Well-posedness of the generalized Proudman-Johnson equation without viscosity

Hisashi Okamoto RIMS, Kyoto University okamoto@kurims.kyoto-u.ac.jp

Generalized Proudman-Johnson equation

 Proposed in 2000 by Zhu and O. in order to measure the balance of the convection and stretching terms.

$$f_{txx} + ff_{xxx} - af_x f_{xx} = vf_{xxxx}$$
 convection stretching viscosity $0 < x < 1$, $0 < t$. a is a parameter.

2 D Navier-Stokes +
$$\mathbf{U} = (f(t,x), -yf_x(t,x)) \Rightarrow$$

Proudman-Johnson eq. (a = 1) ('62) Riabouchinski ('24)

Generalized Proudman-Johnson equation

Why this equation is interesting to me?

$$\omega = -f_{xx}, \quad \omega_t + f\omega_x - af_x\omega = v\omega_{xx}$$

Cf. 3D vorticity equations.

$$\mathbf{\omega} = \operatorname{curl}\mathbf{u}, \quad \mathbf{\omega}_t + (\mathbf{u} \cdot \nabla)\mathbf{\omega} - (\mathbf{\omega} \cdot \nabla)\mathbf{u} = \nu \Delta \mathbf{\omega}$$

 3D Navier-Stokes is formidable to me, but, 1D analogue could be solved, I hoped. However, ...

Though simple, it contains some known equations as particular members.

- a= -(m-3)/(m-1), axisymmetric exact solutions of the Navier-Stokes equations in R^m. (Zhu & O. Taiwanese J. Math. 2000) (a=0 for 3D Euler)
- 2 a=1 (m=2) Proudman-Johnson equation ('24, '62)
- \bullet a=-2, ν =0. Hunter-Saxton equation ('91)
- 4 a=-3 Burgers equation ('40)

$$u_t = vu_{xx} + u^2 - \int_0^1 u(t, x)^2 dx.$$

The Hunter-Saxton equation is a model appearing in the nematic liquid crystal theory. SIAM J. Appl. Math. (1991)

$$f_{tx} + ff_{xx} + \frac{1}{2}(f_x)^2 = 0.$$
(known to be integrable)

By differentiation

$$f_{txx} + ff_{xxx} + 2f_x f_{xx} = 0$$

The Burgers equation

$$f_t + ff_x = vf_{xx}$$

Differentiate

$$f_{tx} + ff_{xx} + (f_x)^2 = vf_{xxx}$$

Differentiate once more

$$f_{txx} + ff_{xxx} + 3f_x f_{xx} = vf_{xxxx}$$

${ m My\ goal:}$ To determine whether blow-up occurs or not, depending on the parameter a and the initial data.

What is expected is: global existence for small |a| and blow-up for large |a|.

$$\omega = -f_{xx}, \quad \omega_t + f\omega_x - af_x\omega = v\omega_{xx}$$

convection stretching viscosity

- Stretching is a cause of blow-up, viscosity suppresses blow-up, and convection is neutral. Are these heuristic statements really substantiated? A little surprise: convection term isn't a bystander. It suppresses blow-up: O & Ohkitani, J. Phys. Soc. Japan, '05.
- For the sake of simplicity, we consider in 0<x<1 with periodic boundary condition.

Summary of results in the case of v > 0.

If -3 ≤ a ≤ 1, no blow-up occurs. Every solution tends to zero.

X. Chen & O., Proc. Japan Acad., (2002)

- If a < -3 or 1 < a, numerical experiments strongly suggest that:
 - ✓ large solutions blow up
 - ✓ small solutions decay to zero.

Numerical experiments (Zhu & O. Taiwanese J. Math. 2000)

a=1 is a threshold.

The limit as $a \to \infty$

$$f_{txx} + ff_{xxx} - af_x f_{xx} = vf_{xxxx}$$

redefine
$$\frac{1}{a}f_{txx} + \frac{1}{a^2}ff_{xxx} - \frac{1}{a}f_{xxx} = \frac{v}{a}f_{xxxx}$$

$$\frac{1}{a}f_{txx} + \frac{1}{a^2}ff_{xxx} - \frac{1}{a}f_{xxx} = \frac{v}{a}f_{xxxx}$$

and let α tend to infinity. $f_{txx} - f_x f_{xx} = v f_{xxxx}$

$$f_{tx} - \frac{1}{2}(f_x)^2 = vf_{xxx} + \gamma(t).$$

$$u = \frac{1}{2} f_x,$$
 $u_t = v u_{xx} + u^2 - \int_0^1 u(t, x)^2 dx.$

Blow-up occurs in
$$u_{t} = u_{xx} + u^{2} - \int_{0}^{1} u(t, x)^{2} dx$$
.

- Large solutions blow-up and small solutions exists and decay to zero. Budd et al. ('93, SIAM J. Appl. Math.), O.& Zhu ('00)
- But the asymptotic behavior as t approach the blow-up time is quite different.

Budd, Dold & Stuart ('93), Zhu &O. ('00)

$$\int_0^1 u(t, x) dx = \int_0^1 u(0, x) dx$$

$$\lim_{t\to T} u(t,x_0) = +\infty,$$

$$\lim_{t \to T} u(t, y) = -\infty \quad (y \neq x_0)$$

$$\lim_{t \to T} \frac{u(t, y)}{u(t, x_0)} = 0$$

If
$$\mathbf{v} = 0$$
, $u_t(t, x) = u(t, x)^2 - \int_0^1 u(t, y)^2 dy$
$$\int_0^1 u(t, x) dx = 0$$

Theorem (X. Chen & O., '03, J. Math. Sci. Univ. Tokyo).

Blow up iff $|\{x; u(0,x) = \max u(0,\cdot)\}| < \frac{1}{2}$

I want to know a proof for blow-up when v>0, $-\infty < a < -3$, $1 < a < \infty$.

The case of v=0. We have fragmental knowledge only.

- Blow-ups occur if a < -2 (Zhu & O.)
- No blow-up for a = 0 (Zhu & O.)
- Blow-ups occur if a =1 (Childress & others)
- Blow-ups occur if a = -3 (Burgers, shock wave)
- Blow-ups occur if a=-2 (Hunter & Saxton)

My report today

- Blow-up for -2 < a < -1. (Remember that the solutions exist globally in this region if v > 0. Viscosity helps global existence.)
- Global existence for -1 ≤ a < 1 & smooth initial data.
- Self-similar, non-smooth blow-up solutions exist for -1 < a < ∞.</p>
- So far, I have no conclusion in the case of 1 < a.

A remark on numerical experiments

In the case of v=0, (Euler), numerical experiments are sometimes (but not often) misleading.

$$f_{txx} + ff_{xxx} = 0$$

(a=0, 3D Euler)

Rigorous analysis is necessary

Starting point: local existence theorem

With a help of Kato-Lai theorem (J. Func. Anal. '84),

$$\omega = -f_{xx}, f = G(\omega), \ \omega_t + f\omega_x - af_x\omega = v\omega_{xx}$$

- Theorem (Zhu & O. '00). For all there exist T and a unique solution in $0 \le t < T$. $\omega \in C([0,T]; L^2(0,1)) \cap C^1([0,T]; H^{-1}(0,1))$
- A priori bound for $\|\omega(t)\|_2$ is enough for global existence

Analysis for global existence/blow-up proceeds in different ways in different philosophy in

$$-\infty < a < -2$$
,
 $-1 \le a < 0$,

$$-2 \le a < -1$$
, $0 \le a < 1$

The case of -∞< a < -2 is settled in Zhu & O., Taiwanese J. Math. (2000).

$$\phi(t) \equiv \int_0^1 f_x(t, x)^2 dx$$
$$\frac{d^2}{dt^2} \phi(t) \ge b\phi(t)^3$$

Summary of the results.

$-2 \le a < -1$. Follows the recipe of Hunter & Saxton ('91)

Use the Lagrangian coordinates

$$X_{t} = f(t, X(t, \xi)), \quad X(0, \xi) = \xi, \quad (0 \le \xi \le 1)$$

Define $V(t,\xi) = X_{\xi}(t,\xi)$.

$$VV_{tt} = (V_t)^2 - I(t)V, \quad I(t) = \int_0^1 \frac{V_t^2}{V} d\xi$$

- V tends to -∞.
- Global weak solution in the case of a= -2 (Bressan & Constantin '05).

Blow-up occurs both in $-\infty < a < -2$ and in $-2 \le a < -1$, but

- Asymptotic behavior is quite different.
- $\|f_x(t)\|_{L^2}$ blow up. $(-\infty < a < -2)$
- $\|f_x(t)\|_{L^2}$ is bounded. $\|f_x(t)\|_{L^\infty}$ blows up.

$$(-2 \le a < -1)$$

-1 ≤ a < 0. Follows the recipe of Chen &O. Proc. Japan Acad., (2002)

- Define $\Phi(u) = |u|^{-1/a}$
- Invariant

$$\frac{d}{dt} \int_0^1 \Phi(f_{xx}(t,x)) dx = \int_0^1 \Phi'(f_{xx}) [-ff_{xxx} + af_x f_{xx}] dx$$
$$= \int_0^1 [\Phi(f_{xx}) + af_{xx} \Phi'(f_{xx})] f_x dx = 0.$$

Boundedness of $\int_0^1 |f_{xx}(t,x)|^{-1/a} dx$, $\int_0^1 |f_{xx}(t,x)| dx$

$$-1 \le a < 0.$$

Continued.

$$||f_x(t)||_{\infty} \le c$$

$$\frac{d}{dt} \int_0^1 f_{xx}(t,x)^2 dx = (2a+1) \int_0^1 f_x f_{xx}^2 dx$$

$$\frac{d}{dt} \int_0^1 f_{xx}(t,x)^2 dx \le c(2a+1) \int_0^1 f_{xx}(t,x)^2 dx$$

0 ≤ a < 1. Follows the recipe of Chen &O. Proc. Japan Acad., (2002)

Define

$$\Phi(u) = \begin{cases} |u|^{1/(1-a)} & (u < 0) \\ 0 & (0 < u) \end{cases}$$

• Then
$$\frac{d}{dt} \int_0^1 \Phi(f_{xxx}) dx = a \int_0^1 f_{xx}^2 \Phi'(f_{xxx}) dx \le 0$$

Non-smooth, self-similar blow-up solutions when $-1 < a < +\infty$

 $f(t,x) = \frac{F(x)}{T-t}$ F'' + FF''' - aF'F'' = 0.

Nontrivial solution exists for all -1 < a < +∞.</p>

Some profiles

Periodic, but not smooth.

a=0

a = 1.5

If 1 < a, we expect blow-up occurs even for smooth initial data. $_{x=0}$

Conclusion.

- Inviscid generalized Proudman-Johnson equation is analyzed.
- Except for the case of 1 < a < ∞, global existence/blow-up are determined depending on a.
- Smooth initial data give us global solutions for -1 < a < 1. But non-smooth blow-up solutions co-exist.
- For 1 < a, even smooth initial data are expected to lead to blow-up.

Current Status

