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/ MOTIVATION \

e Develop a fast method to calculate Discrete Fourier Transform
(DFT) of nonuniformly sampled data

— Regular FFT algorithms do not apply

— Straightforward DFT requires O(N?) for the forward transform,
and O(N?3) for the inverse transform

e Develop a fast Fourier transform algorithm for discontinuous
functions

— Regular DFT and FFT has slow convergence of O(1/N)

— The “discontinuous” FFT (DFFT) method has exponential
convergence while requiring only O(N log IN') operations

e Engineering applications of the NUFFT and DFFT algorithms

\ SAR, GPR, CT, MRI /
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/ NUFFT Algorithms

e Regular FFT Algorithms: A fast method for DFT

- First proposed by Cooley and Tukey (1965)

- Direct calculation of Discrete Fourier Transform
N/2—1

fi= Y e for j=-N/2,--- N/2-1
k=—N/2
requires N2 arithmetic operations.
- In FFT, number of arithmetic operations 0.5V log, V.

e Limitation of Regular FFT Algorithms
- FFT requires uniformly spaced periodic data

S
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\ Uniformly Sampled Points for FFT
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e The Nonuniform Discrete Fourier Transform

N/2—1
fi=F(a);= Y ape®™® for j=-N/2,--- N/2-1,
k=—N/2
- Frequency samples w = {w_ /2, ,Wn/2-1},

w; = 27§ /N € [—m, | are uniform

- Time samples t = {t_n/2, - ,tn/a—1}: th € [-N/2, N /2]
are nonuniform

- Regular FFT does not apply

- Nonuniform data is common in applications

- Direct calculation is very expensive

e NUFFT algorithms are fast methods with O(mN log, V)
arithmetic operations
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/ PREVIOUS METHODS \

e Dutt & Rokhlin’s Method (1993)

- Interpolation involving a Gaussian function

F(w) = e T for we [—7, 7]

(where b > 1/2 and 7 is a real number) by a small number of equally
spaced points on the unit circle.

e Beylkin’s Method (1995)
- Interpolation using multiresolution analysis (MRA)

e Liu & Nguyen—Least Square Interpolation (1997, 1998)
- Optimal in the least-square sense
- A new class of matrices: Regular Fourier Matrices

\ - Highly accurate and with the same complexity /




/ Nonuniform Fast Fourier Transforms (NUFFT) \

e Fast Algorithm for Summation

N/2-1
fj:F(a)j: Z Oékeitk'wj for ]:_N/Q,,N/2—1,
k=—N/2
- Frequency samples w = {w_n/2,- -+ ,wn/2-1},

w;j = 2nj/N € [—m, | are uniform
- Time samples ¢ = {t_n/2, - ,tnj/2—1}, tk € [=N/2,N/2]
are nonuniform

e Our NUFFT Algorithm: - Introduce a finite sequence
S(j) = sjeizmj/N =s;2'"" for j=-N/2,--- ,N/2-1

where the “accuracy factors” 0 < s; < 1 are chosen to minimize the
approximation error. Use least-square to approximate this sequence

\ by a small number of uniform points. /




/ LEAST SQUARE INTERPOLATION

Interpolation of Unequally Spaced Points by

Uniform Points on a Unit Circle

e Find the least square solution z, of

+q/2
b=—q/2

\ where z = ¢?27/™N The oversampling factor m > 2.

/




/o We use (¢ + 1) uniform points to interpolate one point
- Number of unknowns (¢ + 1)
- Number of equations N

e Since (¢ + 1) << N, this is an over-determined system

Ax(1) = v(1)

Ajé — ZJ'(@—l—[mT])7 ?Jj(T) _ szjmT
e Note A, Is a function of 7

e Least square solution

F =AY (D)A(T), al(r)=AY(1) v(7)

\o Is I’ a function of 7 ?
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/o Matrix F' = AT(1)A(7) =

\_

B —N/2 _NJ/2
y —Z
N 1—2
N/2 _—N/2
y —Z
1—2z—1 N
ZqN/Q_Z—qN/Q Z(q—l)N/Q_Z—(q—l)N/Q
1 =2 (=D

e The regular Fourier matrices F'(m, N, q)
- It has a remarkable property:
F(m, N, q) is independent of .

L,—aN/2_ _aN/2

1—=z49

,—(@=1)N/2__ (¢—1)N/2

~

1—za—1

N

e Therefore, for all time sample points, F' only need to be

calculated once.

/
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e \ectorais,forl = —q/2,---,q/2

N/2—-1

al(r) =Y sjelmtimmi=0;

j=—N/2

e In general, vector a has to be evaluated by the above series.

- For some special accuracy factors s, closed form
IS possible
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Accuracy Factors

e Accuracy factors s; are needed In

N/2—-1

al(r) =Y sjelmimmi=0;

j=—N/2
e Three Different Accuracy Factors Are Used

(1) Gaussian accuracy factors

()’
S] =

Then a, has to be found by the series.

(2) Cosine accuracy factors

™j
Sj = COS ——

\_ - /
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then a,(7) can be found in closed form

(=i Y SlEQmT) = /)

i G RR

(3) Trivial accuracy factors
Sj =1

then a,(7) can also be found in closed form

el ({met+q/2—=k) _ pigm ({mc}+q/2—k)

i 2= ({mc)+a/2—k)

e Cosine accuracy factors are more efficient and accurate.
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/ PROCEDURES OF THE NUFFT ALGORITHM

e Preprocessing: Compute z,(t;) for all £and &

e Interpolation: Calculate Fourier coefficients

M = Z g - Te(ty)

Lk, [mti]+0=n

e Regular FFT: Use uniform FFT to evaluate

mN/2—1

2ming /mN
1 = E Tin - € i
n=—mIN/2

e Scaling: Scale the values to arrive at the approximated NUFFT
fi=T1; s

e The number of arithmetic operations is O(mN log, V'), where
\ m < N. (Usually m = 2and ¢ = 8.)

~

/
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Accuracy of the NUFFT Algorithm

e /-,and L., Errors

N/2 1

Fy = f]| /Zlij

\ ="
N/2—1

B, = Pt / Z |
N/22JEN /21 = dil) /o ]
J=—

e For following tests

- The time sample points ¢, and the data o, are obtained by a
pseudorandom number generator with large variations

/
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L—-2 Error

FE5 and E, as Functions of N (¢ = 8)
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L—-2 Error

FEs> and E, as Functions of g (N = 64)
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Observations

e NUFFT is optimal in the least square sense.
Our algorithm always obtains a higher accuracy than the previous
algorithm, while the number of operations is comparable.

e Cosine accuracy factors are more efficient than Gaussian accuracy
factors since a(7) can be found in closed form.

e Cosine accuracy factors are more accurate than Gaussian accuracy
factors for ¢ < 8.
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Imaginary Part

EM Field Near A Sharp Discontinuity

@)

-20 0 20
Normalized Location

(©

___ Direct

- - NUFFT

0 20 40 60

Spatial Frequency Index

(b)

30

20

10

Real Part

0

-10
0

Absolute Error

— Direct

~ — NUFFT

20 40 60
Spatial Frequency Index

(d)

— NUFFT
. - - DR
/

20 40 60
Spatial Frequency Index

(a) Spatial distribution of transient EM field near a conductive dielectric
slab. (b) Real and (c) imaginary parts of the (spatial) spectrum.
\(d) Absolute errors of NUFFT.

~

/

20



/

\_

Computation Complexity

Rel. No. of Operations
L N W g o1 O

o

o O

o O O

e o o Actual o
— — Theoretical )
. .
/./ ’
;"./ . . . .
0 1000 20%0 3000 4000

Relative number of operations as a function of V. Both input data and the
locations of the sampling points are random. The dashed curve is the
theoretically predicted curve O(N log, N) passing through the last point.

~
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Summary of NUFFT

Direct evaluation of nonuniform DFT is expensive, requiring O(N?)
arithmetic operations.

Through least-square interpolation, we discover a new class of
matrices, the Regular Fourier Matrices F'(m, N, q).

The NUFFT algorithm proposed is accurate as it has a least-square
error in the interpolation of the basis.

Other related forward and inverse NUDFTSs can be also calculated by
the NUFFT.

The NUFFT algorithm is a fundamental technique useful to many
other applications.

/
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FFT for Discontinuous Functions. Motivation

~

For smooth periodic functions, the FFT provides a high accuracy.

FFT results have greatly reduced accuracy for discontinuous
functions.

Examples: Electromagnetic field in a discontinuous medium.

The source of inaccuracy
-Trapezoidal rule in the Fourier integration.
-Error is proportional to O(+-)

Methods for FFT of discontinuous functions (Fan/Liu, 2001; 2004)
-Sorets (1995) treats piecewise constant functions
-This work is an extension to piecewise smooth functions

/
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Formulation of DFFT

e Fourier Transform of f(z) (a piecewise smooth function)

N N

1
f(n> — /f(x)e_izwnxdaj, 5 <n< o - 1
0

e Integration in L sections
L 7
f =3 [ sae e as
=1
Ty—1

e By change of variables, each section can be evaluated by Gaussian
Legendre quadrature

| 0= yw) e
k=1

—1

~
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e Summation

L q
fln) =70y ft)) e

=1 k=1

e However, here {t! } are nonuniform.

26



/- Lagrange interpolation to a uniform grid \
p
r— Xy,
= mzzjlg(xm) Om (), Om () = H v — 1

e Double interpolation

p
Yy blek ( S () (8 ) D e BTG (t)
=1 k=1

mi1= 1 m=1

e Then it can be evaluated by the standard FFT

vIN
— Gm 6—i27rn:£m
q 1
ZY <Z f O, ( tl ) wi:(sm(ti:)

J
=1 k=1 m1 1

\ v 1s sampling factor ( » = 2 in our calculation ) /
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e Advantages of double interpolation procedure
— Nonuniform FFT;

— Allows a lower order interpolation for the slowly varying function
f(z);

— Allows other efficient algorithms for interpolation of f(x), if
needed.

28
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Implementation and complexity of the DFFT algorithm

o Steps:
— Initialization of 6,,,, (¢') and §,,,(¢.). (This preprocessing is
needed only once). Complexity O(Np?).
— Calculation of g,,,. The complexity is O(Np).

— Calculation of f (n) iIn (9) by a standard FFT. The complexity is
O(vN log N).

e The total complexity is O(Np + v N log N) for last two steps.
The preprocessing need be done only once.

\_

/
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Numerical Examples of DFFT

Example 1. Triangle Function
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L=x1 < rx<z

0 elsewhere

~
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Table 1. Errors and Run Times for Example 1
(Double Precision)

N Errors (Fso) Timings (Ms)
This paper Direct Init. Eval. FFT Direct
64 1.130e-13 9.683e-03 51.0 1.30 0.51 0.13
128 1.120e-13 4.824e-03 102. 2.60 1.11 0.26
256 1.130e-13 2.408e-03 203. 5.21 2.47 0.58
512 1.120e-13 1.203e-03 406. 10.5 5.89 1.24
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Example 2. Sinusoidal Function

2+ sin(64 11X)

-1 - - - - - - - - -
0O 01 02 03 04 05 06 07 08 09 1
X

fol) = { o + sin(27wfx) v < x < 29

elsewhere

32
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Table 2. Errors and Run Times for Example 2
(Double Precision)

N Errors (E~) Timings (ms)
This paper Direct Init. Eval. FFT Direct
212 1.471e-11 5.820e-02 158. 4.28 5.81 1.25
1024 1.080e-12 2.920e-02 333. 8.41 13.0 2.67




Example 3: 2-D Function

flz,y) = fi(z) f2(y)

Table 3. Errors for the 2-D Problem in Example 3
(Double Precision)

N x M Errors (E )
This paper Direct
128 x 512 2.916e-12 1.697e-03
256 x 1024 2.700e-13 8.511e-04




Summary of the DFFT

A fast DFFT algorithm has been developed for the evaluation of

Fourier transform of piecewise smooth functions.

DFFT can achieve NUFFT: It is applicable to both uniformly and

nonuniformly sampled data.

The complexity of algorithm is O(Np + vN log N) plus O(Np?)

for precalculation.

Numerical results demonstrate the efficiency and accuracy.

~

/
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/Application 1. Integral Equation\
Solution by the CGFFT Method

e 1-D EM scattering problem Plane wave scattering from a slab of
finite width

e Integral equation

E"¢(z) = E(x) + /G(:U —2')J(2") dx

o J(z) = ke (x) — 1] E(x) is the unknown equivalent current
e GG(x — x') is the 1-D Green’s function in free space

e Convolution integral is evaluated by Fourier transform

E"¢(z) = E(x) + F{F{G(x)} F{J(x)} }

\ F and F~1 denote the forward and inverse Fourier transform. /
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/ Example 1.

Comparison of CGFFT and DFFT at a High Sampling Rate

0
_10_ 1\ AN AA \/.\A/‘v'_\'/L
AN /\/\\\,\’/JJ/
I /\\, \\\.,\--\/./
A—ZQ\/\ o | \,’Il\\[ o
o Pty :
S b — Disc. FFT
5 —30¢ - - FFT
-
|-
L

A A A
_50 - 4

0 0.2 0.4
x (M)

contrast. ¢, = 2, f = 2.75 GHz.

\o Sampling density: 10 PPW

0.6 0.

Comparison of CGFFT algorithms for dielectric slab with a low e,

8 1

~
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p AR AR ALrLy Y RECINTRIOoN
| ////'/‘/~/"‘./-"4, A
z-100
E .A'I‘\-
§ =20
W30+
— Disc. FFT
o} | D
_50 | I I I
0 0.2 0.4 o .
X (M)

Example 2: Lower Sam

pling Rate (Higher Frequency)

Same as Example 1 except f = 5.5 GHz.

e Sampling density: 5 PPW

~
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Example 3. Lower Sampling Rate and High Contrast

10 . | |
0 BA '/-\-"\‘I " v I Vil\/j'\-"_ l-\}\.w_\__l'\/'\lil Wit b
| AT
_1alt N |
el | i
= ' |
= —20} |
(@)
=
W -30¢
— Disc. FFT
_40 L
— - FFT
-50 . . | |
0 0.2 0.4 0.6 0.8 1
x (m)

Same as Example 1 except with a higher contrast, ¢, = 8.

e Sampling density: 5 PPW

~
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/Application 2. Ground Penetrating Radar Using NUFF'IN

Cross range (cm) Cross range (cm)

Time (ns)
Time (ns)

\ 0 50 100 0 50 100 /
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Application 3: MRI Image Reconstruction

Conventional and NUFFT reconstructed results
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Error in the conventional method and in the NUFFT
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/ Error Comparison \
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Comparison of the conventional and NUFFT reconstructions in L5 errotr.

UFFT: 1.49%, Interpolation: 12.25%
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Summary and Conclusions

e NUFFT algorithms with O(N log V') operations have been
developed in recent years and received considerable attention.
We presented a simple method based on least-square interpolation of
the basis, inspired by the original work by Dutt and Rokhlin.

o A fast DFFT algorithm has been developed for the Fourier
transform for discontinuous functions with O(Np + v N log N)
operations.

e Both NUFFT and DFFT algorithms have many applications:

— Numerical solution of wave equations
— Ground penetrating radar and synthetic aperture radar processing

— CT and MRI image reconstruction

/
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