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I- Introduction

e Helmholtz equation with source term, and slowly varying refraction
index (scale ¢)

icasw®(x) 4+ Azws(z) + n?(ex) we(x) = S(z).

e o > 0 : small positive absorption coefficient,

e.g. ar = 1000 or even a. = 0.

Makes the Helmholtz equation invertible, or specifies a radiation condition
at infinity (see below).

S(x) is a given source term (regularity to be precised later)
n(z) is the refraction index, C*°(R?) in any case.

0<ny <n(x) <ns < oo (May be relaxed)

The unknown is w® € C, and d > 3.

e Corresponds to harmonic solutions of the damped wave equation, where
the time variable has disappeared (“infinite time").



I- Introduction (2)

e Question 1 : Uniform bounds on w¢?



I- Introduction (3)

e Question 2 : Does w*, solution to
icaswt(x) + Azws(z) + n?(ex) we(x) = S(z).
go to the outgoing solution w°'t, solution to
0T W (2) + ALgwC' () + n2(0) wot = S(z) ?
(Rmk : obviously OK if n = const = nec = n(0)).

n(o)/ ..................................... n(ex) ..............

(microscopic scale)

Propagation through the medium
with index n(ex)
source S emits waves

+ radiation condition
\ in the whole space

e | e

1/¢




I- Introduction (4)

e Motivation : Through the L2 unitary scaling u®(z) := e~ %/2we(z/e), the
analysis of w® is related to the high-frequency Helmholtz equation

- € 2 € 2 € —_ 1 €L
ieasut(x) + e Azu(x) + n(x)u(x) = 4/ (6)

The analysis of the propagation of the semiclassical measure of u® (rela-
ted to |uf|?), has been performed by J.D. Benamou, F.C., Th. Katsaounis,
B. Perthame, under the conjecture that the wave w® (amplitude +
phase) goes to w°Ut. Typically

07 f(2,8) +26Vaf + Van?(2) - Vef =15(O7 062 —n?(2)) §(z)

radiation cdt transport d|spers|on relation source

— resonant interaction between S(x/¢) and 2 Ay + n?(x)

See F.C., B. Perthame, O. Runborg and P. Zhang, X.P. Wang for more
general oscillating/concentrating source terms. See E. Fouassier for the
case of a discontinuous index n(x) (reflection/transmission).



I- Introduction (5)

e Difficulty in proving w® — w®Y" : for constant coefficients n(z) = neo :

1| wO solves +Awll(z) + nZ wo'l(z) = S (),

with the Sommerfeld radiation condition : as |x| — oo, we impose

ﬁ . Vg;wOUt(ZC)+inoo wout(x) 0. (’LUOUtl |N exp (—|Z’I|7Joo|33‘) fd=3).
Xr Tr|—o0 X
= S(&) 1 1\ | N
out — — -
2] W) = e Where Sy = oy <x>—|—’m5(a:), in D'(R).

3] wYz) =i /O o exp (z‘t[Aa; + ngo]) S(x) dt,

IS a quantity that is being propagated over positive times. Here,

[iat A, — ngo] (eq;tmﬁn%o] S(@) — 0, oit[Ao+n3] 5(33)‘t:0 = S(x).



I- Introduction (6)

1, 2 or 3 — strong nonlocal effects induced by the “i0T". It “brings
back information” from infinity. If n(0) # neo = M) — 0o n(x), we have to
explain why (say when d = 3 and a. = 0T1)

Wt~ exp (=in(0)|z]) /|2
|z|—00

while

w®  ~  exp (—inco|x|) /|z|.
|| —00



II- Bounds on w® and/or u¢

e When n(z) = const, standard weighted L2 bound (Vé > 0)

(Aw + n2 + i0+>_1 maps L2( (1 + |z|)T1T%dz). to L2((1 + |z|) "1 %dx).

Also a limiting, optimal, homogeneous version if § = 0 — B-B™* spaces
(Agmon-Hdrmander).

e When n(z) # const, similar weighted L2 bound for the resolvents

(Aw + n(z) + z'o+)_1, and (sQA;,; +n(z) + iO"’)_l, provided the index n(z)

(i) is smooth, (ii) goes to a constant at infinity, and (iii) has no trap-
ped rays (Mourre, Burg, Wang, Gérard-Martinez, ...)

Optimal, homogeneous, B-B* estimate (limiting case § = 0, indepen-
dence on the frequency ¢) obtained by Perthame-Vega, provided the rays
of geometric optics go monotonically to infinity (stronger than (iii)).

e Discontinuous n(x) : Eidus, Bo Zhang, Fouassier.




II- Bounds (2)

Assumptions (valid throughout this talk)

e n(z) is constant at infinity : n(zr) = neo + O (1/|z|?), (p > 0),
as well as v3 € N4, 8n(2) = O (1/|x|ﬂ+|5|) .
e [ he rays of geometric optics are non trapping : for any initial datum

(z,£) € R24, the solution (X (t),=(¢)) to the Hamiltonian ODE

0 X() =2=(¢), X(0) ==,
H=(t) = +Van® (X (1) , =(0) =¢,
with zero enery :  H(z,£) :=¢2—n?(z) =0 (= H(X(),=(1))

satisfies | X (t)| — 400 as t — *co.

Example : n(z) =const #0 = X(t) =z + t&, £ #0.
o0
Very roughly : “u®(x) %/o S(X(t))dt" = need for dispersion.



II- Bounds (3)

Under these assumption

Theorem 1 (F.C. - T. Jecko)
u® and w® are bounded in the optimal, homogeneous, B-B* spaces.



ITII- Asymptotic propagation of the wave w°®

Does ica-wt(x) + Azws(z) + n(ex)ws(z) = S(x)
go to i0Twl' () + ALw " (z) + n2(0)wC Y (z) = S(z),
provided n is constant at infinity and non-trapping at zero energy ?

Theorem 2 (F.C.) Let the rays (X (t),=(t)) emitted from the origin x = 0
with zero energy ¢2 = n?(z) satisfy the non-focusing condition below.
Then,

3 wout

w" — weakly .

Theorem 3 (F.C.) If the above condition is violated, one may construct
a situation for which w® -4 w°Ut.

Rmk : a result similar to Thm 2 proved independently by Wang, Zhang.

~1
Rmk : “weakly” refers here to |im < (ieag + A+ nQ(sm)> S, gp>,

either when S,p € S(R?) (in any case),

or when S, ¢ € L2((1 4+ |z|)1 %),

or even in the limiting case (§ = 0) when S,po € B

(this needs to reinforce the nontrapping condition a bit).



III- Asymptotic propagation of w® (2)
Non-focusing condition

The set {(g,n,t) e R2d R* /n? =n?(0), X(t) =0, =(t) = 77} is a smooth

submanifold of R24 x R*_, |with a dimension k <d—1.

x=0)

In other words, the rays of geometric optics issued from the origin
x = 0 do not refocus at the origin later.

Generic condition. In any case k<d — 1.

Caricatural example : n?(z) =n?(0) —z$— - —z3=>k=d— 1,

n?(z) = n?(0) — w%aj% — = wgazg, (wi,...,wy) Q —independent = k = 0.



III- Asymptotic propagation of w® (3)

Idea of proof : Time dependent approach. First observe, for any test
function ¢, (w®, @) = (u®, pe) (defining p:(x) = s_d/ng(az/e)). Second

oo
<u€, pe) = 3/ g et <

€ J0O

exp (’LE [ezAm -+ nz(az)]) Se, g05> dt ,

A

= exp(szgHg/e)Sg

where [z‘s@t — 2Ny — n2(a:)} (eitH€/555> =0, eitHE/Ssg‘t:O = 5.

e \We are thus left with the question :

@ Wiy ="[Tet (e (i [2a, +n2@)]) Sep)

0 g
— (2 (w0 i 2/0*'00 <exp (zé ERAVEE n2(o)D Se, g05> dt 7

e Nota : Set H. = e2A, + n?(z). Integration by parts in time shows that
for large values of t («» main difficulty), the part of S: corresponding to
non-zero energies, i.e. (1 — x) (H:) Se, does essentially not contribute
— One may replace everywhere S: by x(Hg)Ske.



III- Asymptotic propagation of w® (4)

exp(1t H8 /€) SE

(2) trajectory in the case of e
constant coefficients X(t)

(1) "true" trajectory

spreading increases

~——initial datum x=0, & s.t. |1Sl=n(0).

support of 0,



III- Asymptotic propagation of w® (5) - large time contribution

Large times : yad

e A result by X.P. Wang gives, with H. = 2/, + n?(z),

t
H(@‘S exp (i; Hg> X (He)(z)~* < Oy 5t Vs, > 0.

£(L?)

t
Hence | <exp (z‘— Hg) x (He) Se, gog> | < Cst?, Vs > 0.
g

The contribution of times that are at least polynomially large, ¢t > & F
(k > 0), is thus vanishing :

. 1 o0 : sk—1
ic / " exp(itH. Je)x (H2)Se, =) ~ %71 = 0.
> K

e For times 1 <« T7 <t <e %, we need an Egorov Theorem that holds up
to polynomially large times (i.e. “exp(itH:/c)S: =~ Sc(X(t))+remainder).
Obtained through an adaptation of [Bouzouina-Robert].



III- Asymptotic propagation of w® (6) - large time contribution

e Roughly, using the notation ®;(x,¢) = (X (t),=(t)), we have
exp (zéHg) x(H:)S: =~ exp (zéHg) OpY (X [a:' = 0,62 = nQ(ac)D Se
~ OpY (x [@—i(e = 0,62 = n?(2))]) exp (i-H: ) Se + R(t,),
and [BR] asserts, say :  R(t,e) < eV supjp<n ||8§7€¢t($,§)|lLoo (N > 1).

e Non-trapping implies X (t) is far from x = 0, provided t > T7 > 1. Hence,

—K

1 (€7 itH 1 (€
i~ /T <e’ 8/5><(H5)S€,qp€> ~ Q0+4ic™ /T R(t,e). (orthogonal supports)
1 1

e Long-range potential 4+ symplecticness of ®; implies

2
sup ||8’; ¢ Pz, )| Lo < N (polynomial, rather than e?).
1<k<N 7

e AS a conseguence

—K

. € N _
1€ 1 /T <eXp (’Lgﬂs) X (He)Se, 90€> < €N 1
1

—K

€ 2
tN

2 _
~ eWNTTN=2 __
11



III- Asymptotic propagation of w® (7) - moderate times

Moderate times : 0 <t<Ty (0K 1<K Ty)
e Idea : e’“J‘Hs/C‘?S8 is almost explicitely known if S is a wave packet, i.e. a
“gaussian centered at x = q, £ = p"'. More precisely,

®f = U exp(—(z — q)? /) exp(i(z — q/2) - p/e)

e () ~ e W exp (—T (1) (w — Q(1)?/e) exp (i(z — Q(1)/2) - P(1) /)

exp (i S(t)/e) x (14 O(e*/?)),
where M (t), S(t) are classical quantities [Hepp, Combescure-Robert, Hagedorn-
Joye, Ralston, Robinson, ...]

e Hence
1 [ itH: /e _1 [ —itH: /e pye £
et [ at (et ) = =7t [ dtdadp (Se, e b2, (2)) (F ,(2), )

T
— . = s_(d+2)/2/9 " dtdedn Amplitude(t, £, n) exp(i Phase(t, &, n) /).



III- Asymptotic propagation of w® (8) - moderate times

e Using the “explicit” value of the complex phase, the stationnary phase
theorem gives the singular set

{(t,&,m) s.t. X(t) = 0,=(¢t) = n,n° =n?(0)}.

Caution : one needs to integrate by parts in time as well = small times
0 <t<@ are excluded.

e AS a consequence,

6—1/0T1 gt <eitH€/€Sg,g05>

~ g(d=1-k)/2 / dtdedn Amplitude(t, £,m) exp(i Phase(t,&,m)/¢)
singular set
— 0, provided k < d — 1 (geometric assumption).



III- Asymptotic propagation of w® (9) - small times

Small times 0 <t<0K1

Here the constant coefficients trajectory, and the “true” trajectory, are tan-
gent. One goes back to the microscopic scale, and uses Taylor expansions
in the above phase (Brenner, Dos Santos Ferreira, ...) :

5‘1/09 at (e, ) :/09/€dt<eit[Am+n2(€x)]S7 90>

e~

0/¢e
N/O/ dtdé Amplitude(et, &) exp(: Phase(et, €))

0/e o
— /O/ dtdé Amplitude(et, ) exp (it Phaset(gt,g))
€

with Phase(et, &) /et = €2 — n2(0) + O([et]) = €2 — n2(0) + O(0).



III- Asymptotic propagation of w® (10) - small times

Hence,

5—1/09 at (€175, e ) ~ /09/5 dtdg Amplitude(et, ) exp ( it [€2 — n?(0)])

and, using the dispersion for the free Schrodinger flow,

‘/dg Amplitude(et,§) exp ( it [£2 — nQ(O)]) ‘ < C 42

as well as the fact that d > 3, we recover

— —

1 /09 dt <eitH€/6Sg, 906> ~ /O+OO dtd¢ Amplitude(0,&) exp ( it [¢% — ”2(0)])

+o0 . 2 a ~
_ /O dt / de¢ exp(it[¢ — n?(0)]) S(&) 3(&)
= / de wOUE(€) B(&) = (wPUt, ).




III- Asymptotic propagation of w® (11) - the counterexample

Difficulty : building a refraction index that creates refocusing and is
non-trapping (!).



