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The Scattering Problem
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Green’s representation theorem:

u(x) = ui(x)−
∫

Γ

Φ(x, y)
∂u

∂n
(y)ds(y), x ∈ D,

where Φ(x, y) := i
4H

(1)
0 (k|x− y|).
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From Green’s representation theorem (Burton & Miller 1971):

1
2
∂u

∂n
(x) +

∫
Γ

(
∂Φ(x, y)
∂n(x)

+ iηΦ(x, y)
)
∂u

∂n
(y)ds(y) = f(x), x ∈ Γ,

where

f(x) :=
∂ui

∂n
(x) + iηui(x).
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From Green’s representation theorem:

1
2
∂u

∂n
(x) +

∫
Γ

(
∂Φ(x, y)
∂n(x)

+ iηΦ(x, y)
)
∂u

∂n
(y)ds(y) = f(x), x ∈ Γ.

Theorem (follows from Burton & Miller 1971, Selepov 1969) If η ∈ R,

η 6= 0, then this integral equation is uniquely solvable in L2(Γ).
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1
2
∂u

∂n
(x) +

∫
Γ

(
∂Φ(x, y)
∂n(x)

+ iηΦ(x, y)
)
∂u

∂n
(y)ds(y) = f(x), x ∈ Γ.

Conventional BEM: Apply a Galerkin method, approximating ∂u/∂n

by a piecewise polynomial of degree P , leading to a linear system to

solve with N degrees of freedom. Problem: N of order of kL, where L

is linear dimension, so cost is O(N2) to compute full matrix and apply

iterative solver ... or close to O(N) if a fast multipole method (e.g.

Amini & Profit 2003, Darve 2004) is used.

This is fantastic but still infeasible as kL→∞.
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1
2
∂u

∂n
(x) +

∫
Γ

(
∂Φ(x, y)
∂n(x)

+ iηΦ(x, y)
)
∂u

∂n
(y)ds(y) = f(x), x ∈ Γ.

Alternative: Reduce N by using new basis functions, e.g.

(i) approximate ∂u/∂n by taking a large number of plane waves and

multiplying these by conventional piecewise polynomial basis functions

(Perrey-Debain et al. 2003, 2004). This is very successful (in 2D,

3D, for acoustic/elastic waves and Neumann/impedance b.c.s),

reducing number of degrees of freedom per wavelength from e.g.

6-10 to close to 2. However N still increases proportional to kL.
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1
2
∂u

∂n
(x) +

∫
Γ

(
∂Φ(x, y)
∂n(x)

+ iηΦ(x, y)
)
∂u

∂n
(y)ds(y) = f(x), x ∈ Γ.

Alternative: Reduce N by using new basis functions, e.g.

(ii) for convex scatterers, remove some of the oscillation by factoring out

the oscillation of the incident wave, i.e. writing

∂u

∂n
(y) =

∂ui

∂n
(y)× F (y)

and approximating F by a conventional BEM (e.g. Abboud et al. 1994,

Darrigrand 2002, Bruno et al 2004).

9



Alternative: Reduce N by using new basis functions, e.g.

(ii) for convex scatterers, remove some of the oscillation by factoring out

the oscillation of the incident wave, i.e. writing

∂u

∂n
(y) =

∂ui

∂n
(y)× F (y) (∗)

and approximating F by a conventional BEM.

For smooth obstacles this works well: equation (∗) holds with

F (y) ≈ 2 on the illuminated side (physical optics) and F (y) ≈ 0 in the

shadow zone.
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(ii) for convex scatterers, remove some of the oscillation by factoring out

the oscillation of the incident wave, i.e. writing

∂u

∂n
(y) =

∂ui

∂n
(y)× F (y) (∗)

and approximating F by a conventional BEM. Not very effective for

non-smooth scatterers.
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Understanding solution behaviour

Let

G(x, y) := Φ(x, y)− Φ(x, y′)

be the Dirichlet Green function for the left half-plane Ω. By Green’s

representation theorem,

u(x) = ui(x) + ur(x) +
∫

∂Ω\Γ

∂G(x, y)
∂n(y)

u(y)ds(y), x ∈ Ω.
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Understanding solution behaviour

In the left half-plane Ω,

u(x) = ui(x) + ur(x) +
∫

∂Ω\Γ

∂G(x, y)
∂n(y)

u(y)ds(y)

⇒ ∂u

∂n
(x) = 2

∂ui

∂n
(x)+2

∫
∂Ω\Γ

∂2Φ(x, y)
∂n(x)∂n(y)

u(y)ds(y), x ∈ γ = ∂Ω∩Γ.
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Explicitly, where s is distance along γ, and

φ(s) and ψ(s) are k−1∂u/∂n and u, at distance s along γ,

φ(s) = P.O.+
i
2

[
eiksv+(s) + e−iksv−(s)

]
where

v+(s) := k

∫ 0

−∞
F

(
k(s− s0)

)
e−iks0ψ(s0)ds0.

and F (z) := e−izH
(1)
1 (z)/z
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φ(s) = P.O.+
i
2

[
eiksv+(s) + e−iksv−(s)

]
where

v+(s) := k

∫ 0

−∞
F

(
k(s− s0)

)
e−iks0ψ(s0)ds0.

Now F (z) := e−izH
(1)
1 (z)/z which is non-oscillatory, in that

F (n)(z) = O(z−3/2−n) as z →∞.
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φ(s) = P.O.+
i
2

[
eiksv+(s) + e−iksv−(s)

]
where

v+(s) := k

∫ 0

−∞
F

(
k(s− s0)

)
e−iks0ψ(s0)ds0.

Now F (z) := e−izH
(1)
1 (z)/z which is non-oscillatory, in that

F (n)(z) = O(z−3/2−n) as z →∞.

⇒ v
(n)
+ (s) = O(kn(ks)−1/2−n) as ks→∞.
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φ(s) = P.O.+
i
2

[
eiksv+(s) + e−iksv−(s)

]
where

k−n|v(n)
+ (s)| = O

(
(ks)−1/2−n

)
as ks→∞

and (by separation of variables local to the corner),

k−n|v(n)
+ (s)| = O

(
(ks)−α−n

)
as ks→ 0,

where α < 1/2 depends on the corner angle.
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φ(s) = P.O.+
i
2

[
eiksv+(s) + e−iksv−(s)

]
where

k−n|v(n)
+ (s)| =

 O
(
(ks)−1/2−n

)
as ks→∞

O ((ks)−α−n) as ks→ 0,

where α < 1/2 depends on the corner angle.

Thus approximate

φ(s) ≈ P.O.+
i
2

[
eiksV+(s) + e−iksV−(s)

]
,

where V+ and V− are piecewise polynomials on graded meshes.
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Thus approximate

φ(s) ≈ P.O.+
i
2

[
eiksV+(s) + e−iksV−(s)

]
,

where V+ and V− are piecewise polynomials on graded meshes.

Figure 1: Scattering by a square
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Thus approximate

φ(s) ≈ P.O.+
i
2

[
eiksV+(s) + e−iksV−(s)

]
,

where V+ and V− are piecewise polynomials on graded meshes.

Figure 2: Scattering by a square
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Thus approximate

φ(s) ≈ P.O.+
i
2

[
eiksV+(s) + e−iksV−(s)

]
,

where V+ and V− are piecewise polynomials on graded meshes.

Figure 3: Scattering by a square
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Approximation error

Theorem: If V+ is the best L2 approximation from the approximation

space, then

k1/2‖v+ − V+‖2 ≤ Cp
n1/2(1 + log1/2(kL))

Np+1
,

where

• N ∝ degrees of freedom

• p = polynomial degree

• L = max side length

• n = number of sides of polygon
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Boundary integral equation method

Integral equation in parametric form

ϕ(s) +Kϕ(s) = F (s),

where

ϕ(s) :=
1
k

∂u

∂n
(x(s))− P.O..

Theorem. The operator (I +K) : L2(Γ) 7→ L2(Γ) is bijective with

bounded inverse

‖(I +K)−1‖2 ≤ C,

so that the integral equation has exactly one solution.
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Boundary integral equation method

Integral equation in parametric form

ϕ(s) +Kϕ(s) = F (s),

where

ϕ(s) :=
1
k

∂u

∂n
(x(s))− P.O..

Difficulty 1 The operator (I +K) : L2(Γ) 7→ L2(Γ) is bijective with

bounded inverse

‖(I +K)−1‖2 ≤ C(k),

where the dependence of C(k) on k is not clear.
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Approximation space: seek

ϕN (s) =
M∑

j=1

vjρj(s) ∈ VN ,

where

ρj(s) := e±iks × piecewise polynomial supported on graded mesh.

Question: how do we compute vj?
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Galerkin method

To solve

ϕ(s) +Kϕ(s) = F (s),

seek ϕNG
∈ VN such that

(I + PNG
K)ϕNG

= PNG
F,

where PNG
is the orthogonal projection onto the approximation space.

Equivalently

(ϕNG
, ρ) + (KϕNG

, ρ) = (F, ρ), ∀ρ ∈ VN ,

⇒
M∑

j=1

vj [(ρj , ρm) + (Kρj , ρm)] = (F, ρm).

If ρj , ρm supported on same side of polygon, integrals not oscillatory.
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Galerkin method

Theorem. For N ≥ N∗, the operator (I + PNG
K) : L2(Γ) 7→ VN is

bijective with bounded inverse

‖(I + PNG
K)−1‖2 ≤ Cs.
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Galerkin method

Difficulty 2. For N ≥ N∗(k), the operator (I + PNG
K) : L2(Γ) 7→ VN

is bijective with bounded inverse

‖(I + PNG
K)−1‖2 ≤ Cs(k),

where the dependence of N∗(k) and Cs(k) on k is not clear.
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Collocation method

To solve

ϕ(s) +Kϕ(s) = F (s),

seek ϕNC
∈ VN such that

(I + PNC
K)ϕNC

= PNC
F,

where PNC
is the interpolatory projection onto the approximation space.

Equivalently

ϕNC
(sm) +KϕNC

(sm) = F (sm), m = 1, . . . ,M,

⇒
M∑

j=1

vj [ρj(sm) +Kρj(sm)] = F (sm).

If ρj supported on same side of polygon as sm, integrals not oscillatory.
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Collocation method

We have not shown that (I + PNC
K) : L2(Γ) 7→ VN is bijective with

bounded inverse.
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Galerkin vs. Collocation: error analysis

Theorem There exists a constant Cp > 0, independent of k, such that

for N ≥ N∗

k1/2‖ϕ− ϕNG
‖2 ≤ CpCs sup

x∈D
|u(x)|n

1/2(1 + log1/2(kL/n))
Np+1

,

k1/2|u(x)− uNG
(x)| ≤ CpCs sup

x∈D
|u(x)|n

1/2(1 + log1/2(kL/n))
Np+1

.

• Stability and convergence not proven for collocation scheme.
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Galerkin vs. Collocation: conditioning

Galerkin: mass matrix MG := [(ρj , ρm)] has condM ≤ (1 + σ)/(1− σ),
where

σ ≤ max

min(y+
j , y

−
m)−max(y+

j−1, y
−
m−1)√

(y+
j − y+

j−1)(y
−
m − y−m−1)

 < 1,

and if side lengths and angles are equal we can prove

σ <

(
1
kL

)1/2N log k

.

Collocation: difficulty with choice of collocation points,

MC := [ρj(sm)] may be ill conditioned.
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Galerkin vs. Collocation: implementation

Galerkin: need to evaluate numerically many integrals of form∫ −a

−b

∫ d

c

[
H

(1)
0 (k

√
s2 + t2) +

itH(1)
1 (k

√
s2 + t2)√

s2 + t2

]
eik(σjt−σms) dtds.

Collocation: need to evaluate numerically many integrals of form∫ b

a

[
H

(1)
0 (k

√
s2m + t2) +

itH(1)
1 (k

√
s2m + t2)√

s2m + t2

]
eikσjt dt.

• Collocation method easier to implement
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Numerical results

scattering by a square, k = 5

scattering by a square, k = 10
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

Solution minus P.O. approximation;
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Numerical results (scattering by a square)

”Exact” solution minus P.O. approximation, k = 5;
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Numerical results (scattering by a square)

”Exact” solution minus P.O. approximation, k = 10;
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Numerical results (scattering by a square)

”Exact” solution minus P.O. approximation, k = 20;
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Numerical results (scattering by a square)

”Exact” solution minus P.O. approximation, k = 40;

45



Table 1: Relative errors, k = 10

k N dof
‖ϕ−ϕNG

‖2
‖ϕ‖2

‖ϕ−ϕNC
‖2

‖ϕ‖2

10 2 24 1.1691×10+0 7.5453×10−1

4 48 4.3784×10−1 4.7335×10−1

8 96 2.2320×10−1 2.6980×10−1

16 192 1.2106×10−1 1.2670×10−1

32 376 1.1633×10−1 6.8440×10−2

64 752 2.8702×10−2 3.3034×10−2
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Table 2: Relative errors, k = 160

k N dof
‖ϕ−ϕNG

‖2
‖ϕ‖2

‖ϕ−ϕNC
‖2

‖ϕ‖2

160 2 32 7.2765×10−1 6.8901×10−1

4 56 4.2628×10−1 4.4455×10−1

8 112 4.9060×10−1 4.6445×10−1

16 224 1.2847×10−1 2.3456×10−1

32 456 8.4578×10−2 9.3327×10−2

64 904 3.4570×10−2 4.8153×10−2
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k MN ‖ϕ− ϕN‖2 ‖ϕ− ϕN‖2/‖ϕ‖2 COND

5 360 3.6171×10−1 6.8909×10−2 2.6×101

10 376 8.5073×10−1 1.1633×10−1 1.8×102

20 392 8.0941×10−1 7.9909×10−2 1.0×103

40 416 1.1252×100 8.0909×10−2 2.4×102

80 432 1.6630×100 8.7071×10−2 5.9×102

160 456 2.1936×100 8.4578×10−2 5.2×102

320 472 3.5185×100 1.0211×10−1 8.1×102

Table 3: Relative L2 errors, various k, N = 32
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k N |uN−u256
u256

(−π, 3π)| |uN−u256
u256

(3π, 3π)| |uN−u256
u256

(3π,−π)|

5 4 1.9588×10−2 1.0071×10−3 1.5885×10−2

8 4.2631×10−3 2.8032×10−3 2.3213×10−3

16 3.6178×10−4 3.1438×10−4 1.3514×10−3

32 6.6463×10−5 2.9271×10−5 1.7115×10−5

64 1.1634×10−5 5.4525×10−6 3.8267×10−6

Table 4: Relative errors, for uN (x)
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k N |uN−u256
u256

(−π, 3π)| |uN−u256
u256

(3π, 3π)| |uN−u256
u256

(3π,−π)|

320 4 7.2339×10−6 9.1702×10−6 6.5155×10−5

8 1.3617×10−5 4.7357×10−6 3.6329×10−5

16 1.0694×10−5 3.0122×10−6 2.9284×10−5

32 1.0691×10−6 5.3066×10−7 2.8225×10−6

64 3.1606×10−7 3.0148×10−7 8.1702×10−7

Table 5: Relative errors, for uN (x)
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What we actually are computing . . .

The difference between the exact solution and a leading order

approximation;

Figure 4: square, k = 5
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What we actually are computing . . .

The difference between the exact solution and a leading order

approximation;

Figure 5: square, k = 10
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What we actually are computing . . .

The difference between the exact solution and a leading order

approximation;

Figure 6: square, k = 20
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What we actually are computing . . .

The difference between the exact solution and a leading order

approximation;

Figure 7: square, k = 40

54



Summary and Conclusions

• Using Green’s representation theorem in a half-plane we can

understand behaviour of the field on the boundary and its

derivatives for scattering by a convex polygon (extends to convex

polyhedron in 3D)

• For a convex polygon, design of an optimal graded mesh for

piecewise polynomial approximation is then straightforward

• The number of degrees of freedom need only grow logarithmically

with the wavenumber to maintain a fixed accuracy

• Ongoing considerations

– Galerkin vs. Collocation - stability and convergence analysis

– Better schemes for evaluating oscillatory integrals

– hp ideas
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