 5 1.5e+3
1e-5 5230 6 6.4e+3
1e-6 6160 11 2.0e+4
1e-7 6368 12 2.2e+4
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Solving linear systems in separated representation

Linear system AF = G, where A is the Laplacian in dimension 20 , size in each
direction M = 30

r(F) ||AF− G||/||G|| time

1 2.5 · 10−2 13
3 3.8 · 10−3 84
5 6.8 · 10−4 213
9 8.0 · 10−5 789
13 8.4 · 10−6 2048
19 9.5 · 10−7 6121

G is random, with separation rank one.

Separation rank of the solution cannot exceed that of the inverse Laplacian

25



Antisymmetry

Since electrons are fermions, the wave function must be antisymmetric, e.g.,
ψ(γ2, γ1, γ3, . . .) = −ψ(γ1, γ2, γ3, . . .), where γ = ((x, y, z), σ) and σ is the spin.

Given a function of N variables, its“antisymmetrizer” is defined by

A =
1

N !

∑

p∈SN

(−1)pP,

where SN is the permutation group onN elements. If A is applied to a separable function,
then the result can be expressed as a Slater determinant,

A
N
∏

j=1

φj(γj) =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN)
φ2(γ1) φ2(γ2) · · · φ2(γN)

... ... . . . ...
φN(γ1) φN(γ2) · · · φN(γN)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Do we have a problem?

The number of terms in A∏N
j=1 φj(γj) grows exponentially fast and, although this

number can algebraically be reduced somewhat, are we in trouble?

If we care only about computing inner products with A∏N
j=1 φj(γj), then the so-called

Löwdin rules provide a solution,

〈A
N
∏

j=1

φj(γj),A
N
∏

j=1

φ̃j(γj)〉 =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈φ1, φ̃1〉 〈φ1, φ̃2〉 · · · 〈φ1, φ̃N〉
〈φ2, φ̃1〉 〈φ2, φ̃2〉 · · · 〈φ2, φ̃N〉

... ... . . . ...

〈φN , φ̃1〉 〈φN , φ̃2〉 · · · 〈φN , φ̃N〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Computing determinant costs at most O(N 3), but for large N the matrix is banded and
the cost is O(N), so that we are O.K.
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Example of computing the antisymmetric ground state

Separated rank, achieved approximation, and eigenvalue estimates for the separable (F0)
and main approximations to the wavefunction.

r ε ||AHF 〈AHF,AF〉
F0 1 3.4 · 10−3 322.6727395 322.3859013
F 2 10−4 321.8852595 321.8844158

φ1 φ2 φ3 φ4 φ5

The computed separable approximation F0 to the wave function.
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Structure of the antisymmetric ground state

i = 1 i = 2 i = 3 i = 4 i = 5

l = 1; 0.999350

l = 2; 0.033093
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Conclusions and future work

• Powerful method for multidimensional problems

• Lattice sums

• Operators in 3D (e.g., oscillatory Green’s functions)

• Operators in 6D for multiresolution quantum chemistry (two-electron models)

• We are attempting to solve the multiparticle Schrödinger equation

• Complete MADNESS (Multiresolution ADaptive NumErical Scientific Simulation)
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