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I- Introduction

• Helmholtz equation with source term, and slowly varying refraction

index (scale ε)

iεαεw
ε(x) + ∆xwε(x) + n2(εx)wε(x) = S(x).

• αε > 0 : small positive absorption coefficient,

e.g. αε = ε1000, or even αε = 0+.

Makes the Helmholtz equation invertible, or specifies a radiation condition

at infinity (see below).

S(x) is a given source term (regularity to be precised later)

n(x) is the refraction index, C∞(Rd) in any case.

0 < n1 ≤ n(x) ≤ n2 < ∞ (may be relaxed)

The unknown is wε ∈ C, and d ≥ 3.

• Corresponds to harmonic solutions of the damped wave equation, where

the time variable has disappeared (“infinite time”).



I- Introduction (2)

• Question 1 : Uniform bounds on wε ?



I- Introduction (3)

• Question 2 : Does wε, solution to

iεαεw
ε(x) + ∆xwε(x) + n2(εx)wε(x) = S(x).

go to the outgoing solution wout, solution to

i0+wout(x) + ∆xwout(x) + n2(0)wout = S(x) ?

(Rmk : obviously OK if n = const = n∞ = n(0)).
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in the whole space
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I- Introduction (4)

• Motivation : Through the L2 unitary scaling uε(x) := ε−d/2wε(x/ε), the

analysis of wε is related to the high-frequency Helmholtz equation

iεαεu
ε(x) + ε2∆xuε(x) + n2(x)uε(x) =

1

εd/2
S

(
x

ε

)
.

The analysis of the propagation of the semiclassical measure of uε (rela-

ted to |uε|2), has been performed by J.D. Benamou, F.C., Th. Katsaounis,

B. Perthame, under the conjecture that the wave wε (amplitude +

phase) goes to wout. Typically

0+f(x, ξ)︸ ︷︷ ︸
radiation cdt

+2ξ·∇xf +∇xn2(x) · ∇ξf︸ ︷︷ ︸
transport

= |Ŝ(ξ)|2 δ(ξ2 − n2(x))︸ ︷︷ ︸
dispersion relation

δ(x)︸ ︷︷ ︸
source

→ resonant interaction between S(x/ε) and ε2∆x + n2(x)

See F.C., B. Perthame, O. Runborg and P. Zhang, X.P. Wang for more

general oscillating/concentrating source terms. See E. Fouassier for the

case of a discontinuous index n(x) (reflection/transmission).



I- Introduction (5)

• Difficulty in proving wε → wout : for constant coefficients n(x) ≡ n∞ :

1 wout solves +∆xwout(x) + n2
∞wout(x) = S (x) ,

with the Sommerfeld radiation condition : as |x| → ∞, we impose

x

|x|
· ∇xwout(x)+in∞wout(x) → 0. (wout ∼

|x|→∞

exp (−in∞|x|)
|x|

if d = 3).

2 ŵout(ξ) =
Ŝ(ξ)

−ξ2 + n2∞+i0+
, where

1

x + i0+
= pv

(
1

x

)
+iπδ(x), in D′(R).

3 wout(x) = i
∫ +∞

0
exp

(
it[∆x + n2

∞]
)

S(x) dt,

is a quantity that is being propagated over positive times. Here,[
i∂t −∆x − n2

∞
] (

eit[∆x+n2
∞] S(x)

)
= 0, eit[∆x+n2

∞] S(x)
∣∣∣
t=0

= S(x).



I- Introduction (6)

1, 2 or 3 → strong nonlocal effects induced by the “i0+”. It “brings

back information” from infinity. If n(0) 6= n∞ = lim|x|→∞ n(x), we have to

explain why (say when d = 3 and αε = 0+)

wout ∼
|x|→∞

exp (−in(0)|x|) /|x|

while

wε ∼
|x|→∞

exp (−in∞|x|) /|x|.



II- Bounds on wε and/or uε

• When n(x) = const, standard weighted L2 bound (∀δ > 0)(
∆x + n2

∞ + i0+
)−1

maps L2( (1 + |x|)+1+δdx ). to L2( (1 + |x|)−1−δdx ).

Also a limiting, optimal, homogeneous version if δ = 0 → B-B∗ spaces

(Agmon-Hörmander).

• When n(x) 6= const, similar weighted L2 bound for the resolvents(
∆x + n(x) + i0+

)−1
, and

(
ε2∆x + n(x) + i0+

)−1
, provided the index n(x)

(i) is smooth, (ii) goes to a constant at infinity, and (iii) has no trap-

ped rays (Mourre, Burq, Wang, Gérard-Martinez, ...)

Optimal, homogeneous, B-B∗ estimate (limiting case δ = 0, indepen-

dence on the frequency ε) obtained by Perthame-Vega, provided the rays

of geometric optics go monotonically to infinity (stronger than (iii)).

• Discontinuous n(x) : Eidus, Bo Zhang, Fouassier.



II- Bounds (2)

Assumptions (valid throughout this talk)

• n(x) is constant at infinity : n(x) = n∞ + O (1/|x|ρ) , (ρ > 0),

as well as ∀β ∈ Nd, ∂
β
xn(x) = O

(
1/|x|ρ+|β|

)
.

• The rays of geometric optics are non trapping : for any initial datum

(x, ξ) ∈ R2d, the solution (X(t),Ξ(t)) to the Hamiltonian ODE

∂tX(t) = 2Ξ(t) , X(0) = x,

∂tΞ(t) = +∇xn2 (X(t)) , Ξ(0) = ξ,

with zero enery : H(x, ξ) := ξ2 − n2(x) = 0 (= H(X(t),Ξ(t))

satisfies |X(t)| → +∞ as t → ±∞.

Example : n(x) = const 6= 0 =⇒ X(t) = x + tξ, ξ 6= 0.

Very roughly : “uε(x) ≈
∫ +∞

0
S(X(t)) dt” ⇒ need for dispersion.



II- Bounds (3)

Under these assumption

Theorem 1 (F.C. - T. Jecko)

uε and wε are bounded in the optimal, homogeneous, B-B∗ spaces.



III- Asymptotic propagation of the wave wε

Does iεαεw
ε(x) + ∆xwε(x) + n2(εx)wε(x) = S(x)

go to i0+wout(x) + ∆xwout(x) + n2(0)wout(x) = S(x),

provided n is constant at infinity and non-trapping at zero energy ?

Theorem 2 (F.C.) Let the rays (X(t),Ξ(t)) emitted from the origin x = 0
with zero energy ξ2 = n2(x) satisfy the non-focusing condition below.
Then,

wε → wout weakly .

Theorem 3 (F.C.) If the above condition is violated, one may construct
a situation for which wε 6→ wout.

Rmk : a result similar to Thm 2 proved independently by Wang, Zhang.

Rmk : “weakly” refers here to lim
〈 (

iεαε + ∆x + n2(εx)
)−1

S, ϕ
〉
,

either when S, ϕ ∈ S(Rd) (in any case),
or when S, ϕ ∈ L2((1 + |x|)1+δdx),
or even in the limiting case (δ = 0) when S, ϕ ∈ B
(this needs to reinforce the nontrapping condition a bit).



III- Asymptotic propagation of wε (2)

Non-focusing condition

The set
{
(ξ, η, t) ∈ R2d × R∗+/η2 = n2(0), X(t) = 0, Ξ(t) = η

}
is a smooth

submanifold of R2d × R∗+, with a dimension k < d− 1.

η

ξ

x=0

In other words, the rays of geometric optics issued from the origin

x = 0 do not refocus at the origin later.

Generic condition. In any case k ≤ d− 1.

Caricatural example : n2(x) = n2(0)− x2
1 − · · · − x2

d ⇒ k = d− 1,

n2(x) = n2(0)− ω2
1x2

1 − · · · − ω2
dx2

d , (ω1, . . . , ωd) Q− independent ⇒ k = 0.



III- Asymptotic propagation of wε (3)

Idea of proof : Time dependent approach. First observe, for any test
function ϕ, 〈wε, ϕ〉 = 〈uε, ϕε〉 (defining ϕε(x) := ε−d/2ϕ(x/ε)). Second

〈uε, ϕε〉 =
i

ε

∫ +∞

0
e−αεt

〈
exp

(
i
t

ε

[
ε2∆x + n2(x)

])
Sε︸ ︷︷ ︸

=: exp(it Hε/ε)Sε

, ϕε

〉
dt ,

where
[
iε∂t − ε2∆x − n2(x)

] (
eitHε/εSε

)
= 0, eitHε/εSε

∣∣∣
t=0

= Sε.

• We are thus left with the question :

(1) 〈wε, ϕ〉 =
i

ε

∫ +∞

0
e−αεt

〈
exp

(
i
t

ε

[
ε2∆x + n2(x)

])
Sε, ϕε

〉
dt ,

−→
ε→0

(2)
〈
wout, ϕ

〉
=

i

ε

∫ +∞

0

〈
exp

(
i
t

ε

[
ε2∆x + n2(0)

])
Sε, ϕε

〉
dt ?

• Nota : Set Hε = ε2∆x + n2(x). Integration by parts in time shows that
for large values of t (↔ main difficulty), the part of Sε corresponding to
non-zero energies, i.e. (1− χ) (Hε) Sε, does essentially not contribute
→ One may replace everywhere Sε by χ(Hε)Sε.



III- Asymptotic propagation of wε (4)

ε

φε

X(t)

S ε

(1) "true" trajectory

support of

spreading increases

initial datum x=0,    s.t.  |  |=n(0).ξ ξ

exp(i t H  /  )  Sε ε ε

(2) trajectory in the case of
constant coefficients



III- Asymptotic propagation of wε (5) - large time contribution

Large times :

• A result by X.P. Wang gives, with Hε = ε2∆x + n2(x),∥∥∥∥〈x〉−s exp
(
i
t

ε
Hε

)
χ (Hε)〈x〉−s

∥∥∥∥
L(L2)

≤ Cs,δ t−s+δ, ∀s, δ > 0.

Hence
∣∣∣∣ 〈

exp
(
i
t

ε
Hε

)
χ (Hε)Sε, ϕε

〉 ∣∣∣∣ ≤ Cs t−s, ∀s > 0.

The contribution of times that are at least polynomially large, t ≥ ε−κ

(κ > 0), is thus vanishing :

iε−1
∫ +∞

ε−κ
〈exp(itHε/ε)χ(Hε)Sε, ϕε〉 ∼ εsκ−1 → 0.

• For times 1 � T1 ≤ t ≤ ε−κ, we need an Egorov Theorem that holds up

to polynomially large times (i.e. “exp(itHε/ε)Sε ≈ Sε(X(t))+remainder”).

Obtained through an adaptation of [Bouzouina-Robert].



III- Asymptotic propagation of wε (6) - large time contribution

• Roughly, using the notation Φt(x, ξ) = (X(t),Ξ(t)), we have

exp
(
i
t

ε
Hε

)
χ(Hε)Sε ≈ exp

(
i
t

ε
Hε

)
Opw

ε

(
χ

[
x = 0, ξ2 = n2(x)

])
Sε

≈ Opw
ε

(
χ

[
Φ−t(x = 0, ξ2 = n2(x))

])
exp

(
i
t

ε
Hε

)
Sε + R(t, ε),

and [BR] asserts, say : R(t, ε) ≤ εN sup1≤k≤N ‖∂k
x,ξΦt(x, ξ)‖L∞ (N � 1).

• Non-trapping implies X(t) is far from x = 0, provided t ≥ T1 � 1. Hence,

iε−1
∫ ε−κ

T1

〈
eitHε/ε χ(Hε)Sε, ϕε

〉
≈ 0+iε−1

∫ ε−κ

T1

R(t, ε). (orthogonal supports)

• Long-range potential + symplecticness of Φt implies

sup
1≤k≤N

‖∂k
x,ξΦt(x, ξ)‖L∞ ≤ tN

2
(polynomial, rather than et).

• As a consequence

iε−1
∫ ε−κ

T1

〈exp
(
i
t

ε
Hε

)
χ(Hε)Sε, ϕε〉 ≤ εN−1

∫ ε−κ

T1

tN
2
≈ εκN2+N−2 −→ 0.



III- Asymptotic propagation of wε (7) - moderate times

Moderate times : θ ≤ t ≤ T1 (θ � 1 � T1)

• Idea : eitHε/εSε is almost explicitely known if Sε is a wave packet, i.e. a

“gaussian centered at x = q, ξ = p”. More precisely,

Φε
q,p = ε−d/4 exp(−(x− q)2/ε) exp(i(x− q/2) · p/ε)

eitHε/εΦε
q,p(x) ∼ ε−d/4 exp

(
−Γ(t)(x−Q(t))2/ε

)
exp (i(x−Q(t)/2) · P (t)/ε)

exp (i S(t)/ε)× (1 + O(ε1/2)),

where Γ(t), S(t) are classical quantities [Hepp, Combescure-Robert, Hagedorn-
Joye, Ralston, Robinson, ...]

• Hence

ε−1
∫ T1

θ
dt

〈
eitHε/εSε, ϕε

〉
= ε−1

∫ T1

θ
dtdqdp

〈
Sε, e

−itHε/εΦε
q,p(x)

〉 〈
Φε

q,p(x), ϕε

〉
= ... = ε−(d+2)/2

∫ T1

θ
dtdξdη Amplitude(t, ξ, η) exp(i Phase(t, ξ, η)/ε).



III- Asymptotic propagation of wε (8) - moderate times

• Using the “explicit” value of the complex phase, the stationnary phase

theorem gives the singular set

{(t, ξ, η) s.t. X(t) = 0,Ξ(t) = η, η2 = n2(0)}.

Caution : one needs to integrate by parts in time as well ⇒ small times

0 ≤ t ≤ θ are excluded.

• As a consequence,

ε−1
∫ T1

θ
dt

〈
eitHε/εSε, ϕε

〉
∼ ε(d−1−k)/2

∫
singular set

dtdξdη Amplitude(t, ξ, η) exp(i Phase(t, ξ, η)/ε)

−→ 0, provided k < d− 1 (geometric assumption).



III- Asymptotic propagation of wε (9) - small times

Small times 0 ≤ t ≤ θ � 1

Here the constant coefficients trajectory, and the “true” trajectory, are tan-

gent. One goes back to the microscopic scale, and uses Taylor expansions

in the above phase (Brenner, Dos Santos Ferreira, ...) :

ε−1
∫ θ

0
dt

〈
eitHε/εSε, ϕε

〉
=

∫ θ/ε

0
dt

〈
eit[∆x+n2(εx)]S, ϕ

〉
∼

∫ θ/ε

0
dtdξ ˜Amplitude(εt, ξ) exp(i P̃hase(εt, ξ))

=
∫ θ/ε

0
dtdξ ˜Amplitude(εt, ξ) exp

 it
P̃hase(εt, ξ)

εt



with P̃hase(εt, ξ)/εt = ξ2 − n2(0) + O([εt]) = ξ2 − n2(0) + O(θ).



III- Asymptotic propagation of wε (10) - small times

Hence,

ε−1
∫ θ

0
dt

〈
eitHε/εSε, ϕε

〉
∼

∫ θ/ε

0
dtdξ ˜Amplitude(εt, ξ) exp

(
it [ξ2 − n2(0)]

)

and, using the dispersion for the free Schrödinger flow,∣∣∣∣ ∫
dξ ˜Amplitude(εt, ξ) exp

(
it [ξ2 − n2(0)]

) ∣∣∣∣ ≤ C t−d/2

as well as the fact that d ≥ 3, we recover

ε−1
∫ θ

0
dt

〈
eitHε/εSε, ϕε

〉
∼

∫ +∞

0
dtdξ ˜Amplitude(0, ξ) exp

(
it [ξ2 − n2(0)]

)
=

∫ +∞

0
dt

∫
dξ exp(it[ξ − n2(0)]) Ŝ(ξ) ϕ̂(ξ)

=
∫

dξ ŵout(ξ) ϕ̂(ξ) = 〈wout, ϕ〉.



III- Asymptotic propagation of wε (11) - the counterexample

Difficulty : building a refraction index that creates refocusing and is

non-trapping ( !).


