
New Lightweight 
N-body Algorithms

Alexander Gray
School of Computer Science
Carnegie Mellon University



N-body problems

• Coulombic a
i

i
i xx

mmxxK
−

=),(
(high accuracy required)



N-body problems

• Coulombic

• Nonparametric 
statistics

a
i

i
i xx

mmxxK
−

=),(

22 2/),( σixx
i exxK −−=

0
1

),(
2a

i
t

xxK
−

=
1
10

≥
<≤

t
t22 /σixxt −=

(only moderate accuracy required, often high-D)

(high accuracy required)



N-body problems

• Coulombic

• Nonparametric 
statistics

• SPH (smoothed 
particle 
hydrodynamics)
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Also: different for every point, non-isotropic, edge-dependent, …

(only moderate accuracy required, often high-D)
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(high accuracy required)



N-body methods: Approximation
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• Barnes-Hut

non-rigorous,       uniform distribution

• FMM

non-rigorous,       uniform distribution
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• Barnes-Hut

non-rigorous,       uniform distribution

• FMM

non-rigorous,       uniform distribution

[Callahan-Kosaraju 95]:    O(N) is impossible 
for log-depth tree
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Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re 
even analytic), heterogeneous kernels
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Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re 
even analytic), heterogeneous kernels

• BUT: Needed to achieve O(N) (?)  
Needed to achieve high accuracy (?)
Needed to have hard error bounds (?)



N-body methods: Adaptivity
• Barnes-Hut              recursive                                    

can use any kind of tree

• FMM                          hand-organized control flow
requires grid structure

quad-tree/oct-tree        not very adaptive
kd-tree                          adaptive
ball-tree/metric tree      very adaptive



kd-trees:
most widely-used space-

partitioning tree
[Friedman, Bentley & Finkel 1977]

• Univariate axis-aligned splits
• Split on widest dimension
• O(N log N) to build, O(N) space



A kd-tree: level 1
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A kd-tree: level 3



A kd-tree: level 4



A kd-tree: level 5



A kd-tree: level 6



A ball-tree: level 1

[Uhlmann 1991], [Omohundro 1991]



A ball-tree: level 2



A ball-tree: level 3



A ball-tree: level 4



A ball-tree: level 5



N-body methods: Comparison
Barnes-Hut             FMM

runtime                            O(NlogN)              O(N)

expansions                       optional                required

simple,recursive?             yes                        no

adaptive trees?                 yes                        no   

error bounds?                   no                          yes



Questions

• What’s the magic that allows O(N)?
Is it really because of the expansions?

• Can we obtain an method that’s:
1. O(N)
2. lightweight: works with or without       

..............................expansions
simple, recursive



New algorithm

• Use an adaptive tree (kd-tree or ball-tree)

• Dual-tree recursion

• Finite-difference approximation



Single-tree:

Dual-tree (symmetric):



Simple recursive algorithm

SingleTree(q,R)
{

if approximate(q,R), return.

if leaf(R), SingleTreeBase(q,R).
else,

SingleTree(q,R.left).
SingleTree(q,R.right).

}

(NN or range-search: recurse on the closer node first)



Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,R.left).
DualTree(Q.left,R.right).
DualTree(Q.right,R.left).
DualTree(Q.right,R.right).

}
(NN or range-search: recurse on the closer node first)



Query points Reference points

Dual-tree traversal
(depth-first)
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Dual-tree traversal



Finite-difference function approximation.
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Taylor expansion:

Gregory-Newton finite form:



Finite-difference function approximation.
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assumes monotonic decreasing kernel

Stopping rule: approximate if s > r

could also use center of mass



Simple approximation method

approximate(Q,R)
{

if                                                          

incorporate(dl, du).
}
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trivial to change kernel
hard error bounds



Runtime analysis

THEOREM:  Dual-tree algorithm is O(N)

ASSUMPTION:  N points from density f

Cfc ≤≤<0



Recurrence for self-finding
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Packing bound

LEMMA:  Number of nodes that are well-
separated from a query node Q is bounded 
by a constant  

DCcsg ),,(1+

Thus the recurrence yields the entire runtime.
Done.

CONJECTURE: should actually be D’
(the intrinsic dimension).



Real data: SDSS, 2-D



Speedup Results: Number of points

One order-of-magnitude speedup
over single-tree at ~2M points2335 hrs1.6M

1031616*800K
57904*400K
21976*200K

1.0494100K
.4612350K
.313125K
.12712.5K

dual-
N        naïve  tree

5500x



Speedup Results: Different kernels

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N      Epan.  Gauss.

Epanechnikov: 
10-6 relative error

Gaussian: 
10-3 relative error



Speedup Results: Dimensionality

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N      Epan.  Gauss.



Speedup Results: Different datasets

Name        N           D           Time (sec)

923MPSF2d

2478410KMNIST

838136KCovType

105103KBio5



Meets desiderata?
Nonparametric statistics

• Accuracy good enough?   yes
• Separate query and reference datasets?  yes
• Variable-scale kernels?   yes
• Multiple scales simultaneously?   yes
• Nonisotropic kernels?   yes
• Arbitrary dimensionality?   yes, but not ultra-high
• Allows all desired kernels?   mostly
• Extends to regression, locally-weighted, etc.?   yes
• Field-tested, compared to existing methods?   yes

[Gray and Moore, 2003]



Meets desiderata?
Smoothed particle hydrodynamics
• Accuracy good enough?   yes
• Variable-scale kernels?   yes
• Nonisotropic kernels?   yes
• Allows all desired kernels?   yes
• Edge-effect corrections (mixed kernels)?   yes
• Highly non-uniform data?   yes
• Fast tree-rebuilding?   yes, soon perhaps faster
• Time stepping integrated?  no
• Field-tested, compared to existing methods?   no



Meets desiderata?
Coulombic simulation

• Accuracy good enough?   open question
• Allows multipole expansions?   yes
• Allows all desired kernels?   yes
• Fast tree-rebuilding?   yes, soon perhaps faster
• Time stepping integrated?   no
• Field-tested, compared to existing methods?   no
• Parallelized?   no



Summary
• O(N) can be achieved independent of multipole

expansions; provable rather than arguable

• New lightweight dual-tree algorithm: explores 
tradeoff between geometry and approximation

• Well-suited to statistics problems; plausibly useful 
in physics problems
Looking for comments and collaborators!

agray@cs.cmu.edu



THE END



Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,closer-of(R.left,R.right)).
DualTree(Q.left,farther-of(R.left,R.right)).
DualTree(Q.right,closer-of(R.left,R.right)).
DualTree(Q.right,farther-of(R.left,R.right)).

}
(Actually, recurse on the closer node first)



Exclusion and inclusion,
using kd-tree node-node bounds.

O(D) bounds on distance minima/maxima:

(Analogous to point-node bounds.)

Also needed:
Nodewise bounds.



Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:
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old stopping criterion

ε
φ

ε
φ

≤∀⇒≤∀
)(

:
)(

:,
q

qR

q

qR

x
err

q
N
N

x
err

Rq



old approximation method

approximate(Q,R)
{

if                                                          

incorporate(dl, du).  return.
}
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just set error tolerance, no tweak parameters
hard error bounds


