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N-body simulations in astronomy

HCG87: a group of galaxies

ωCen: a globular cluster



properties of stellar systems

� simple physics: Newtonian gravity
� very inhomogeneous
⇒ large dynamic range

� dynamically young (tdyn ' Myr–Gyr)
� well approximated as ensembles of point masses
⇒ well described as Hamiltonian systems

(⇒ need symplectic time integration)

H =
N∑

i=1
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2

v2
i −
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|xi − xj|

 , vi = ẋi =
pi
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with N ' 105−20

� equation of motion in continuum (mean-field) limit:
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df
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·
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collisionless Boltzmann equation (CBE)

� f(x, v, t): distribution function (density in phase space)

� Φ(x) : mean-field gravitational potential

both are related via the Poisson equation :

∇2Φ(x) = 4πG
∫
d3v f(x, v, t)



two-body relaxation

How good is the continuum description?

� stellar encounters deflect trajectories
⇒ stellar orbits get randomized
⇒ Maxwellian velocity distribution

� two-body relaxation time :

trelax ' 0.1
N

logN
tdyn

1 collision-dominated stellar dynamics

� trelax ∼< age of system

⇒ continuum limit not applicable
⇒ must simulate Hamiltonian directly:

� force computation is O(N2)

⇒ computational effort limits N ∼< 105

� close encounters are important
⇒ time integration becomes tedious

2 collisionless stellar dynamics

� trelax � age of system

⇒ continuum limit applicable
⇒ solve CBE & Poisson equation



‘collisionless’ N-body simulations

How to solve the CBE?

0 =
df

dt
=

∂f

∂t
+

∂f

∂x
· v −

∂f

∂v
·
∂Φ

∂x

� f is 6D & very inhomogeneous
⇒ (Eulerian) grid methods are useless
⇒ Lagrangian method (‘method of characteristics’):

� sample N trajectories {µi, xi, vi} from f(x, v, t = 0)

� solve equations of motion ẍi = −∇Φ(xi, t)

� CBE: µi = const along trajectories

⇒ f(x, v, t) is represented by {µi, xi(t), vi(t)}
⇒ f is unknown

⇒ moments of f can be estimated

⇒ N � N is numerical parameter

⇒ artificial two-body relaxation



How to solve the Poisson equation?

∇2Φ(x) = 4πG
∫
d3v f(x, v, t)

1 grid techniques (FFT, multigrid):
� fast: O(ngrid logngrid)

� periodic (⇒ cosmology)
� problem: inhomogeneity (but: adaptive multigrid)

2 basic functions (using Ylm):
� fast: O(Nnbasis)

� problems: central singularity, spherical symmetry

3 Greens-function approach:

Φ(x, t) = −G
∫
d3x′ d3v

f(x′, v, t)

|x− x′|

� general & adaptive
� problem: f is unkown
⇒ estimate (ε: softening length )

Φ(xi, t) ≈ −
∑
i6=j

G µj√
[xi − xj(t)]

2 + ε2

force softening to
� optimize force estimate (since f is unknown)
� suppress (unphysically) close encounters
⇒ force-estimation error (unavoidable)



true gravity of Hernquist model



estimation error with N = 106



computing the forces

� Greens-function approach → Hamiltonian:

H =
N∑

i=1

µi

2

v2
i −

∑
j 6=i

G µj√
|xi − xj|2 + ε2


� how to evaluate Φ & ∇Φ?
� can tolerate approximation error � estimation error
⇒ use approximative methods

1 direct summation (not approximative):
� slow: O(N2) (but: GRAPE)
� (unnecessarily) accurate
� used in collisional N-body codes

2 Barnes & Hut (1986) tree code :
� use hierarchical tree (usually: oct-tree) ⇒ fully adaptive
� fast(er): O(N logN)

� most common method in astrophysics
� violates Newton’s 3rd law
⇒ total momentun not conserved

3 traditional fast multipole method (FMM):
� use hierarchy of cartesian grids ⇒ not fully adaptive
� compute gravity via spherical multipoles & complex Ylm

⇒ numerics complicated & cumbersome
� formally O(N), but

slower than tree code (for astrophyiscal applications,
see Capuzzo-Colcetta & Miochi, 1998, JCP, 143, 29)



approximation error with N = 106



details of the tree code

1 preparation phase
1.1 build a hierarchical tree of cubic cells

� cost: O(N logN)

1.2 pre-compute multipole moments etc

2 force computation: ‘tree-walk’
� for each body: compute force due to root cell
� to compute force from cell:

if body is well-separated from cell:
compute force from multipole moments

otherwise
sum forces from daughter cells (recursive)

� cost: O(logN) per body ⇒O(N logN)

� the tree code is wasteful:
forces of neighbours are similar yet independently computed



details of the FMM

here I describe traditional Greengard & Rokhlin (1987) FMM

1 preparation phase
1.1 build a hierarchy of cartesian grids
1.2 pre-compute multipole moments etc (upward pass )

2 force computation

2.1 interactions
on each grid level:
� perform ‘intermediate-field’ interactions:

compute & accumulate multipoles of gravity field

2.2 downward pass
� pass field-multipoles down the hierarchy
� compute forces on finest grid

� theoretical O(N) not demonstrated in practice
� not competetive with tree code in low-accuracy regime



details of falcON

� hybrid of tree code & FMM
� takes the better of each method

1 preparation phase (as for tree code)
1.1 build a hierarchical tree of cubic cells

� cost: O(N logN)

1.2 pre-compute multipole moments etc

2 force computation

2.1 interaction phase
� ‘catch’ all body-body interactions in

well-separated node-node interactions:
• if node-node interaction is executable

execute it: accumulate field tensors
• otherwise

split it & continue with child interations (recursive)
� cost: (better than) O(N), dominates

2.2 evaluation phase
� pass field tensors down the tree
� compute forces at body positions
� cost: O(N)

� ∼ 10 times faster than tree code or FMM (at low accuracy)



numerics of falcON

Wanted:

Φ(xi) = −
∑
j 6=i

µj g(xi − yj),

Taylor expand g about R = x0 − y0

g(x− y) =
p∑

n=0

1

n!
(x− y−R)(n)�∇(n)g(R) + Rp(g),

Insert & sum over source cell B

ΦB→A(x)=−
p∑

m=0

1

m!
(x− x0)

(m) � Cm,p + Rp(ΦB→A)

Cm,p =
p−m∑
n=0

(−1)n

n!
∇(n+m)g(R)�Mn

B,

Mn
B =

∑
yi∈B

µi (yi − y0)
(n).

(Warren & Salmon 1995: Comp. Phys. Comm, 87, 266)∑
m : evaluation of gravity, represented by the field

tensors Cm,p, at position x∑
n : interaction between source cell B, represented

by the multipoles Mn
B, and the sink cell A.

Difference to tree code:
� expansion in x (tree code: x ≡ x0)
� mutuality of inter actions



gravity between well-seperated nodes

two well-separated cells

If |R| > rA,crit + rB,crit with rcrit = rmax/θ,

⇒ |x−y−R|<θ|R| ∀ x∈A, y∈B & Taylor series converges

force error of individual interaction:

|∇Rp(ΦB→A)| ≤
(p + 1)θp

(1− θ)2
MB

R2

∝
θp+2

(1− θ)2
rd−2
B,max ∝

θp+2

(1− θ)2
MB

(d−2)/d

� standard tree-code & FMM practice: θ = const
⇒ relative error controlled
⇒ absolute error increases with MB
⇒ total error dominated by few interactions with large cells

⇒ better:
� balance absolute individual errors by θ = θ(M) with

θp+2

(1− θ)2
=

θ
p+2
min

(1− θmin)2

(
M

Mtot

)(2−d)/d

⇒ reduce total error



accuracy vs. CPU time

mean (dashed) and 99 percentile (solid) relative force error

ε ≡ |aapprox − aexact|/aexact,

versus the CPU time (Pentium III/933Mhz in 2001) for a galaxy (left) and a

group f galaxies (right), sampled with (total) N = 104 (top), N = 105 (mid-

dle), or N = 106 (bottom). We used either θ = const (open triangles)

or θ = θ(M) (solid squares). The symbols along each curve correspond,

from left to right, to values for θ or θmin of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and

0.8.



performance

CPU time per body (Pentium III/500Mhz in 2000) versus N for a galaxy

group.

what complexity?

� 8-folding N ⇒ NI → 8NI + N+ and thus:

dNI

dN
'

NI

N

∆lnNI

∆lnN
≈

NI

N
+

N+

N8 ln 8
,

with solution

NI = c0N +
N

8 ln 8

∫ N+

N2
dN

� B&H tree code: N+ ∝ N
⇒ NI ∝ N logN

� Here: N+(N) grows sub-linear at large N
⇒ NI ∝ N



comparison with other methods
used in astrophysics

CPU time per body (2001) versus N for various techniques. Note that

there are differences in the hard- & software, stellar system, and accuracy

requirements.

by 2003/2004: falcON is ∼ 3 times faster, but GRAPE-5 tree not.



comparison with FMM

� comparing under same conditions (bodies uniform in a cube)

E =

∑
i

(
Φi,direct −Φi,approx

)2/∑
i

Φ2
i,direct

1/2

� low-accuracy regime: ∼ 10 times faster:

timing results (in seconds):

N T a
FMM T a

direct Ea T b
falcON T c

direct Eb

20000 13.3 233 7.9× 10−4 0.97 136 3.7× 10−4

50000 27.7 1483 5.2× 10−4 2.64 924 3.3× 10−4

200000 158 24330 8.4× 10−4 10.77 14694 3.4× 10−4

500000 268 138380 7.0× 10−4 29.42 91134 3.7× 10−4

1000000 655 563900 7.1× 10−4 58.34 366218 3.5× 10−4

a FMM; data from Table I of Cheng et al. (1999: JCP, 155, 468)
b falcON on a computer identical to that used by Cheng et al.
c our own implementation of direct summation on the same computer

� high-accuracy regime:
falcON cannot compete with FMM

⇒ accuracy & performance depend on both p & θ

� FMM: fixed ‘θ’, vary p

� falcON: fixed p = 3, vary θ

⇒ high accuracy requires higher order p



summary

� falcON = hybrid of tree code & FMM

� new features:
• explicitly exploits mutuality of gravity
⇒ reduces computational effort
⇒ requires novel tree-walking algorithm
⇒ conservation of Newton’s 3rd law

• mass-dependent θ

⇒ error balancing
⇒ reduces cost to better than O(N)

� ∼ 10 times faster than tree code or FMM

� publicly available



more dogmas

� balance errors
⇒ reduce effort at given accuracy

� keep algorithm as simple as possible &
as complicated as necessary

⇒ high-order may be unnecessary

� write efficient code
⇒ avoid cache misses
⇒ data structure design

⇒ write generic code
⇒ do not rely too much on compliler optimization
⇒ template metaprogramming


