New Lightweight
N-body Algorithms

Alexander Gray

School of Computer Science
Carnegie Mellon University

N-body problems

« Coulombic K(x,x,)= —‘

(high accuracy required)

N-body problems

« Coulombic K(x,x;)=
(high accuracy required)
 Nonparametric K _ —x—x,[* /202
statistics (x,xl.)=e ,
11— 0<r<l]
L= K(x,x,)=

(only moderate accuracy required, often high-D) O t 2 1

N-body problems

« Coulombic K(x,x;)=
(high accuracy required)

. ' —x—x;[* /252
Nonparametric K(x,x)=e x=x;|" /20
statistics : ,

_ 1-t“0<r<l1
L= K(x,x)=
(only moderate accuracy required, often high-D) O [2 1
« SPH (smoothed

2 3

hydrodynamics) K(xx)= (2-1) 1<t<2
(only moderate accuracy required) 0 £>9

Also: different for every point, non-isotropic, edge-dependent, ...

N-body methods: Approximation

r

« Barnes-Hut s ﬁ
O

ZK(‘x?xi) R NRK(x, pz) i >2

N-body methods: Approximation

r

« Barnes-Hut s v
O

2 K(ex) = NeK(xoptg) 0 557
. FMM

/ S / :
Vx, Z K(x, xl.) X multipole/Taylor expansion if S >r
; of order p

N-body methods: Runtime
 Barnes-Hut ~ O(N IOg N)

non-rigorous, =~ uniform distribution
. FMM ~ O(N)

non-rigorous, ~ uniform distribution

N-body methods: Runtime
 Barnes-Hut ~ O(N IOg N)

uniform distribution

U

non-rigorous,
. FMM ~ O(N)
non-rigorous, ~ uniform distribution

[Callahan-Kosaraju 95]: O(N) is impossible
for log-depth tree

Expansions

Constants matter! pP factor is slowdown

Large dimension infeasible
Adds much complexity (software, human time)

Non-trivial to do new kernels (assuming they’re
even analytic), heterogeneous kernels

Expansions

Constants matter! pP factor is slowdown

Large dimension infeasible
Adds much complexity (software, human time)

Non-trivial to do new kernels (assuming they're
even analytic), heterogeneous kernels

BUT: Needed to achieve O(N)
Needed to achieve high accuracy
Needed to have hard error bounds

Expansions

Constants matter! pP factor is slowdown

Large dimension infeasible
Adds much complexity (software, human time)

Non-trivial to do new kernels (assuming they're
even analytic), heterogeneous kernels

BUT: Needed to achieve O(N) (?)
Needed to achieve high accuracy (?)
Needed to have hard error bounds (?)

N-body methods: Adaptivity

 Barnes-Hut recursive
—> can use any kind of tree

- FMM hand-organized control flow
- requires grid structure

quad-tree/oct-tree not very adaptive
kd-tree adaptive
ball-tree/metric tree very adaptive

kd-trees:

most widely-used space-
partitioning tree

[Friedman, Bentley & Finkel 1977]

* Univariate axis-aligned splits / ’

» Split on widest dimension
* O(N log N) to build, O(N) space

[/

A kd-tree: level 1

=[=lx]

A kd-tree: level 2

phics EES

+*

*

A kd-tree: level 3

=[=lx]

A kd-tree: level 4

=[=lx]

A kd-tree: level 5

| Auton's Graphics

A kd-tree: level 6

| Auton’s Graph |=l[Bl[>]

T g
.+

A ball-tree: level 1

[Uhlmann 1991], [Omohundro 1991]

.
TR

N-body methods: Comparison

Barnes-Hut FMM
runtime O(NlogN) O(N)
expansions optional required
simple,recursive? yes no
adaptive trees? yes no

error bounds? no yes

Questions

 What's the magic that allows O(N)?
Is it really because of the expansions?

« (Can we obtain an method that’s:
1. O(N)

2. lightweight: works with or without
expansions

simple, recursive

New algorithm

« Use an adaptive tree (kd-tree or ball-tree)
* Dual-tree recursion

 Finite-difference approximation

Single-tree:

Dual-tree (symmetric):

AT A
Py

Simple recursive algorithm

SingleTree(q,R)
{

if approximate(q,R), return.

If leaf(R), SingleTreeBase(q,R).
else,
SingleTree(q,R.left).
SingleTree(q,R.right).

(NN or range-search: recurse on the closer node first)

Simple recursive algorithm

DualTree(Q,R)

{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).

else,
DualTree
DualTree
DualTree
DualTree

Q.left,R.left).
Q.left,R.right).
Q.right,R.left).
Q.right,R.right).

AN N N N

(NN or range-search: recurse on the closer node first)

Dual-tree traversal
(depth-first)

Query points Reference points

T

iy iy iy by oy ey

Dual-tree traversal

Query points Reference points

==
=

i

i

——

i

Dual-tree traversal

Query points Reference points

oy ——
ey ey

oy

o

Sy o
eyt ey 2t dr b

Sy o
ey by b ey

Dual-tree traversal

Query points Reference points

===

Sy -
G e 2 ey i b

oy
A ey gy

Sy o
e e g i e e

Sy -
Jr Ll L

Dual-tree traversal

Query points Reference points

==

Sy o
L ke b dr

Sy -
e ey 2ty ot 2y

Sy o
L Ll gl

Sy o
Lt

Finite-difference function approximation.

£(0) ~ f(a)+ f(a)(x—a)

Gregory-Newton finite form:

J(xX)= f(x,)- (

W

K(5)~ k(5™ + L[A©)= RO
2 5max . 5m1n

J (X)) = 1 (X))

X . — X

1+

j(x X;)

l

}5-&“)

Finite-difference function approximation.

EY assumes monotonic decreasing kernel

b
\ K =3 K(650)+ K650,

ey = %K (6,)-K <]\;R K(Smm)— K (5]

could also use center of mass

Stopping rule: approximate if s > r

N\

Simple approximation method

approximate(Q,R)

{
dl = NRK(é‘max)ﬂ du — NRK(5min)'
if 0 . >s . -max(diam(Q),diam(R))
incorporate(dl, du).
}

—>trivial to change kernel
—>hard error bounds

Runtime analysis

HEOREM: Dual-tree algorithm is O(N)

ASSUMPTION: N points from density f
0<c< f<C

Recurrence for self-finding

single-tree (point-node)

T(N)=T(N/2)
r'()=0Q)

dual-tree (node-node)

o)

— N-O(log N)

T(N)=2T(N/2)+0()

T(1)=0(1)

= O(N)

Packing bound

LEMMA: Number of nodes that are well-
separated from a query node Q is bounded

by a constant I‘l n g(S,C‘,C)_‘D

hus the recurrence yields the entire runtime.
Done.

CONJECTURE: should actually be D’
(the intrinsic dimension).

Real data: SDSS, 2-D

Speedup Results: Number of points

dual-

N naive tree
12.59K 7| .12
25K 31| .31
50K 123 | .46
100K 494 1.0
200K | 1976* 2
400K | 7904~ 5
800K | 31616*| 10
1.6M| 35 hrs| 23

5500x

Scaling bahavior with number of data

One order-of-magnitude speedup
over single-tree at ~2M points

Speedup Results: Different kernels

N Epan. Gauss.
12.5K 12| .32
25K 31| .70
50K 46| 1.1
100K 1.0] 2
200K 2| 5
400K 5/ 11
800K 10| 22
1.6M 23| 51

Epanechnikov:

10 relative error
Gaussian:

10-3 relative error

Speedup Results: Dimensionality

N Epan. Gauss.
12.5K 12| .32

25K 31| .70

50K 46| 1.1
100K 1.0 2
200K 2| 5
400K 5/ 11
800K 10| 22
1.6M 23| 51

&0

Scaling batavior with nu

rof diman=ion=s

Speedup Results: Different datasets

Name N D Time (sec)
Bio5 103K |5 10
CovType [136K |38 8

MNIST |10K 784 24

PSF2d |3M 2 9

Meets desiderata?
Nonparametric statistics

Accuracy good enough? vyes

Separate query and reference datasets? yes
Variable-scale kernels? yes

Multiple scales simultaneously? yes

Nonisotropic kernels? yes

Arbitrary dimensionality? vyes, but not ultra-high
Allows all desired kernels? mostly

Extends to regression, locally-weighted, etc.? yes
Field-tested, compared to existing methods? vyes

-> [Gray and Moore, 2003]

Meets desiderata?
Smoothed particle hydrodynamics

* Accuracy good enough? vyes

« Variable-scale kernels? yes

* Nonisotropic kernels? yes

* Allows all desired kernels? vyes

« Edge-effect corrections (mixed kernels)? yes

* Highly non-uniform data”? yes

« Fast tree-rebuilding? yes, soon perhaps faster
« Time stepping integrated? no

» Field-tested, compared to existing methods? no

Meets desiderata?
Coulombic simulation

Accuracy good enough? open question

Allows multipole expansions? yes

Allows all desired kernels? vyes

Fast tree-rebuilding? yes, soon perhaps faster
Time stepping integrated? no

Field-tested, compared to existing methods? no
Parallelized? no

Summary

* O(N) can be achieved independent of multipole
expansions; provable rather than arguable

* New lightweight dual-tree algorithm: explores
tradeoff between geometry and approximation

* Well-suited to statistics problems; plausibly useful
In physics problems
-> Looking for comments and collaborators!
agray@cs.cmu.edu

Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).

else,
DualTree
DualTree
DualTree
DualTree

Q.left,closer-of(R.left,R.right)).
Q.left,farther-of(R.left,R.right)).
Q.right,closer-of(R.left,R.right)).
Q.right,farther-of(R.left,R.right)).

AN N N N

(Actually, recurse on the closer node first)

Exclusion and inclusion,
using kd-tree node-node bounds.

O(D) bounds on distance minima/maxima:

A A

(Analogous to point-node bounds.)

Also needed:
Nodewise bounds.

Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:

min,

max.

old stopping criterion

err N err
W <R e Y

Vq,R: < 1<
P) SN T)

E

old approximation method

approximate(Q,R)

{
dl=N,K(5,),du=N,K(©_).

if K (Opin) = K(Opax) % Pin (Q)

incorporate(d/, du). return.

—>just set error tolerance, no tweak parameters
—>hard error bounds

