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3D imaging of flow - continuum flow fields
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• Flow Profile matches 
• dry, continous flow 
• Fenistein et al PRL 2004

Move bottom disk in 3o slowly
Stop to take a 3D picture



Segregation in 
systems with 
two particle 

sizes

Joost Weijs
University 
of Twente

Small (3mm)

Large (5mm)



• Large Particles

• Small Particles

Convection Rolls
during “step”-flow

Joost
Weijs



Volume fraction–Top of shear zone:
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Neighbors
• Looking at all large particles, how does the 

average number of neighbors evolve?
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Dynamics of Segregation

Blue area segregates within 20 rotations, 
dark red area has not segregated after 
600 rotations
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Segregation in a tumbler



Model System:  Rotating Drum

Top
Middle

Bottom

Total mass flux is zero 
across any line

Flowing material set 
apart by red line.



Velocity Profile

Y

Linear decrease in velocity, no 
transition from large to small particles.

Radial segregation is not strong.



Radial and Axial Segregation Michael Newey

Radial segregation
~ 3-4 revolutions

Axial banding
~ 50-100 revolutions

What processes drive axial 
band formation?

Supported by NASA and NSF-CTS



Connection between axial 
banding and radial segregation

MRI – Kakalios, Hill: “smaller”
particles labeled in MRI

Schematic

Y
tim

e



Particle Speed on Surface



Particle Tracking:
*We track thousands of particles of the 
banded state in a rotating drum.

*We can distinguish between large and 
small particles.



Number of small particles 
visible on surface

(during band formation process)



Left Edge 
of band

Right Edge 
of band
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Drift of small/large particles different?
Physical process that leads to drift?

TOP

Bottom

Axial drift



Laser line angle over a band

Z (mm)

*Flowing angle lower over a small 
particle band.



Is drift in the direction of 
steepest descent?

Drift is in the direction of steepest descent at the bottom 
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Radial velocity and concentration

Radial segregation not complete.

Linear velocity profile

no change in slope from 
large to small particles.

Y
Top

Bottom



Downhill Velocity

Small particle 
band

Large particle  
band

Velocity proportional to concentration of small particles

Newey, Losert, 
JSTAT, to appear



Particle Speed on Surface
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Downhill Velocity, II 
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Velocity increases 
before number of small 
particles on surface 
increases

->  Velocity depends on 
subsurface small 
particles 

Top

Bottom



Top and bottom are at different granular 
temperature

Top - Particle acceleration - low temperature
Bottom - Particle deceleration - high temperature

Top

Bottom



Processes that could lead to drift:

Middle:

- Axial drift into higher surface velocity region 

Bottom: higher “temperature” than top                                               
- Axial drift out of high velocity region

Small 
particle band

Large 
particle band

Wolfgang Losert    
wlosert@umd.edu
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Observed axial drift
Summary
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Ternary mixtures

*Band within band formation

Green/blue = 0.5 mm   Gold = 1.0 mm   Red = 2.0 mm

Newey et al. 

Europhysics Letters, 2004



Oscillating patterns



Oscillations





Quaternary Mixtures:
Bands Within Bands Within Bands

not as pronounced.

Bands disappear at rotation rates below 15 rpm.  Process 
is reversible.



*Pronounced radial segregation observed, but no axial 
bands formed.

*Initially pre-segregated axial bands quickly disappear.

*WHY no bands? 

Mixtures of 5 or More Particle Sizes
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Convection under vertically shaking

Convection

Vertical Excitation 50 Hz, 11 g

Binary mixture (1mm and 
4mm):

Slightly higher density

No qualitative change in  
behavior

Monodisperse: 
1mm glass spheres



 Mixture of particles glass 
beads 30 micron – 14 mm 
Diameter
 Very dense packing 

possible in principle

Questions:

 When will the system pack 
densely, when will it 
segregate?

 Effect of multiple 
lengthscales?
 2.5 orders of magnitude in 

particle radius r
 Effect of multiple energy 

scales?
 10 orders of magnitude in 

characteristic energy m*g*r

Polydisperse Mixtures

Part of a 3D appolonian packing
M. BORKOVEC and W. DE PARIS, R. PEIKERT, 
Fractals, Vol. 2, No. 4 (1994) 521-526





Polydisperse mixture vertically 
shaken at 50 Hz

Mixture of 10 sizes:  
(450 g each)

14mm
8mm 
4mm 
2mm
1mm

0.6 mm
0.35 mm 

0.085 mm 
0.055 mm 
0.030 mm

System mixes for 
a finite range of 
frequencies and 
amplitudes
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 bidisperse
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Reversible segregation

Segregation by size 
when shaken below 
threshold frequency 
(~ 20 Hz)

Segregation 
accompanied by 
dilation



Role of Mixing Ratio
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 D=2.3
 D=2.6
 D=3

Total mass of particles of size r: 

m(r) ~  r3 * N(r)
N(r):  Number of particles with 
radius r

N(r) ~ r –D

m(r) ~  r3-D

D: Mixing ratio
D=3 Equal mass packing

D=0: Equal number of particles for 
each radius

D=2.3 ~Applolonian Packing 
(optimal packing)

D=2.6 observed in geology


