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Outline

• Introduction to time reversal.

• The physical experiment.

• Basic properties: auto-focusing and resolution.

• Application to array imaging.

• Imaging point targets.

• Imaging the shape of extended target.
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Experimental setup.

From Scientific American, November 1999, M. Fink.
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Refocusing property of time reversal and its applications.

The time reversed and back propagated wavefield (through the

same medium) refocuses on the source (or an illuminated scat-

ter) due to time reversibility and spatial reciprocity of waves.

Applications:

• Active time reversal: time reversal is physically carried out in

the real medium.

• Automatic target detection and destruction.

• Secure Communications.

• Passive time reversal: time reversal is carried out on computers

through an “approximate” medium.

• Nondestructive testing.

• Identification and imaging of targets.
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Medical applications.

From Scientific American, November 1999, M. Fink.
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Deterministic diffraction limit.

In homogeneous media:

• No resolution finer than the wave length λ.

• For small aperture time reversal mirror (TRM) the resolution

is ∝ a
Lλ.

L

x

z
a

Numerical Domain

Source TRM

u
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Time reversal in random media.

In random medium, (Blomgren, Papanicolaou & Zhao, JASA, 2001.)

• The inhomogeneities cause multipathing which can make the effective aper-
ture ae of the TRM larger and super-resolution occurs.

ae ∼ a

√
1 +

2γL3

a2
,






a Physical TRM aperture
ae Effective aperture
L Propagation distance
γ Medium constant.

• The super-resolution is stable in time domain due to self-averaging of dif-
ferent frequencies.

Remarks:

• Underwater sound (Kuperman et. al.) and ultrasound regime (Fink et. al.)
experiments observe both super-resolution and stability of time reversal.

• Early work of Dowling-Jackson uses ensemble average to show super-
resolution.
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Time reversal vs. inverse filter
measurement array Y=F(x) Source plane

i

j

Fij

p

A point source fires at p. Given the measurement

y = F(xm), xm = [0, . . . ,1, . . . ,0]T

how to locate the source. Assume F is reciprocal.
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Inverse filter approach

Approximate F−1 and x = F−1y

Assume F = {Fij}m×n is a linear operator and under-determined,

(m < n). The singular value decomposition of F is:

F = Um×mDm×nV
∗
n×n, D = diag(λ1, . . . , λm).

The least square solution is

x̃ = F ∗(FF ∗)−1y = V D−1U∗y = V V ∗x

• If D is close to singular, the inversion is sensitive to noise.

Threshholding is needed.

x̃ = V ∗diag(
1

λ1
, . . . ,

1

λN
,0, . . . ,0)U∗y = V ∗diag(1, . . . ,1,0, . . . ,0)V x

which is the projection of x in the top N singular vectors.

• There is no nature way to implement F−1 and has to be ap-

proximated.
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Time reversal

Time reverse the measurement y and send it back.

Assume spatial reciprocity Fij = Fji,

F ty = F tFx = V diag(λ2
1, . . . , λ

2
m)V ∗x

• The time reveresal is robust.

• In physical time reversal F t is naturally provided by the medium.

In passive time reversal, e.g., target detection, F t has to be ap-

proximated.

• Even F is nonlinear, the procedure can still be applied.

• Good for finding dominant events.

• Iterated time reversal (≈ power method) can be used to find

V for passive source.
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Imaging using waves

Probing medium properties from scattered wave field.

Example, the harmonic wave field u(x) satisfies

∆u(x) + k2n(x)u = f(x),

where k is the wave number, n(x) is the index of refraction, and

f(x) is the source (usually at the boundary).

• General inverse problem: find n(x) inside a region from bound-

ary data.

• Geometric approach: when n(x) is piecewise constant find

the interface where n(x) jumps, i.e., the shape of scatterers,

from boundary data.

The inverse problem is nonlinear!
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Imaging methods

• Iterative methods: linearize the problem and make incremen-

tal improvement to match the measurement data.

– pros: may find more detailed and accurate information.

– cons: expensive and may not converge.

• Direct imaging methods: identify and visualize dominant in-

formation or physical quantities, such as location and boun-

ndary of target, directly.

Key point: Need to understand the forward problem better

and be able to extract information from the data.

– pros: efficient and robust.

– cons: may only recover partial information.
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Our algorithm

A direct imaging method for extended target that uses

• a physical factorization of the scattering operator.

• a thresholding based on physical resolution.
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The setup
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Define the response matrix P = {Pij}N×N , where Pij is the re-

ceived signal at j-th transducer for a pulse sent out at i-th trans-

ducer and N is the number of transducers.

Remark: PHP is the time reversal matrix. Iterative time reversal

is equivalent to the power method for finding the eigenvectors.
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Imaging using an active array

• Structure and SVD pattern for the response matrix of an

active array.

• Imaging using SVD of the response matrix.

• Target Detection and Imaging in random medium.
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Point targets

For M point targets at ym with reflectivity τm,

Pij(k) =
M∑

m=1

τmG(xi,ym)G(xj,ym) ⇒ P(k) =
M∑

m=1

τm~gm~g
T
m

The eigenspace of the response matrix is spanned by {~g1, . . . , ~gM}.

G(x,y) is the Green’s function and ~gm is the illumination vector:

~gm = [G(x1,ym), G(x2,ym), . . . , G(xN ,ym)]T

illumination vector
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Resolution of the active array

If the targets are well resolved by the active array, i.e, the time

reversal resolution can distinguish different targets, the point

spread function

Γ(xm,xm′) = ~gTm~gm′ ≈ 0 if m 6= m′.

The singular vectors are ~gm, i.e., there is a 1-to-1 corre-

spondence

focusing resolution
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Extended targets

In general the response matrix for a single extended target can

have a continuous spectrum.

Denote:

• L the distance between the array and the target,

• λ the wave length,

• s the characteristic dimension of the target,

• a the size of the array,

The number of significant singular values and vectors of the

response matrix is ∝ s
Rt

where Rt is the time reversal focusing

resolution. In the remote sensing regime, Rt =
λL
a .
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Pattern for the SVD of the response matrix

• Point targets (s ≪ Rt): the rank of the response matrix is

equal to the number of targets; each singular vector is a

combination of the illumination vectors, i.e., contains only

location information.

• Small targets (s < Rt): grouped singular values; SVD can

reveal both location and size (moment) information of the

targets. (Chambers; Zhao)

• Large targets (s ≥ Rt): a continuous spectrum that contains

both location and geometry information of the target.
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The spectrum for an extended (small) target.

• the dominant singular vector is rg

~g = [G(ξ1,o), G(ξ2,o), . . . , G(ξN ,o)]T

with singular value |λ1| ≈ |Ω||~̃g|2

• the next two dominant eigenvectors:

~gy = [Gy(ξ1,o), Gy(ξ2,o), . . . , Gy(ξN ,o)]T

with singular value |λ2| ≈
k2

L2|~gy|
2 ∫

Ω y2,

~gz = [Gz(ξ1,o), Gz(ξ2,o), . . . , Gz(ξN ,o)]T

with singular value |λ3| ≈
k2

L2|~gz|
2 ∫

Ω z
2

ξi = (L, ηi, ζi) is the position of the ith transducer; o is the center

of the target.
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Experiments
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(a) point target (s = 0.05λ) (b) small extended target (s = 0.3λ) (c) extended target (s = 2.5λ)
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Imaging algorithm for point targets

MUltiple SIgnal Classification (Schmidt, Devaney) is an algo-

rithm for imaging point targets in a known background when

the number of targets is smaller than the number of transduc-

ers.

Even with multiple scattering among the targets the response

matrix can be factorized as

Pij(k) =
M∑

m=1

τmG
0(xi,ym)G(xj,ym) ⇒ P(k) =

M∑

m=1

τm~g
0
m~g

T
m

G0 is the Green’s function for the background and G is the

Green’s function that includes multiple scattering among targets.

The column space Vs of the response matrix is still spanned

by {~g01, . . . , ~g
0
M}.

Imaging function: Φ(x) = ‖(I − PVS)~g
0(x)‖−1,

where PVS is the projection to the signal space Vs.
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SVD of the response matrix in homogeneous medium with two

targets.
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Imaging exteneded targets

If the target size s is larger or comparable to the array resolution

r, the response matrix will have a set of significant singular values

and singular vectors. The space spanned by the corresponding

singular vectors is defined as the shape space Vs. The dimension

is proportional to s
r.

We define the imaging function as

Φ(x) = ‖(I − PVS)~g(x)‖−1

Key point: What is the shape space and how to define the il-

lumination vector ~g(x) based on factorization of the scattering

operator,

Remark: Each signular vector does not correspond to an il-

lumination vector, i.e., an extended target can not be viewed as

a collection of point targets.
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Dirichlet boundary condition

The scattered field us for a perfect conductor (u = 0 at ∂Ω)

with the incident field ui is

us(x) =

∫

∂Ω

∂G(x,y)

∂ν
ui(y)dy,

where G(x, y) is the (unknown) Green’s function with the scat-

terer. The response matrix becomes

Pij =

∫

∂Ω

∂G(xj,y)

∂ν
G0(xi,y)dy

where xi is the i-th transducer. The matrix can be factorized as

P =

∫

∂Ω
~g0(y)

[
∂~g(y)

∂ν

]T
dy

~g0(y) and ~g(y) are the illumination vectors in the homogeneous

and inhomogeneous medium respectively. The sources for the

scattered field are monopoles at the boundary parts that are well

illuminated by the array and should be in the signal space of the

response matrix, i.e., ~g0(y) ∈ Vs, for y on the well illuminated

parts of the boundary.



Imaging function

Let ~ui be the singular vectors with singular values σi. Define

the signal space Vs = span{~ui| |σi| > n}, where n is a threshhold

depending on the resolution of the array and noise level. We

use illumination vector ~g(x) = [G0(x1,x), . . . , G0(xN ,x)]T . The

imaging function

Φ(x) = ‖(I − PVS)~g(x)‖−1

will peak at the boundary.

Remark: Although the signal space is ≈ spanned by the illu-

mination vectors on the well illuminated boundary. However the

boundary integral operator with unknown kernel G makes the

SVD complicated. Each singular vector does not correspond

to an illumination of a point target on the boundary.
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Imaging extended targets with Dirichlet BC
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Neumann boundary condition

The scattered field us for a perfect reflector (∂u∂n = 0 at ∂Ω) with

the incident field ui is,

us(x) =
∫

∂Ω
G(x,y)

∂ui(y)

∂ν
dy

the response matrix for the scattered field is

Pij =

∫

∂Ω
G(xj,y)

∂G0(xi,y)

∂ν
dy

xi is the i-th transducer. The matrix can be factorized as

P =

∫

∂Ω

∂~g0(y)

∂ν
~gT(y)dy

~g0(y) and ~g(y) are the illumination vectors in the homogeneous

and inhomogeneous medium respectively. The sources for the

scattered field are dipoles at the boundary parts that are well

illuminated by the array and should be in the signal space of the

response matrix, i.e.,
∂~g0(y)
∂ν ∈ Vs, for y on the well illuminated

parts of the boundary.
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Imaging function

We define a signal space Vs based on the SVD of the response

matrix and use dipole

~g(x) = [
∂G0(x1,x)

∂νk
, . . . ,

∂G0(xN ,x)

∂νk
]T

as illumination vector, where νk is in a set of fixed discrete di-

rections. The imaging function is

Φ(x) =

[
min
νk

‖(I − PVS)~g(x)‖

]−1
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Imaging extended target with Neumann boundary

condition
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Using wrong illuminination vectors

Neumann boundary condition with Dirichlet imaging function
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Impedance (Robin) boundary condition

If ∂u
∂ν + iµu = 0 on the target boundary, we have the following

integral equation:

us(x) =

∫

∂D

∂ui(y)

∂ν
G(x,y) −

∂G(x,y)

∂ν
ui(y)dS(y) (1)

Using the boundary condition we have

us(x) =

∫

∂D

[

iµui(y) +
∂ui(y)

∂ν

]

G(x,y)dy (2)

So the response matrix is of the form

P =

∫

∂Ω

[

iµ~g0(y) +
∂~g0(y)

∂ν

]

~gT(y)dy

If we know µ we should use a combination of monopole and

dipole as illumination vector.
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Imaging extended targets with Robin boundary condition

µ = 0.2 (Neumann like)

0.5

1

1.5

2

2.5

x 10
4

20 40 60 80 100 120

20

40

60

80

100

120 0

100

200

300

400

500

600

20 40 60 80 100 120

20

40

60

80

100

120

µ = 2 (Dirichlet like)

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120

20

40

60

80

100

120 0

2000

4000

6000

8000

10000

12000

14000

16000

20 40 60 80 100 120

20

40

60

80

100

120

use dipole as illumination vector use monopole as illumination vector



Mixed boundary condition (partially coated target)

If a target has a mixed boundary condition, i.e., part of the

boundary has Dirichlet or Dirichlet-like Robin condition, part of

the boundary has Neumann or Neumann-like Robin condition.

Our algorithm can identify different parts using different type of

illumination vectors.

For example, a metal tank is partially coated by dielectric to

avoid radar detection, our algorithm can tell which part of the

boundary is metal and which part is dielectric.
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Imaging extended targets with mixed boundary condition

The upper half of the object has µ = 0.2(Neumann-like) and the

lower half of the object has µ = 2(Dirichlet-like).
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Penetrable targets

For a smooth varying contrast σ with compact support Ω,

u(x) = ui(x) +

∫

Ω
G0(x,y)σ(y)u(y)dy

The response matrix for the scattered field is

Pij =

∫

Ω
σ(y)G0(xi,y)G(xj,y)dy,

The matrix form is

P =

∫

Ω
σ(y)~g0(y)~gT (y)dy

The sources are located inside the support.

Imaging function will peak inside the region.
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Target with constant contrast

u(x) = ui(x) +

∫

∂Ω

∂G0(x,y)

∂ν(y)
ψ(y) +G0(x,y)φ(y)dy

where φ and ψ are density functions for single and double layer

potentials. The response matrix is

Pij =

∫

∂Ω

∂G0(xj,y)

∂ν(y)
ψ(xi,y) +G0(xj,y)φ(xi,y)dy

The matrix form is

P =

∫

∂Ω

∂~g0(y)

∂ν(y)
~ψT(y) + ~g0(y)~φT (y)dy

Again the sources are monopoles and dipoles located at the

boundary parts that are well illuminated by the array.

Imaging function will peak at or near the boundary.
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Imaging penetrable extended targets
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a target with the shape of three leaves (comparable to wavelength) and finite contrast
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Resolution analysis

Let s be the size of the target and r be the resolution of the array.

the number of significant singular values and singular vectors is

∝ s
r

In the remote sensing regime r ∝ λL
a , L is the distance, λ is the

wavelength, and a is the aperture of the array.

Let σ1 > σ2 > . . . > σN are the singular values for the response

matrix and the signal space V S is spanned by the first n singular

vectors. Define the signal-to-noise ratio:
‖Psignal‖2
‖Pnoise‖2

= σ1
σn+1

. We

tested that σ1
σn+1

depends only weakly on the parameters and the

shape of the target(s). This criterion can be used to determine

the threshold.
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Shape space

80 transducers in total.
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Resolution with respect to wavelength

40 transducers in total.
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Robustness with respect to noise

40 transducers.
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Robustness with respect to noise
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Linear sampling method

Linear sampling method (Colton and Kirsch 1996) is based on

the far field scattering map (measured data) F∞(x̂, θ̂), x̂, θ̂ ∈ Sn

due to a scatterer Ω. An incoming plane wave form g(θ̂) is

mapped to a far field pattern: u∞(x̂) =
∫
Sn F∞(x̂, θ̂)g(θ̂)dθ̂

It can be shown that if z ∈ Ω then the far field pattern of a point

source at z is in the range of F and there exists g(θ̂) such that

F(g) approximate e−ikx̂·z well. Moreover ‖g‖L2 → ∞ as z → ∂Ω.

Later Kirsch (1998) show that the range of the far field map is

the same as (F ∗F)1/4, i.e., (F ∗F)1/4g = e−ikx̂·z is solvable iff z ∈

Ω. Let λj, ψj be the eigensystem of F and ρj(z) =< e−ikx̂·z, ψj >,

z ∈ Ω iff
∑ |ρj(z)|2

|λj|
<∞
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Comparison with linear sampling method

• Different factorization.

• Same for near field or far field.

• Different imaging function for different physical boundary

conditions.

• Thresholding (regularization) based on SVD and physical

scales.
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Target detection and imaging in heterogeneous medium

For heterogeneous medium: the Green function is not known.

The response matrix contains information of both the medium

and the targets. And inverse the whole medium is too expensive.

Key points:

• Separate the target signal from the background medium.

• Design statistical stable imaging function using multiple fre-

quencies.

• Get better estimate of the Green function for the background

medium using effective theory and available measurments.
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Factorization for general model

The data contains both model error and measurement noise. For

example, with Dirichlet BC,

Pij =

∫

∂Ω

∂GT(xj,y)

∂ν
GB(xi,y)dy (+ or ×) measurement noise

where GT is the Green’s function contains information of the

target and GB is the Green’s function contains information of

the background random medium.

• Measurement noise can be dealt with using SVD and thresh-

holding.

• Random background can be dealt with using effective medium

property and multiple-frequencies.
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Some preliminary results using multiple frequencies
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Future plan

• Target detection in random medium.

• Shape construction using multiple frequencies.

• Limited aperture.
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