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The Scattering Problem
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Green's representation theorem:
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From Green's representation theorem (Burton & Miller 1971):
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Au+ k*u=0

u®, incident wave 0

Uu =

2D polygon

From Green's representation theorem:

@)+ [ (Gt 4 o)) Ghwisy

Theorem (follows from Burton & Miller 1971, Selepov 1969) If n € R,

n # 0, then this integral equation is uniquely solvable in L?(T").




SIACTo

Conventional BEM: Apply a Galerkin method, approximating du/0n
by a piecewise polynomial of degree P, leading to a linear system to
solve with IV degrees of freedom. Problem: N of order of kL, where L

is linear dimension, so cost is O(N?) to compute full matrix and apply

iterative solver ... or close to O(NV) if a fast multipole method (e.g.
Amini & Profit 2003, Darve 2004) is used.

This is fantastic but still infeasible as kL. — oo.
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Alternative: Reduce NV by using new basis functions, e.g.

(i) approximate du/On by taking a large number of plane waves and
multiplying these by conventional piecewise polynomial basis functions
(Perrey-Debain et al. 2003, 2004). This is very successful (in 2D,
3D, for acoustic/elastic waves and Neumann/impedance b.c.s),
reducing number of degrees of freedom per wavelength from e.g.
6-10 to close to 2. However N still increases proportional to kL.
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Alternative: Reduce N by using new basis functions, e.g.

(ii) for convex scatterers, remove some of the oscillation by factoring out
the oscillation of the incident wave, i.e. writing

6’u( - ou’
"~ on
and approximating F' by a conventional BEM (e.g. Abboud et al. 1994,
Darrigrand 2002, Bruno et al 2004).

(y) x F(y)




Alternative: Reduce N by using new basis functions, e.g.

(ii) for convex scatterers, remove some of the oscillation by factoring out
the oscillation of the incident wave, i.e. writing

Ou = Py x Py ()

and approximating F' by a conventional BEM.

For smooth obstacles this works well: equation () holds with
F(y) = 2 on the illuminated side (physical optics) and F'(y) =~ 0 in the

shadow zone.

10



(ii) for convex scatterers, remove some of the oscillation by factoring out

the oscillation of the incident wave, i.e. writing

) = P x Fly)

and approximating F' by a conventional BEM. Not very effective for
non-smooth scatterers.
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Understanding solution behaviour

G(LU, y) = (I)(ZC, y) R (I)(ZIZ, y/)
be the Dirichlet Green function for the left half-plane ). By Green's
representation theorem,

) T 8G($, y)
CARCAT I 0

u(y)ds(y), x= € .
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Understanding solution behaviour

In the left half-plane (2,

= W@ @)+ [ G b)) ds(y)

OO\T on(y)

' 0?®(x,y) B
(x)+2 /fm\r 8n(x)8n(y)u(y)d8(y)’ revy=00QNl.
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Explicitly, where s is distance along ~, and
¢(s) and 1(s) are k~10u/On and u, at distance s along 7,

o(s) = PO.+ % [eiksmr(s) + e_iksv_(s)]

F(k(s - 50))e_ik80¢(so)d80.
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b(s) — P.o.+%[eiksv+(s)+e—i’%_(s)}

vy (s) = k‘/ F(k(s — s0))e 09 (s0)dso.

— 00

Now F'(z) := e_iszl)(z)/z which is non-oscillatory, in that

FM () =0(z73/?27") as z — 0.
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P.O. + % [ v (s) + e Fu_(s)]

vy (s) = k/ F(k(s — 30))e_ik30¢(so)dso.

— 00

Now F'(z) := e_izHl(l)(z)/z which is non-oscillatory, in that
FM(2) =0(z7%2™) as z — .

= ol (s) = O(k"™(ks)~'/>™™) as ks — oc.
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P.O.+ % (€™ vy (s) + e u_(s)]

where

k(M (s)] = O ((ks)—1/2—n) as ks — o0

and (by separation of variables local to the corner),
E- ol (s)] = O ((ks)~®") as ks — 0,

where o < 1/2 depends on the corner angle.
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where

ko (s)] =

where o < 1/2 depends on the corner angle.

Thus approximate

¢(s) ~ PO.+ % [eikSV+(s) + e_ikSV_(s)] :

where V. and V_ are piecewise polynomials on graded meshes.
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Thus approximate

bo(s) ~ P.O.Jr%[eik3V+(s)+e_ik3V_(s)],

where Vi and V_ are piecewise polynomials on graded meshes.

H+ +  + H++ +  + H++ +  + H++ +  + +

Figure 1: Scattering by a square
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Thus approximate

bo(s) ~ P.O.Jr%[eik3V+(s)+e_ik3V_(s)],

where Vi and V_ are piecewise polynomials on graded meshes.

HH+ -+ - A HEH - R - R

Figure 2: Scattering by a square
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Thus approximate

bo(s) ~ P.O.Jr%[eik3V+(s)+e_ik8V_(s)],

where Vi and V_ are piecewise polynomials on graded meshes.
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Figure 3: Scattering by a square
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Approximation error

Theorem: If V. is the best Lo approximation from the approximation

space, then

nt/2(1 + log'/? (kL))
Np+1 ’

kY2 vy — Villa < G,

where

e N  degrees of freedom
e p = polynomial degree
e [, = max side length

e 1. = number of sides of polygon
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Boundary integral equation method

Integral equation in parametric form

p(s) + Kp(s) = F(s),

1 Ou

p(s) == E%(x(s)) — P.O..

Theorem. The operator (I + K) : Lo(I') — Lo(I") is bijective with
bounded inverse

(I +K)" 2 < C,

so that the integral equation has exactly one solution.
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Boundary integral equation method

Integral equation in parametric form

p(s) + Kp(s) = F(s),
o(s) = %g—st)) _Po.

Difficulty 1 The operator (I + K) : Lo(I") — Lo(T') is bijective with
bounded inverse

(I + 1K) l2 < C k),

where the dependence of C'(k) on k is not clear.
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Approximation space: seek

on(s) =Y vip;(s) € Vi,

g=1

— eT1Fs % piecewise polynomial supported on graded mesh.

pj(s) :

Question: how do we compute v;?
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Galerkin method

To solve
p(s) +Kp(s) = F(s),
seek ¢, € Vv such that

(I T PNGIC)@NG — PNGF7

where Py, is the orthogonal projection onto the approximation space.
Equivalently

(QONG?p)_'_(,CSONgap):(F?p)a \v/pGVNa

= Zvj[(pja pm) + (IC,Oj, ,Om)] = (F, pm)

If p;, pm supported on same side of polygon, integrals not oscillatory.
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Galerkin method

Theorem. For N > N*, the operator (I + Py K) : Lo(I') — Vi is
bijective with bounded inverse

(I + Prno )72 < C.
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Galerkin method

Difficulty 2. For N > N*(k), the operator (I + Pny_.K) : Lo(T') — Vi
is bijective with bounded inverse

(I + Prng )2 < Cs(),

where the dependence of N*(k) and Cs(k) on k is not clear.
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Collocation method

To solve
p(s) + Kp(s) = F(s),

seek o, € Vi such that

(I T PNCIC)QONC — PNcFv

where Py is the interpolatory projection onto the approximation space.
Equivalently

m=1,..., M,

' = F(sm).

If p; supported on same side of polygon as s,,, integrals not oscillatory.
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Collocation method

We have not shown that (I + Pn.K) : Lo(I") — Vi is bijective with
bounded inverse.
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Galerkin vs. Collocation: error analysis

Theorem There exists a constant C, > 0, independent of £, such that
for N > N*
n/2(1 4+ log/?(kL/n))

K2 o — ong 2 CpCs sup [u(z)| Npi »

xeD

n/2(1 4 log!?(kL/n))

1/2 _
k2 u(z) —ung (z)] < Cpcsigglu(x” NPl -

e Stability and convergence not proven for collocation scheme.
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Galerkin vs. Collocation: conditioning

Galerkin: mass matrix Mg := [(p;, pm)] has condM < (1+0)/(1 — o),

where

min(y;-L, y) — max(y;f_l, Ym—1)

\/(yj+ — ) Wm — Y1)

o < max

and if side lengths and angles are equal we can prove

1 1/2N log k

Collocation: difficulty with choice of collocation points,
Mc = [p;(sm)] may be ill conditioned.
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Galerkin vs. Collocation: implementation

Galerkin: need to evaluate numerically many integrals of form

tH; " (kv s? + t2 :
/ / [Hél)(k\/52+t2)+l L BVS™ 4 )| ivtost—oms) g,
—b c

‘/82—|—t2

Collocation: need to evaluate numerically many integrals of form

b Ly (1)
tHOV (/2 +2)|
/ !Hél)(k\/sfnthQ)Jrl 1\/(2_8”’;; )| ikt gt
a Sm—l—

e Collocation method easier to implement
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Numerical results

scattering by a square, k =5

scattering by a square, £ = 10
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;

_ fm,w {w{‘mly |f|1.!;"n &

38



Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

"Exact” solution minus P.O. approximation, k = 5;
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Numerical results (scattering by a square)

"Exact” solution minus P.O. approximation, k& = 10;
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Numerical results (scattering by a square)

"Exact” solution minus P.O. approximation, k& = 20;

=1
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Numerical results (scattering by a square)

"Exact” solution minus P.O. approximation, k = 40;
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Table 1:

Relative errors, £k = 10

dof

lo—pngll2
lell2

lp—eneall2
[ell2

24
43
96

1.1691x 1019
4.3784x10 1

2.2320x1071
1.2106x10~1
1.1633x101
2.8702x 102

7.5453 %101
4.7335%x1071
2.6980x 107!
1.2670x 101
6.8440x 102
3.3034x10~2
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Table 2: Relative errors, £k = 160

k

N

dof

lo—pngll2
lell2

lp—ongll2
lell2

160

2
4
8
16
32
64

32
56
112
224
456
904

7.2765x 1071
4.2628x 107!
4.9060x 10!
1.2847x10~1
8.4578x 102
3.4570x102

6.8901x 1071
4.4455%x 1071
4.6445x101
2.3456x 1071
9.3327x10~2
4.8153x1072
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My

\W—¢Mb

HSO— 90N|\2/H<P||2

COND

360
376
392
416
432
456
472

3.6171x107!
8.5073x 101
8.0941x10~!
1.1252x10°
1.6630x10°
2.1936x 10"
3.5185x10°

6.8909x 102
1.1633x10~!
7.9909x 1072
8.0909x 102
8.7071x10~2
8.4578x 1072
1.0211x101

2.6x10!
1.8x10?
1.0x103
2.4x10?
5.9x10?
5.2x 102
8.1x10?

Table 3: Relative Lo errors, various k&, N = 32
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|%(_ﬂ-a 371—)‘

| e (3, 3|

| e (3, —)|

1.9588x 102
4.2631x1073
3.6178x10~4
6.6463x107°
1.1634x107°

1.0071x1073
2.8032x1073
3.1438x 104
2.9271x107°
5.4525x107°

1.5885x102
2.3213x1073
1.3514x103
1.7115x107°
3.8267x1076

Table 4: Relative errors, for uy (x)

49




e (—m, 3m)| | |2 (3, 3| | |2 (3w, )
U256 U256 U256
7.2339%x 106 0.1702x 106 6.5155x10°
1.3617x10~° 4.7357x10~° 3.6329x107°
1.0694x10~° 3.0122x10~° 2.0284x10°
1.0691x10~° 5.3066x 107 2.8225x 1076

3.1606x 107 3.0148x10~ " 8.1702x10~7

Table 5: Relative errors, for uy (x)
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What we actually are computing ...

The difference between the exact solution and a leading order

approximation;
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Figure 4: square, £k =5
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What we actually are computing ...

The difference between the exact solution and a leading order

approximation;

0z
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Figure b: square, £ =10
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What we actually are computing ...

The difference between the exact solution and a leading order

approximation;

Figure 6: square, £ = 20
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What we actually are computing ...

The difference between the exact solution and a leading order

approximation;
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Figure 7: square, k£ =40
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Summary and Conclusions

Using Green's representation theorem in a half-plane we can
understand behaviour of the field on the boundary and its

derivatives for scattering by a convex polygon (extends to convex

polyhedron in 3D)

For a convex polygon, design of an optimal graded mesh for
piecewise polynomial approximation is then straightforward

The number of degrees of freedom need only grow logarithmically
with the wavenumber to maintain a fixed accuracy

Ongoing considerations

— Galerkin vs. Collocation - stability and convergence analysis

— Better schemes for evaluating oscillatory integrals

— hp ideas
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