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What 1s the Fast Multipole Method?

An algorithm for achieving fast products of particular
dense matrices with vectors

Similar to the Fast Fourier Transform

— For the FFT, matrix entries are uniformly sampled complex
exponentials

For FMM, matrix entries are
— Derived from particular functions

— Functions satisfy known “translation” theorems

Name 1s a bit unfortunate
— What the heck 1s a multipole? We will return to this ...

Why 1s this important?
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Vectors and Matrices

d dimensional column vector x and its transpose

x1
Xo
X = .
X g
n*xd dimensional

matrix M and its
transpose M’
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mi2 M3
ma22 ma3
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Matrix vector product

S;p =My X, tmp X, T tmyx,

Sy =My Xy T My Xp F My Xy

Sn — mn] x] T ng X2 T T mndxd

e Matrix vector product 1s identical to a
sum

_ d
;= 2 myx;
* So algorithm for fast matrix vector
products 1s also a fast summation

algorithm

d products and sums
per line

N lines

Total Nd products
and Nd sums to
calculate N entries
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Linear Systems

Solve a system of equations
Mx=s

Mi1sa N x N matrix, x 1sa N vector, s1sa N vector

Direct solution (Gauss elimination, LU Decomposition,

SVD, ...) all need O(N?) operations
Iterative methods typically converge in &k

steps with each

step needing a matrix vector multiply O(N?)

— 1f properly designed, kA<< N
A fast matrix vector multiplication algoritl

hm (O(N log

N) operations) will speed all these algorit]

1Mms

CMSC878R/AMSC698R Fall 2003 © Gumerov & Duraiswami, 2002 - 2003



Is this important?

Argument:
— Moore’s law: Processor speed doubles every 18 months

— If we wait long enough the computer will get fast enough and
let my 1nefficient algorithm tackle the problem

Is this true?
— Yes for algorithms with same asymptotic complexity

— No!! For algorithms with different asymptotic complexity

For a million variables, we would need about 16
generations of Moore’s law before a O(N?) algorithm
was comparable with a O(N) algorithm

Similarly, clever problem formulation can also achieve
large savings.
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Memory complexity

Sometimes we are not able to fit a problem 1n available
memory

— Don’t care how long solution takes, just if we can solve it
To store a N x N matrix we need N locations

— 1 GB RAM = 10243 =1,073,741,824 bytes

— =>largest N is 32,768

“Out of core” algorithms copy partial results to disk, and keep only
necessary part of the matrix in memory

FMM allows reduction of memory complexity as well

— Elements of the matrix required for the product can be generated
as needed
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The need for fast algorithms

Grand challenge problems 1n large numbers of variables

Simulation of physical systems

— Electromagnetics of complex systems
— Stellar clusters

— Protein folding

— Turbulence

Learning theory

— Kernel methods

— Support Vector Machines

Graphics and Vision

— Light scattering ...
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* General problems 1n these areas can be posed in terms of
millions (10°) or billions (10%) of variables

« Recall Avogadro’s numer (6.022 141 99 x 10?3
molecules/mole
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Dense and Sparse matrices

« Operation estimates are for dense matrices.

— Majority of elements of the matrix are non-zero
 However in many applications matrices are sparse

* A sparse matrix (or vector, or array) 1s one 1n which
most of the elements are zero.

— If storage space 1s more important than access speed, 1t may be
preferable to store a sparse matrix as a list of (index, value)
pairs.

— For a given sparsity structure it may be possible to define a fast
matrix-vector product/linear system algorithm
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e (Can compute

ar | 0 0 X1 aixi
0 (a0 0 b)) asx»
0 a; 0 |0 X3 = asxs
0 as | 0 X4 asx4
0 0 |as X5 asxs

In 5 operations instead of 25 operations

e Sparse matrices are not our concern here
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Structured matrices

Fast algorithms have been found for many dense
matrices

Typically the matrices have some “structure”
Definition:

— A dense matrix of order N x N 1s called structured if its entries
depend on only O(N) parameters.

Most famous example — the fast Fourier transform
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Fourier Matrices

A Fourier matrix of order n is defined as the

following
1 1 1 | |
1 wn w2 ool
F,, = 1 w% w,ﬁ w?%(n_l) )
_ 1 wﬁ_l w%(n—l) wfgn—l)(n—l) |
where
_2m

iIs an nth root of unity.
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FFT and IFFT

The discrete Fourier transform of a vector x is
the product Fpx.

The inverse discrete Fourier transform of a
vector z is the product Flx.

Both products can be done efficiently using the
fast Fourier transform (FFT) and the inverse
fast Fourier transform (IFFT) in O(nlogn) time.

The FFT has revolutionized many applications by reducing
the complexity by a factor of almost »

Can relate many other matrices to the Fourier Matrix
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Circulant Matrices

Cn — O(wl, ,.’L’n) —

Toeplitz Matrices

Tn — T(w_n_|_1,°",5130,...,$n_1):

Hankel Matrices

Hyp = H(z_p41, 5,20, ", Tp_1) =

Vandermonde Matrices

v
CMSC878F
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* Modern signal processing very strongly based on the
FFT

* One of the defining inventions of the 20t century
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Fast Multipole Methods (FMM)
Introduced by Rokhlin & Greengard in 1987

Called one of the 10 most significant advances in computing of the
20t century

Speeds up matrlx vector products (sums) of a particular type
s(x;) = Z a;p(x; — x;), {Sj} = [q)ji]{ai}-

Above sum requlres O(MN) operations.

For a given precision € the FMM achieves the evaluation in O(M+N)
operations.
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» (Can accelerate matrix vector products
— Convert O(N?) to O(N log N)

 However, can also accelerate linear system solution
— Convert O(N?) to O(kN log N)
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A very simple algorithm

Not FMM, but has some key ideas

Consider
Stx)=2,_" o (x;—y)? =1, ..M
Naive way to evaluate the sum will require MN operations

Instead can write the sum as
S(xz):(Z]':JN aj)xi2 T (ZJ:JN a]yjz) '2xi(2j=1N a]yj)
— Can evaluate each bracketed sum over j and evaluate an expression of the
type
Sx)=px; +y-2x,0

— Requires O(M+N) operations
Key 1dea — use of analytical manipulation of series to achieve
faster summation
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Approximate evaluation

FMM 1ntroduces another key 1dea or “philosophy”
— In scientific computing we almost never seek exact answers

— At best, “exact” means to “machine precision”

So instead of solving the problem we can solve a “nearby”
problem that gives “almost” the same answer

If this “nearby” problem 1s much easier to solve, and we can
bound the error analytically we are done.

In the case of the FMM

— Manipulate series to achieve approximate evaluation

— Use analytical expression to bound the error
FFT 1s exact ... FMM can be arbitrarily accurate
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Some FMM algorithms

Molecular and stellar dynamics

— Computation of force fields and dynamics
Interpolation with Radial Basis Functions

Solution of acoustical scattering problems
— Helmholtz Equation

Electromagnetic Wave scattering

— Maxwell’s equations

Fluid Mechanics: Potential flow, vortex flow

— Laplace/Poisson equations

Fast nonuniform Fourier transform

CMSC878R/AMSC698R Fall 2003 © Gumerov & Duraiswami, 2002 - 2003



Applications —1  Interpolation

Given a scattered data set with points and values {x, f;}

Build a representation of the function {(x)
— That satisfies f(x;)=f;

— Can be evaluated at new points
One approach use “radial-basis functions”
Jx)=2" a; R(x-x;) + p(x)
J§ =2 o R( X]'_Xz) + p( X])
Two problems
— Determining ¢,
— Knowing ¢; determine the product at many new points x;

Both can be solved via FMM (Cherrie et al, 2001)
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Applications 2

« RBF interpolation

Cherrie et al 2001
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Applications 3

* Sound scattering off rooms and bodies

— Need to know the scattering properties of the head and
body (our interest)

: oP .
V2P+k2P:O a—P-|—lO'P:g limr| ——ikP |=0
on roe \ OF
0 p( y) 0 G(x, y;k) ikix—y|
Clx)plx)= || Glx,y;k)—=—= — ply)| dl’ G __°
( ) ( ) rJ- ( ) n, 0 n, ( ) ’ (X,y) 47Z"X—Y|

0.05

Scattering
-0.05

© Gur -~




EM wave scattering

Similar to acoustic scattering
Send waves and measure scattered waves

Attempt to figure out object
from the measured waves

Need to know “Radar
cross-section” Faloon - 110k ‘;“.;ol

Many applications

— Light scattering
— Radar
— Antenna design

Darve 2001
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d’x.

dt*

Molecular and stellar dynamics

Many particles distributed in
space

X-Y Planar Slice X-7 Planar Slice Y-Z Planar Slice

Particles exert a force on each
other

Simplest case force obeys an
iverse-square law (gravity,
coulombic interaction)

1.16ns

X.—Xj

i ( .
. F=)>qq —
J=1 J|Xi_xj3

]
B

J#I

Figure 10: Slice views of the SCB cluster at time 0 and 1.16 ns. The slices are passing the spheric center with
thicknass of 20 A
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Fluid mechanics

* Incompressible Navier Stokes Equation

V-u=0
u=Vg+VxA

p((;—l; + (u : V)uj +Vp = ,LNzu

« Laplace equation for potential and Poisson equation for
vorticity

» Solved via particle methods ...
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Asymptotic Equivalence

+ 1(n) ~gn)

£ e )
lim | 209 ],
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Little Oh
*Asymptotically smaller:

*f(n) = o(g(n))

£ o3\
lim | 209 ] g

1—>00 \g(n)/
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Big Oh

*Asymptotic Order of Growth.
*f(n) = O(g(n))

( \
lim sup ) < o0
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The Oh’s

If f=o(g) or f~g then f=0(g)

lim =20 Iim =1 lim < o0

CMSC878R/AMSC698R Fall 2003 © Gumerov & Duraiswami, 2002 - 2003



The Oh’s

It f=o0(g), then g=# O(f)

im < =0 lim £ = o

g J
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Big Oh

*Equivalently,

*1(n) = O(g(n))

c,ny,= 0 Vn=n, |t(n)| <cgn
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Big Oh
f(x) = O(g(x))

- blue stays C- g(x)
T below red

log =

scale

\

_. Q'V /

{inc] A f(x)

A
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Complexity

* The most common complexities are

— O(1) - not proportional to any variable number, 1.€. a fixed/constant amount
of time

— O(N) - proportional to the size of N (this includes a loop to N and loops to
constant multiples of N such as 0.5N, 2N, 2000N - no matter what that is, if
you double N you expect (on average) the program to take twice as long)

—  O(N”™2) - proportional to N squared (you double N, you expect it to take
four times longer - usually two nested loops both dependent on N).

— O(log N) - this is tricker to show - usually the result of binary splitting.

— O(N log N) this 1s usually caused by doing log N splits but also doing N
amount of work at each "layer" of splitting.

CMSC878R/AMSC698R Fall 2003 © Gumerov & Duraiswami, 2002 - 2003



Theta
Same Order of Growth:

*1(n) = O(g(n))

f(n) = O(g(n)) and g(n) = O(1(n))
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Log complexity

If you half data at each stage then number of stages until you have
a single item 1s given (roughly) by log, N. => binary search takes
log, N time to find an item.

All logs grow a constant amount apart (homework)
— So we normally just say log N not log, N.

Log N grows very slowly
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History of FMM

Rokhlin and Greengard
Greengard, ACM thesis award
Rokhlin & Greengard Steele prize
Regular FMM

Complexity

Translation

Chew, Darve, Michielssen
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Briet Historical Review
on Fast Multipole Methods
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Outline

* Separable (Degenerate) Kernels
* Problems with Infinite Series
» First Fast Solvers

« 2D Laplace Equation

« 3D Laplace Equation

« 2D Poisson Equation

e Fast Gauss Transform

« 2D Helmholtz Equation

« 3D Helmholtz Equation

« 3D Maxwell Equations

* 1D Problems

» Other Equations
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Separable (Degenerate) Kernels
Compute matriz-vector product
v = Aun, |

Or SIS

o
v = 3w A(xny), = 1,...,M‘
=]

Fast computation in case of degenerate {separable) kemel:|

Aoy = 2 OmlE W m()

=1

i b H I H
vi= 3t 3 OmZIWm ) = D Wm() D um(X) = D Cmlm(y), ‘
i=1 pa=] m=1 i=1 =1
where
N
Em = D U @m(X,). ‘
=1
Authors: Unknown.
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Problems with Infinite Series
The case of degenerate kernels 1s not the FMM!

Compute matroz-vector product
v = Aun, |

o SIS

I
vi= 3 wdln,y), J= 1,...,M‘

i=1

MNon-degenerate kernel:

o F
A(xz'a}?j:' = Z P [Iz'}ufmliyj) = Z (ﬁ?m'ii'fz:'ufmli)’;] T E.?".?"G.?‘I:p',}'f!-,_jfj-:l

=1 m=1

where p iz the truncation number. |

Features of the FMM:

1). Factorization 1s not obvious and should be selected somehow.

2). Error bounds should be established.
3). Series converge in some spatial domains. Need to have data structures

and translation technique to avoid divergent series and uncontrolled error.
4) A lot of analytical work!
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First Fast Solvers

Fast computation of the Laplacian gravitational fields
for interstellar interactions:

A.W. Appel (1985) An efficient program for many-body
simulation, SIAM J. Stat. Comp., vol. 6, no. 1, 85-103.

J. Barnes & P. Hut (1986) A hierarchical O(NloghN) force
calculation algorithm, Nature, 234, 446-449.
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2D Laplace Equation

2 2
v - 220 am=0_‘

=t
Ax 2

Fundamental solution (charge, monopole, source, free field Green’s function):

Gxn,}'u(x=.1"j = —L}—H]n.?', Fo= ?J[(I—xnjlz-i— {y_yujz_

Satisfies

323, 820,
axé"y“ + @y;m =Sdx—xu), x=(zy), xp = (xoyo) ‘

Field generated by a set of A monopoles:

I I
Dix) = 3 q:Fnix) = 3 a:Fx— %)

i=1 i=1

L. Greengard and ¥V. Rokhlin, * A Fast Algorithm for Particle Simulations,” J Comput. Phys., 73, December 1987, pages 325348 135,
280-292 (1997).

L. Greengard, The rapid evaluation of potential fields in particle systems. MIT Press, Camhbridge, 1988
1. Introduced translation operators for 2D Laplace Edquation;

2. Introduced hierarchical space subdinsion based on quad-trees for data structunng i the Fhvbd
2). First known publications on the Flvidi

Also known as MLFMA (MultiLevel Fast Multipole Algorithm)
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2D Laplace Equation
(Greengard’s scheme of translation)

P
§A‘ﬂ=
Y

]
.
\
\

N 9 :ﬂ
‘\“""' |~
N

BE
B
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3D Laplace Equation

2 2 2
w2 - 220 am+a$=0_‘

+
Ax By Az

Fundamental solution {charge, monopeole, source, free field Green’s function):

GIUJUJG{XFy:Z:I = ﬁ: r= J{X_XD}2+I:}?—_}?D:|2+(2—ZD)2_

matisfies

2 2 2
g G?:u;}'u,xu g G'xﬂa}lﬂrxﬂ J Gxua}'u#u

+ +
3x? Ay Az?

= —&(x—xp), x=(x,»2), X = (Xg,¥0.Z0).

Field generated by a set of A monopoles:

it N
O(x) = D a:Gu(x) = D g:O(x—xy).
=1 =1
L. Greengard & V. Rokhlin, Rapid evaluation of potential fields in three dimensions. ¥Vortex Methods, €. Anderson & €. Greengard
{eds.). Lecture Notes in Mathematics, vol 1360, Springer-Verlag, 1988
L. Greengard, The rapid evaluation of potential fields in particle systems. MIT Press, Cambridge, 1938,

1. Introduced translation operators for 3D Laplace Edquation;
21 Introduced hierarchical space subdimsion based on oct-trees for data structuning in the FRL

One of the latest developments:

H. Cheng, L. Greengard & V. Rokhlin (1999) A fast adaptive multipole algorithm in
three dimensions. J. Comp. Physics, 155, 468-498.
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Adaptive FMM for 2D Poisson Equation

2 2
vip = &0 L 8T _ gy
2 T g (%)

L. Van Dommelen & E A Rundensteiner, Fast, adaptivle summation of point sources in the two-dimensional poisson equation. J. Comp.
Physics, 83, 126-147, 1989

10, Introduced an adaptive guad-tree space subdimsion for 20 Poigzson equation. Good for very non-untform source point distributions.”

O D
O s O .
©
o Q oC>
OJ0
0
L O i :
J 0 O | i
O O i () Q O O O O '.. OO0 () O ....
0O O e OO0 O of o1 oo oX foX Yo oXoX YoX Yol
0 o o) O e i
O O OO
o)
0o O 5.°
o 0 O
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Fast Gauss Transform

N
E'I:'I:I:I — ZG’:‘E—IWFE
=l

1). Use of the Hermit expansions and Taylor senes for different domans (far field and near field).
21 mpatal orounine based on source and evaluation points location using interaction lsts.

L. Greengard & J. Strain (1991) The Fast Gauss Transform,
SIAM J. Stat. Comp., 12, 1, 79-94.

J. Strain. The fast gauss transform with variable scales.
SIAM J. Sci. Comput., vol. 12, pp. 1131--1139, 1991.
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2D Helmbholtz Equation

2 2
TID 4+ kp = 2 9D L ey o_‘

Ax2 Ay

Fundamental solution (charge, monopole, source, free feld Green’s function):

Grupo (x.9) = 5=H (), 7= J(x=x0)? + r=50)%.

HE (k) i the first kind Hakel function.
satsfies

823, A2,
ax;”’“ + afm + k&% = —8(x—-xn), x=(x,), X = (x0.v0).

Field generated by a set of A monopoles:

I I
Dix) = 3 q:Gx(x) = 3 a:G(x - x,).

=1 =1

V. Rokhlin {1990} Rapid solution of integral equations of scattering theory in two dimensions.

1), Translation operators for 2D Helmholtz Equation,
21, Error bounds;

2. Spatal grouping.
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3D Helmholtz Equation

2 2 2
vig 4 p2p = 220 270 27D g g
Ax By? Az

Fundamental solution (charge, monopole, source, free field Green’s function):

Grom (53 = 7=, 7= Jx-x0) + -y0)? + (z-20).

Satisfes

BEGIU:}'U azg-x[l:}'l] BEGIU:}'U;U
i ch 2
ax hy dz

+ 52D = —8(x—x0), x=(x)), % = (xo.y0). ‘

Field generated by a set of AV monopoles:

N N
Olx) = 3 q,Gxlx) = > q:G(x—x;).

=1 =1

R Coifiman, V. RHokhlin, and 8. Wandzura (1993) The fast multipole method for the wave equation: 4 pedestrian prescription.
IEEE Ant. Propag Mag , vol 35 no 3, 7-12
11 Translation operators for 3D Helmholtz Equation;

21 Epatial Srouping.
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3D Maxwell Equations

7H
¥VxE=—-p¥t #11
. wo (}|
- 2k
?KH—Eaﬁ,
VE=10,
VH=10,

where E and H are the electnic and magnetic field vectors, and o and e are permeability and permittivity in the medmm, respectively. In the case of vacuum
we hawve

p=po, €=eo, = (ppep)?, |

where ¢ is the speed of light in a vacuum, « = 2 « 10% mfs.

C.C. Lu & W.C. Chew (1994) A multilevel algorithm for solving boundary-value
scattering. Micro. Opt. Tech. Lett., vol. 7, no. 10, 466-470.

J.M. Song & W.C. Chew (1995) Multilevel fast-multipole algorithm for solving
combined field integral equations of electromagnetic scattering. Micro. Opt. Tech.

Lett., vol. 10, no. 1, 14-19.

B. Dembart & E. Yip (1995) A 3D fast multipole method for electromagnetics with
multiple levels. Ann. Rev. Prog. Appl. Computat. Electromag., vol. 1, 621-628.
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1D Problems: Interpolation,
Differentiation, Integration

Fast Algorithms for Polynomial Interpolation, Integration, and

Differentiation
A. Dutt, M. Gu, V. Rokhlin

SIAM Journal on Numerical Analysis, Vol. 33, No. 5. (Oct., 1996),
pp. 1689-1711.

1). Considered the FMM for fast Lagrange polynomial
interpolation;
2). Fast summation and operations with series of polynomials.
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Other Equations

e Biharmonic (Stokes Flows)
* Yukawa Potentials (molecular dynamics)

 RBF (J . C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, T. R. Evans, "'Reconstruction and Representation of 3D Objects with Radial

Basis Functions," Proc. ACM Siggraph pp. 67-76, August 2001 )
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Our papers ...
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