
New Lightweight
N-body Algorithms

Alexander Gray
School of Computer Science
Carnegie Mellon University

N-body problems

• Coulombic a
i

i
i xx

mmxxK
−

=),(
(high accuracy required)

N-body problems

• Coulombic

• Nonparametric
statistics

a
i

i
i xx

mmxxK
−

=),(

22 2/),(σixx
i exxK −−=

0
1

),(
2a

i
t

xxK
−

=
1
10

≥
<≤

t
t22 /σixxt −=

(only moderate accuracy required, often high-D)

(high accuracy required)

N-body problems

• Coulombic

• Nonparametric
statistics

• SPH (smoothed
particle
hydrodynamics)

a
i

i
i xx

mmxxK
−

=),(

22 2/),(σixx
i exxK −−=

0
1

),(
2a

i
t

xxK
−

=

0
)2(
364

),(3

32

t
tt

xxK i −
+−

=

2
21
10

≥
<≤
<≤

t
t
t

1
10

≥
<≤

t
t22 /σixxt −=

Also: different for every point, non-isotropic, edge-dependent, …

(only moderate accuracy required, often high-D)

(only moderate accuracy required)

(high accuracy required)

N-body methods: Approximation

• Barnes-Hut

∑ ≈
i

RRi xKNxxK),(),(µ if

θ
rs >

s
r

N-body methods: Approximation

• Barnes-Hut

• FMM

∑ ≈
i

RRi xKNxxK),(),(µ if

θ
rs >

∑ ≈∀
i

ixxKx),(, multipole/Taylor expansion if
of order p

rs >

s

s

r

• Barnes-Hut

non-rigorous, uniform distribution

• FMM

non-rigorous, uniform distribution

N-body methods: Runtime
)log(NNO≈

)(NO≈
≈

≈

• Barnes-Hut

non-rigorous, uniform distribution

• FMM

non-rigorous, uniform distribution

[Callahan-Kosaraju 95]: O(N) is impossible
for log-depth tree

N-body methods: Runtime
)log(NNO≈

)(NO≈
≈

≈

Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re
even analytic), heterogeneous kernels

Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re
even analytic), heterogeneous kernels

• BUT: Needed to achieve O(N)
Needed to achieve high accuracy
Needed to have hard error bounds

Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re
even analytic), heterogeneous kernels

• BUT: Needed to achieve O(N) (?)
Needed to achieve high accuracy (?)
Needed to have hard error bounds (?)

N-body methods: Adaptivity
• Barnes-Hut recursive

can use any kind of tree

• FMM hand-organized control flow
requires grid structure

quad-tree/oct-tree not very adaptive
kd-tree adaptive
ball-tree/metric tree very adaptive

kd-trees:
most widely-used space-

partitioning tree
[Friedman, Bentley & Finkel 1977]

• Univariate axis-aligned splits
• Split on widest dimension
• O(N log N) to build, O(N) space

A kd-tree: level 1

A kd-tree: level 2

A kd-tree: level 3

A kd-tree: level 4

A kd-tree: level 5

A kd-tree: level 6

A ball-tree: level 1

[Uhlmann 1991], [Omohundro 1991]

A ball-tree: level 2

A ball-tree: level 3

A ball-tree: level 4

A ball-tree: level 5

N-body methods: Comparison
Barnes-Hut FMM

runtime O(NlogN) O(N)

expansions optional required

simple,recursive? yes no

adaptive trees? yes no

error bounds? no yes

Questions

• What’s the magic that allows O(N)?
Is it really because of the expansions?

• Can we obtain an method that’s:
1. O(N)
2. lightweight: works with or without

..............................expansions
simple, recursive

New algorithm

• Use an adaptive tree (kd-tree or ball-tree)

• Dual-tree recursion

• Finite-difference approximation

Single-tree:

Dual-tree (symmetric):

Simple recursive algorithm

SingleTree(q,R)
{

if approximate(q,R), return.

if leaf(R), SingleTreeBase(q,R).
else,

SingleTree(q,R.left).
SingleTree(q,R.right).

}

(NN or range-search: recurse on the closer node first)

Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,R.left).
DualTree(Q.left,R.right).
DualTree(Q.right,R.left).
DualTree(Q.right,R.right).

}
(NN or range-search: recurse on the closer node first)

Query points Reference points

Dual-tree traversal
(depth-first)

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Finite-difference function approximation.

)()()(
2
1)()(

1

1
i

ii

ii
i xx

xx
xfxfxfxf −








−
−+≈

+

+

)()()(
2
1)()(min

minmax

minmax
min δδ

δδ
δδδδ −








−
−+≈ KKKK

))(()()(axafafxf −′+≈
Taylor expansion:

Gregory-Newton finite form:

Finite-difference function approximation.

() [])()(
2

maxmin
QRQR

R
N

r
qrq KKNKKerr

R

δδδ −≤−=∑

[])()(maxmin
2
1

QRQR KKK δδ +=

assumes monotonic decreasing kernel

Stopping rule: approximate if s > r

could also use center of mass

Simple approximation method

approximate(Q,R)
{

if

incorporate(dl, du).
}

))(),(max(minmin RdiamQdiams ⋅≥δ

).(),(minmax δδ KNduKNdl RR ==

trivial to change kernel
hard error bounds

Runtime analysis

THEOREM: Dual-tree algorithm is O(N)

ASSUMPTION: N points from density f

Cfc ≤≤<0

Recurrence for self-finding

)(logNON ⋅⇒
)1()1(

)1()2/()(
OT

ONTNT
=

+=

)1()1(
)1()2/(2)(

OT
ONTNT

=
+=

single-tree (point-node)

dual-tree (node-node)

)(NO⇒

Packing bound

LEMMA: Number of nodes that are well-
separated from a query node Q is bounded
by a constant  

DCcsg),,(1+

Thus the recurrence yields the entire runtime.
Done.

CONJECTURE: should actually be D’
(the intrinsic dimension).

Real data: SDSS, 2-D

Speedup Results: Number of points

One order-of-magnitude speedup
over single-tree at ~2M points2335 hrs1.6M

1031616*800K
57904*400K
21976*200K

1.0494100K
.4612350K
.313125K
.12712.5K

dual-
N naïve tree

5500x

Speedup Results: Different kernels

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N Epan. Gauss.

Epanechnikov:
10-6 relative error

Gaussian:
10-3 relative error

Speedup Results: Dimensionality

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N Epan. Gauss.

Speedup Results: Different datasets

Name N D Time (sec)

923MPSF2d

2478410KMNIST

838136KCovType

105103KBio5

Meets desiderata?
Nonparametric statistics

• Accuracy good enough? yes
• Separate query and reference datasets? yes
• Variable-scale kernels? yes
• Multiple scales simultaneously? yes
• Nonisotropic kernels? yes
• Arbitrary dimensionality? yes, but not ultra-high
• Allows all desired kernels? mostly
• Extends to regression, locally-weighted, etc.? yes
• Field-tested, compared to existing methods? yes

[Gray and Moore, 2003]

Meets desiderata?
Smoothed particle hydrodynamics
• Accuracy good enough? yes
• Variable-scale kernels? yes
• Nonisotropic kernels? yes
• Allows all desired kernels? yes
• Edge-effect corrections (mixed kernels)? yes
• Highly non-uniform data? yes
• Fast tree-rebuilding? yes, soon perhaps faster
• Time stepping integrated? no
• Field-tested, compared to existing methods? no

Meets desiderata?
Coulombic simulation

• Accuracy good enough? open question
• Allows multipole expansions? yes
• Allows all desired kernels? yes
• Fast tree-rebuilding? yes, soon perhaps faster
• Time stepping integrated? no
• Field-tested, compared to existing methods? no
• Parallelized? no

Summary
• O(N) can be achieved independent of multipole

expansions; provable rather than arguable

• New lightweight dual-tree algorithm: explores
tradeoff between geometry and approximation

• Well-suited to statistics problems; plausibly useful
in physics problems
Looking for comments and collaborators!

agray@cs.cmu.edu

THE END

Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,closer-of(R.left,R.right)).
DualTree(Q.left,farther-of(R.left,R.right)).
DualTree(Q.right,closer-of(R.left,R.right)).
DualTree(Q.right,farther-of(R.left,R.right)).

}
(Actually, recurse on the closer node first)

Exclusion and inclusion,
using kd-tree node-node bounds.

O(D) bounds on distance minima/maxima:

(Analogous to point-node bounds.)

Also needed:
Nodewise bounds.

Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:

(){ } (){ }[]∑ −+−≥−
D

d
ddddii uxxlxx 0,max0,maxmin 22

(){ }∑ −−≤−
D

d
ddddii lxxuxx 22)(,maxmax

old stopping criterion

ε
φ

ε
φ

≤∀⇒≤∀
)(

:
)(

:,
q

qR

q

qR

x
err

q
N
N

x
err

Rq

old approximation method

approximate(Q,R)
{

if

incorporate(dl, du). return.
}

)()()(min
2

maxmin QKK N φδδ ε≤−

).(),(minmax δδ KNduKNdl RR ==

just set error tolerance, no tweak parameters
hard error bounds

