GAUSSIAN BEAMS
1. Initial Value Problems '

The idea underlying Gaussian beams is simply to build asymptotic solutions
concentrated on a single curve. This means that, given a curve -y, parametrized by
z = z(s), one makes the Ansatz

u(z, k) = M ao(z) + Tar(z) + 4 Tean(e)) = 4 Paz, k), (1)

where ¢(z(s)) is real, and Im{¢(z)} > 0 for z # z(s). To see what one can do with
this Ansatz suppose that P(z, D) is a differential operator of order m with a real
principal symbol p(z, ), and we wish to build asymptotic solutions to P(z, D)v = 0,
i.e. we want P(z, D)u = O(k~™). Substituting from (1),

P(z,D)u = k™p(z, ¢s(z))u + O(K™ 1)

Thus we want p(z, ¢, (z)) = 0. However, it will suffice to have p(z, ¢ (x)) vanish
to high order on . We are going to choose ¢ so that Im{¢} > cd(z,~)?. Note that

d(:l:, ,y)re—ck.d(n:,v)2 — O(k_r/2).

So we need to have p(z, ¢, (z)) = O(d(z,7)*™). This leads to a sequence of equa-
tions for the derivatives of ¢ on . Using the summation convention, the first three
sets of equations, corresponding to vanishing of orders zero, one and two are as
follows

p=0 (2)

pfl].’+p£j¢ﬂ:jli =0for 1 <it<n (3)

Dzizy T pzi£j¢ljlk + Pz,¢; ¢Ijzi + pfjfr¢zjm;¢zlzk + p£j¢$jzszk =0for 1 <4,k < n)

(4

Setting ¢, (z(s)) = £(s), we can rephrase the requirement that (2)-(4) hold on = as
(2)-(4) hold on the curve in (z, £)-space given by (z,£) = (z(s), £(s)). ‘

We can also differentiate with respect to the curve parameter s. Letting f denote

differentiation with respect to s, I am going to assume that

&(s) = pe(z(s), £(s))- (5)
Differentiating ¢, (z(s)) = &£(s) with respect to s gives
$aiz; 5 = & (6)
and, combining (3),(5) and (6) shows that (z(s),&(s)) is a solution of
& = pe(,6) £ = —p:(2,8), (7)

i.e (z(s),£(s)) is a bicharacteristic for P(z, D), and (2) says that it is a null bichar-
acteristic. General results on the behavior of solutions of hyperbolic equations with
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highly oscillatory initial data would show that (7) is necessary for this construction,
but I will not discuss that here. The only additional assumption required for the
construction of asymptotic solutions to P(z, D)v = 0 using the Ansatz (1) is that
z(s) never vanishes. Well, almost: if z(s) returns to the same point you will have
to use a sum of functions of the form (1) near that point.

The heart of the matter is equation (4). To study it I will introduce the matrices

M(s) = (baiz;(2(5))) , A(S) = (Pasa; (2(5),€(5))) , B(8) = (Pasg; (2(s),€(5)))

and C(s) = (pe, (2(5),€(s))) - (8)

Then (4) becomes _
A+BM+ MB'+ MCM + M =0 9)

which is a matrix Riccati equation, and can be solved in the following well-known
(in ODE circles) method: choose matrix solutions to the linear system

Y =CN + BYY N = -BN - AY (10)

such that Y is invertible. Then NY ~! will be a solution of (9) (just substitute it
into (9) and simplify!). Of course, when you do this everything blows up when you
reach a point where Y is not invertible. The good property of Gaussian beams is
that you can choose the initial data (Y'(0), N(0)) so that Y (s) is invertible for all
s. To see how to do that we need to use the following property of solutions of (9):
writing 1 = (y'(s),7'(s)) and 92 = (y2(s),n%(s)) for a pair of vector solutions of
(10), the bilinear form

o(Yr, ) =y* -0t —y' P (11)

is constant in s. Since Ez» where * denotes complex conjugate, is also a solution
of (10)
o(r,,) =5 0" —y' - T, (12)

is also constant in s. You can check (11) and (12) by differentiating them with
respect to s, substituting from (9), and noting that the entries in A, B and C are
real and A and C are symmetric. If you introduce the symplectic structure on
(z,&)-space, you can make all this seem less magical, but you will also make the
exposition more long-winded. So I will not do that here, but it is helpful to observe
that (10) is just the system satisfied by variations of solutions of (7).

Now we are ready to start the construction. I will assume that we have selected
the curve v — and hence the bicharacteristic (z(s),£(s)) — that we wish to follow.
That determines ¢ ((s)), since it is equal to £(s). We choose (¢q,z; (z(s))) = M(s)
as follows: we must have M(0) = M(0)* and (6) implies M (0)2(0) = £(0). Thus
Im{M(0)}2(0) = 0, and we choose Im{M(0)} so that it is positive definite on
the orthogonal complement of #(0). Note that we are already using z(s) # 0
here. Next we solve (10) with the initial data (Y'(0), N(0)) = (I, M (0)). This gives
(Y (s), N(s)), defined for all s since it is the solution of a system of linear differential
equations with (presumably) bounded coefficients. Differentiating (7) with respect
to s shows that (&, £) is a vector solution of (10), and then uniqueness for the initial
value problem implies (2(s), £(s)) = (Y (s)£(0), N(s)2(0)). Next consider the vector
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solution of (10) given by (y(s),n(s)) = (Y (s)c, N(s)c) for a general vector ¢ € C™.
If Y (so)c = 0 for some 8o, then the constancy of (12) with ¥; = ¥» = (y(s),n(s))
gives

0 =0 (%(s0),%(s0)) = o(%(0),%(0)) = F(0) - n(0) - y(0) - 7(0) = 2ic- Im{M(0)}e.

Thus, by the construction of M(0), ¢ = az(0), and Y (s)c = az(s). Thus, taking
8 = 80, since z(s) # 0 by assumption, we see that & = 0. Thus ¢ = 0 and Y (sq) is
invertible. s. For all s the matrix M (s) has the properties of M (0):

i) M(s)z(s) = £(s) i.e. it satisfies (6)

ii)M (s)* = M (s) — this follows from the constancy of (11), and

1) Im{M (s)} is positive definite on the orthogonal complement of #(s) — this
follows from the constancy of (12).

This completes the crucial part of the construction of the phase ¢ in (1). Of
course, one may need to have p(z, ¢,) vanish to a higher order than two on 7, but
the equations corresponding to (2)-(4) for vanishing of order r > 3 have the form

> 0 (p)0s; (050 + D capdlp+da =0
i=1 |8l=r

for all multi-indices « of length r. Since O¢p - 05(95¢) = (d/ds)0%$ on vy, we can
solve these equations as linear systems of ODEs in s for the r-th order partial
derivatives of ¢ on y. One does this recursively, since the coeflicients c,p and do
depend on all the partials up to order r — 1, but, since the equations are linear, the
solutions exist for all s. One must choose the partial derivatives of order r at z(0)
to be compatible with those of lower order, but then they remain compatible along
v. Thus we may assume that p(z, ¢,) vanishes on 7y to any prescribed order.
The complete expansion of P(z, D)u is

P(z, D)u = k™p(z, bz (x))u + **® " k™I L(z, D)a, (13)
i=1

where the L;’s are linear differential operators with coefficients depending on ¢.
Recall that

a=a0+%al+"'+']}1wa1v.
Thus to make P(z, D)u = O(k~™), we now only need to make the terms in (13)
which are multiplied by k™~7. j = 1, .., m+ N vanish on 7 to sufficiently high order.
Just as in geometric optics, the terms in (13) multiplied by k™~~! have the form
Lya; + g1 where go = 0 and g; only depends on ayg,..,a;—1 for [ > 1. Thus we can
solve the equations Lja; + g, = 0 recursively starting with [ = 0. Using ¢ for the
symbol of the terms of order m — 1 in P(z, D), we have for [ =0,1,..,N

0=La+ g



1 & 1 '
=72 0p(@,02)00,01+ 57 D e p(3,82)05 0, 00 + (@, be)au + g1 (14)

j=0 0<j,k<n

Since the right hand side of the second equality in (14) is linear in P and involves
no z derivatives of the symbols, it suffices to verify it for P of the form P = D¢,
and this can be done easily by induction on [af. Introducing v = J¢p(z, ¢,) and
sub(P) = q — (2i)710,,0¢, p, we can rewrite (14) as

1
0=wv,rVa + §(V -v)ay + isub(P)(z, ¢z )a; + igs (15)

Formula (15) has useful consequences in geometric optics, but here we will just
observe that, since v(z(s)) = %, we can solve it to arbitrarily high order on ~, by
solving the linear ODE systems for the partial derivatives of a; on « that one gets
by differentiating (15) — just as we did for the derivatives of ¢ of order greater than
two.

This completes the construction of our asymptotic solutions. To apply this to
initial value problems we need to take P to be a hyperbolic differential operator,
for example 8y — A. In the coordinates (zg,z1,z2) = (¢,z,y) with v given by
(t(s),z(s),y(s)) = (s,0,s), for any positive constants a and b the phase

y—t a’z’t _ a 2 (y—1t)?
i = —_ " 4 p 7
o(t2,9) = =5 +1+4a2t2+2<<1+4a2t2) g PO )

and the amplitude

ap = (1 + 2iat)™1/?

give u = et*%qq satisfying (0;; — A)u = O(k'/?) in k. This is the simplest possible
example, but it already has one interesting feature: note that the amplitude is
complex-valued, and this corresponds to a constant retardation of the phase as ¢
goes from —o0 to +oco with the total phase shift being 7/2. In ordinary geometric
optics there are sharp jumps of multiples of 7/2 of the phase across caustics.

A simple extension of the preceding is to replace P(z, D) by a “semi-classical”
operator

P(z, D;h) = Py(x,hD) + hP(z,hD) + h*P(z,hD) + - - -

Then one can construct asymptotic solutions to P(z, hD)u = 0 as h — 0 by taking
k = 1/h in the construction above. This can used, for example, for the Schrédinger
equation shu; + h?Au — V(z)u = 0 and the Helmholtz equation ¢?(z)Au+ k%u = 0.

If one wants to build asymptotic solutions to (9;; — A)u = 0 with caustics, one
approach is to take superpositions of Gaussian beams. For instance to construct a
time-harmonic asymptotic solutions, u = (ezp(ikt)w(z), one can construct beams
w(z) for the equation (A + k?)w = 0 concentrated on the rays that produce the
caustic. For example, suppose that the caustic is a plane curve C, and the tangents
to a portion of C are the lines y = m(s)z + b(s). Let w®(x,y;k) be the beam
concentrated at (0,b(s)) when z = 0 propagating in the direction (1,m(s)) denote
the analogous beam concentrated at p at time ¢ = 0 propagating in the The con-
structions are uniform in s so superpositions of the beams w*® are valid asymptotic
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solutions. Nicolay Tanushev has implemented this construction numerically for
fold and cusp caustics. For satisfactory results one needs to balance the asymptotic
parameter k¥ and the spacing in the superposition parameter s carefully.

II. Quasimodes

When + is a stable periodic orbit for the bicharacteristic flow, one can use Gauss-
ian beams to build sequences of functions u; such that P(z, D)u; — \ju; = O()\,—M).
The most common terminology is to refer to the sequence {u;} as a “quasimode”.
This was the first use of Gaussian beams (dating back to the late sixties — see Bib-
liography). In this setting we will assume that p(z, ¢,) = 1 on 7, and build beams
which satisfy

P(z,D)u= (k™ +c k™1 + .. )u.

As in §I, we will use the Ansatz
. 1 1 ik
u(z, k) = e (ao(z) + (@) ++ rgan(z)) = @), (1)

and assume that &(s) = ¢, (x(s)). Likewise we will require

& = pe(z,§) £=—pz(z,§). (2)
Since 7 is periodic, the system (1.10)
y=Cn+Bly 1 =—Bn- Ay (3)

has periodic coefficients. Assuming that -y has period S, i.e. S is the smallest
positive number such that x(s +.5) = z(s), it is natural to consider the Floquet
map on vector solutions of (3). This is given by

@ : (y(0),7(0)) = (y(5),n(S))-

This map always has 1 as an eigenvalue of algebraic multiplicity at least two:
® : o = (£(0),£(0)) = (2(5),£(S)) = o @)

@ : oo = (0,€(0)) = (0,£(0)) + (m — 1)S(¢(0),€(0)) = thoo + (m — 1)Sto.  (5)

The second statement is a consequence of the positive homogeneity (of degree m)
of p(z, &) which implies that (z(a™'s),aé(a™ !s)) is a solution of (2) for a > 0.
Evaluating the derivative of this solution with respect to a at a = 1 gives (5). Note
that the vectors in (4) and (5) are independent since £(0) - £(0) = mp(x(0), £(0)) =
m # 0.

The linear mapping ® preserves the bilinear form ¢ from (I.11) and it maps real
vectors to real vectors — in the language of linear groups ¢ is real and symplectic.
One can show easily that if ) is an eigenvalue of ® then both X and 1/) are also
eigenvalues. Thus + is linearly stable only if all the eigenvalues of @ lie on the unit
circle in the complex plane. I am going to make the strong stability hypothesis
that the eigenvalues are {1,1, A1, Ay, ..., )\n_l,—):n_l}, and that these eigenvalues are
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simple — except for 1 which is double. This makes the structure of ® very rigid. If
;= A;9;, then ®yY; = Aj1p;. We also have

o, ¥r) =0, 1 <4,k <n—1, since \jAp #1 (6)

o(Yj, ) =0forj#k, 1 <j,k<n-—1, since \jAp #1
a(j,%0) = o(¥;,%00) =0, L <n—1, since \j # 1 (7)

Since ¢ is nondegenerate, this means that we can choose the 1;’s so that

o, %) =18k, 1 <jk<n-—1 (8)

Now that we have a good basis of eigenfunctions for ® we can resume the con-
struction. We require M (0)2(0) = £(0) as before, but the rest of M (0) is determined
by the following conditions. Writing ; = (y/,7n7), we require

MOy =7, j=1,..,n-1 (9)

Note that (8) implies that {y!,..,y"!} is linearly independent: if ciy! + -+ +
Cno1y™ 1 =0, then ¥ = c19P1 + -+ + cn=1¥n—1 satisfies

0=0(w,9) =i(lesl* + - +lea1]’).

Likewise, {(0),y?,...y" !} is linearly independent: if £(0) = c;y! +- -+ cp_1y™?
and ¥ is as before, then (09, %0) = 0 (3h00,%) = 0 by (7), contradicting o (¥o0,%0)
= m. Thus (9) determines M (0). We only need to check that Im{M(0)} is positive
definite on the orthogonal complement of £(0) — which follows from (8) - and
that M (0) is symmetric — which follows from (6) and (7). Thus we have M(s)
for 0 < s < S with the same properties as in §1. However, since the ;’s are
eigenvectors for @, we also have M(S) = M (0) which makes (¢;,4, (z(s))) = M(s)
well-defined on .

The equations for the higher order derivatives of ¢ on v are inhomogeneous
linear, and one has to appeal to the Fredholm alternative to solve them. One can
show that there are no solutions to the corresponding homogeneous problem when

ATt AT AL (10)

for all multi-indices o. Writing A; = exp(i6;), 0 < 6; < 27, (10) just says that the
f;’s and 7 are rationally independent. Assuming (10), we can make p(z, ¢,) vanish
to any given order on +.

The construction of the amplitudes is quite interesting, but I will not try to
present it here (see the book of Babich and Buldreyev or Ralston (1976)). It turns
out that when sub(P) is real (which happens when P is self-adjoint) for each multi-
index a one can find an amplitude a such that a(z(S)) = exp(—i8(a))a(z(0)). In
the case that sub(P)=0

Bla) = (a1 + %)91 +ot (e + %)9n_1mod 7. (11)



Introducing the “action” around 7, i.e.

S S
¢(z(5)) - ¢(=(0)) = /O (s) - ¢o(z(s))ds = /O (s) - £(s)ds = mS,

the condition that determines the sequence of approximate eigenvalues A; is just

_ 2nl + B(a)

s (12)

kmS - § = 2wl or ki
To leading order A; = k;®. Formula (12) says that for ! large quite a few eigenvalues
of P are associated with v — assuming that the coefficients of P grow at infinity
so that the spectrum of P consists only of eigenvalues. Actually more is true: a

positive fraction of all the large eigenvalues of P are associated with v ~ see Popov
(2000).
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