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N-body simulations in astronomy

wCen: a globular cluster



properties of stellar systems

> simple physics: Newtonian gravity
> very inhomogeneous
— large dynamic range
> dynamically young (tqyn ~ Myr-Gyr)
> well approximated as ensembles of point masses
— well described as Hamiltonian systems
(= need symplectic time integration)
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with N ~ 10520
> equation of motion in continuum (mean-field) limit:
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collisionless Boltzmann equation  (CBE)

> f(x,v,t): distribution function  (density in phase space)
> d(x) : mean-field gravitational potential

both are related via the Poisson equation :

V2d(z) = 4nG /d3v f(x,v,t)




two-body relaxation
How good is the continuum description?

> stellar encounters deflect trajectories
—- stellar orbits get randomized
— Maxwellian velocity distribution

> two-body relaxation time

1 collision-dominated stellar dynamics
> trelax < age of system

— continuum limit not applicable
— must simulate Hamiltonian directly:
> force computation is O(N?)
— computational effort limits N < 10°
> close encounters are important
— time integration becomes tedious

2 collisionless stellar dynamics

> tralgx > age of system

= continuum limit applicable
— solve CBE & Poisson equation



‘collisionless’ N-body simulations

How to solve the CBE?
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> fis 6D & very inhomogeneous

— (Eulerian) grid methods are useless

= Lagrangian method (‘method of characteristics’):
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> sample N trajectories {u;, ;, v;} from f(x,v,t = 0)
> solve equations of motion &; = — Vo (x,, 1)
> CBE: u; = const along trajectories

= f(x,v,t) is represented by {u;, x;(t),v;(t)}
= f 1s unknown

— moments of f can be estimated

— N < N is numerical parameter

—- artificial two-body relaxation



How to solve the Poisson equation?

Vd(z) = 471G /d3v f(x,v,t)

1 grid techniques (FFT, multigrid):

> fast: O(ngrig 109 ngrig)

> periodic (= cosmology)

> problem: inhomogeneity (but: adaptive multigrid)
2 basic functions (using Y7,,,):

> fast: O(N npsis)

> problems: central singularity, spherical symmetry

3 Greens-function approach:
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> general & adaptive
> problem: f is unkown
— estimate (e: softening length )
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force softening to

> optimize force estimate (since f is unknown)

> suppress (unphysically) close encounters
— force-estimation error (unavoidable)
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estimation error
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computing the forces

> Greens-function approach — Hamiltonian:
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> how to evaluate ® & VO?
> can tolerate approximation error < estimation error

—- use approximative methods

1 direct summation (not approximative):
> slow: O(N?2) (but: GRAPE)
> (unnecessarily) accurate
> used in collisional N-body codes

2 Barnes & Hut (1986) tree code :
> use hierarchical tree (usually: oct-tree) = fully adaptive
> fast(er): O(Nlog N)
> most common method in astrophysics
> violates Newton’s 3rd law
— total momentun not conserved

3 traditional fast multipole method (FMM):
> use hierarchy of cartesian grids = not fully adaptive
> compute gravity via spherical multipoles & complex Y7,
= numerics complicated & cumbersome
> formally O(N), but
slower than tree code (for astrophyiscal applications,
see Capuzzo-Colcetta & Miochi, 1998, JCP, 143, 29)



approximation error
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detalls of the tree code

1 preparation phase

1.1 build a hierarchical tree of cubic cells
> cost: O(NlogN)

1.2 pre-compute multipole moments etc

2 force computation: ‘tree-walk’
> for each body: compute force due to root cell
> to compute force from cell:
If body is well-separated from cell:
compute force from multipole moments
otherwise
sum forces from daughter cells (recursive)
> cost: O(log N) per body = O(NlogN)

> the tree code is wasteful:
forces of neighbours are similar yet independently computed



details of the FMM

here | describe traditional Greengard & Rokhlin (1987) FMM

1 preparation phase
1.1 build a hierarchy of cartesian grids
1.2 pre-compute multipole moments etc (upward pass )

2 force computation

2.1 interactions
on each grid level:
> perform ‘intermediate-field’ interactions:
compute & accumulate multipoles of gravity field

2.2 downward pass
> pass field-multipoles down the hierarchy
> compute forces on finest grid

> theoretical O(N) not demonstrated in practice
> not competetive with tree code in low-accuracy regime



details of falcON

> hybrid of tree code & FMM
> takes the better of each method

1 preparation phase (as for tree code)

1.1 build a hierarchical tree of cubic cells
> cost: O(Nlog N)

1.2 pre-compute multipole moments etc

2 force computation

2.1 interaction phase
> ‘catch’ all body-body interactions in
well-separated node-node interactions:
e if node-node interaction is executable
execute it: accumulate field tensors
e otherwise
split it & continue with child interations (recursive)
> cost: (better than) O(N), dominates

2.2 evaluation phase
> pass field tensors down the tree
> compute forces at body positions
> cost: O(N)

> ~ 10 times faster than tree code or FMM (at low accuracy)



numerics of falcON
Wanted:
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(Warren & Salmon 1995: Comp. Phys. Comm, 87, 266)

>.m - evaluation of gravity, represented by the field

tensors C""P, at position
>, . Interaction between source cell B, represented

by the multipoles ME, and the sink cell A.

vnrtmg(R) © ME,

Difference to tree code:
> expansion in x (tree code: x = x()
> mutuality of inter actions



e

two well-separated cells

If |R| > 7a crit + 7B crit With 7¢rit = rmax/0,
= lz—y—R|<O|R| VY x€A, ycB & Taylor series converges

force error of individual interaction:
(p+1)6P Mg
(1 -0)2 R2
pr+2 . 5 opt2
X (1 B 9)2 7GB,maX X (1 B 9)2
> standard tree-code & FMM practice: § = const
= relative error controlled

— absolute error increases with Mg
— total error dominated by few interactions with large cells

|VRP(CDB—>A)I <

(d—2)/d

= better:
> balance absolute individual errors by 8 = (M) with
+2 2—d)/d
Pt O ( M >( g
(1-6)2  (1—6min)? Mot

= reduce total error



accuracy vs. CPU time
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mean (dashed) and 99 percentile (solid) relative force error
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performance
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what complexity?

> 8-folding N = Ny — 8Ny + N and thus:
dNINN]A“"IN[NN[_I_ N_|_

dN ~ N AInN N ' NS8In8’
with solution

N; = cgN +
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> B&H tree code: N4 o« N
— Nj; < NlogN
> Here: N1 (N) grows sub-linear at large N
= Nj o N



comparison with other methods
used in astrophysics
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CPU time per body (2001) versus N for various techniques. Note that
there are differences in the hard- & software, stellar system, and accuracy
requirements.

by 2003/2004: falcON is ~ 3 times faster, but GRAPE-5 tree not.



comparison with FMM

> comparing under same conditions (bodies uniform in a cube)

1/2
2
— 2
E= Z <¢z‘,direct - cl’z’,almorox) /Z Pi direct
1 1
> low-accuracy regime: ~ 10 times faster:
timing results (in seconds):

N Tlgl\/ll\/l Tgirect I8 nglcON Tgirect Eb
20000  13.3 233 7.9x 1074 0.97 136 3.7 x 107*
50000  27.7 1483 5.2 x 1074 2.64 924 3.3 x 107*

200000 158 24330 8.4 x 107*  10.77 14694 3.4 x 107*
500000 268 138380 7.0x 10™*  29.42 91134 3.7 x 107*
1000000 655 563900 7.1 x10°% 58.34 366218 3.5x 107*

¢ FMM; data from Table | of Cheng et al. (1999: JCP, 155, 468)
b falcON on a computer identical to that used by Cheng et al.

¢ our own implementation of direct summation on the same computer

> high-accuracy regime:
falcON cannot compete with FMM

— accuracy & performance depend on both p & 6
> FMM: fixed ‘@’, vary p
> falcON: fixed p = 3, vary 6

= high accuracy requires higher order p



summary

> falcON = hybrid of tree code & FMM

> new features:
e explicitly exploits mutuality of gravity
= reduces computational effort
= requires novel tree-walking algorithm
— conservation of Newton’s 3rd law

e mass-dependent 6
—- error balancing
— reduces cost to better than O(N)

> ~ 10 times faster than tree code or FMM

> publicly available



more dogmas

> balance errors
— reduce effort at given accuracy

> keep algorithm as simple as possible &
as complicated as necessary
— high-order may be unnecessary

> write efficient code
= avoid cache misses
— data structure design
— Write generic code
= do not rely too much on compliler optimization
— template metaprogramming



