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Generalized Proudman-Johnson equation

Proposed in 2000 by Zhu and O. in order to measure
the balance of the convection and stretching terms.

foo+ ff —af f =

convection stretching VISCOSIty
0<x<1, 0<t a Isa parameter.

2 D Navier-Stokes  +W = (f (t,x),—Vf, (t,x)) =

XX XXXX

Proudman-Johnson eq. (a=1) ('62)
Riabouchinski ('24)



Generalized Proudman-Johnson equation

Why this equation is interesting to me?

w=—f o + fo, —af o =vo,,

XX 1

Cf. 3D vorticity equations.

o=curlu, o, +@@.V)o-(0.V)u=1Am

3D Navier-Stokes is formidable to me, but, 1D
analogue could be solved, | hoped. However, ...



Though simple, it contains some known
equations as particular members.

a=-(m-3)/(m-1), axisymmetric exact solutions of

the Navier-Stokes equations in R™. (zhu & O. Taiwanese J.
Math. 2000) (a=0 for 3D Euler)

a=1 (m=2) Proudman-Johnson equation
('24, '62)

a=-2, v=0. Hunter-Saxton equation ('91)
a=-3 Burgers equation (‘40)

1
U, =W, +U° —_[Ou(t, X)* dx.

XX

= OO



The Hunter-Saxton equation is a model

appearing 1n the nematic liquid crystal
theory. SIAM J. Appl Math. (1991)

fo+ff +— (f)

(known to be integrable)

By differentiation

f +f +2ff =0

XX



The Burgers equation

fo+ ff = of
Differentiate

f+ff +(f) =vf_

XX

Differentiate once more

foo+ ff +3f f =

XX XXXX



My goal; To determine whether blow-up occurs or not,
depending on the parameter a and the initial data.

What is expected is: global existence for small |a|] and blow-
up for large |a|.

wo=—-1, o+fo, -ato=vo,,

convection stretching viscosity

Stretching is a cause of blow-up, viscosity suppresses
blow-up, and convection is neutral. Are these heuristic
statements really substantiated? A little surprise:
convection term isn’t a bystander. It suppresses blow-up:
O & Onhkitani , J. Phys. Soc. Japan, '05.

For the sake of simplicity, we consider in 0<x<1 with periodic
boundary condition.



Summary of results in the case ot v >0.

If -3=a=1,noblow-up occurs. Every :
solution tends to zero.

X. Chen & O., Proc. Japan Acad., (2002)

If a<-3 or 1<a, numerical experiments
strongly suggest that:

v large solutions blow up

d y /
~ small solutions decay to zero. ik
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Numerical experiments (Zhu & O.
Tatwanese J. Math. 2000)
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The Iimit as a —©

1:txx T 1’-fxxx o a1:X fXX = VfXXXX
redefine 1 V
1 ~ 1:txx +_ ff 1’-x 1:xx — 1:XXXX
f - gf a a’ d d
and let A tend to infinity. ftxx fx fXX — foxxx
1
1:tX B E(fx)2 — foxx T 7/(t)
1 > L 2
U_Efx’ u =w, +U —Lu(t,x) dx.



. 2 2
Blow-up occurs in U =, +U*— | u(t,x)*dx

Large solutions blow-up and small solutions exists
and decay to zero. Budd et al. ("93, SIAM J. Appl.
Math.), O.& Zhu (‘00)

But the asymptotic behavior as t approach the
blow-up time Is quite different.

e U =VU U




‘Budd, Dold & Stuart ( '93), Zhu &O. ( '00)
U =wl,, +U° —jlu(t X)° dx
=P t 7YXx 0 ’ '

[Lutt, x)dx= [ u(0, x)dx

lim,_; u(t, X,) =+,
lim_;u(t,y)=—o0 (Y #X,)

u(t, x,) x=1

lIm

t—>T




If v=0, ut(t,x):u(t,x)z—jJU(t,y)zdy

jolu(t,x)dx:O

Theorem ( X. Chen & O., ‘03, J. Math. Sci. Univ.
Tokyo).
Blowup iff |{x; u(0,x)=maxu(0, * )}|<'Y




I want to know a proot for blow-up
when v>0, -0o<a<-3 1<a<o,




The case of v=0. We have fragmental
knowledge only.

Blow-ups occurif a<-2 (Zhu & O.)
No blow-up for a=0 (Zhu & O.)
Blow-ups occur if a=1 (Childress & others)

Blow-ups occur iIf a=-3 (Burgers, shock
wave)

Blow-ups occur if a=-2 (Hunter & Saxton)



My report today

Blow-up for -2 <a<-1. (Remember that the

solutions exist globally in this region if v > 0. Viscosity
helps global existence.)

Global existence for -1 £ a <1 & smooth
Initial data.

Self-similar, non-smooth blow-up solutions
exist for -1 <a < o,

So far, | have no conclusion in the case
of 1 < a.



A remark on numerical experiments

In the case of v=0, (Euler), numerical experiments
are sometimes (but not often) misleading.

f

XX

+ff =0 T

(a=0, 3D Euler)

Rigorous analysis
IS necessary

X=-



Starting point: local existence theorem

With a help of Kato-Lai theorem (J. Func. Anal. '84),

o=—-1 ,1=06(w), o+ fo, —afo=vo,,

XX !

0) e L°(0,1)/ R,
Theorem (zZhu & O.'00). For all ©(0)L°(01)

there exist T and a unique solutionin 0 St<T.
e C([0,T];L°(0,))~C*([0,T];H *(0,1))

A priori bound for Ha)(’[)H2 is enough for global
existence



Analysis for global existence/blow-up
proceeds in different ways in different
philosophy 1n

o< g < -2, 2Sa<1,
1S5a<0, 0Sa<1

§(t) = [, £.(6.%0x

= The case of -n<a< -2
IS settled in Zhu & O.,

2
;I'Zag\(/)vg)nese J. Math. %¢(t) > b¢(t)3




‘ Summary of the results.

a<-3 a=-3 a=-1 a=1 1<a




25a<-1. Follows the recipe of
Hunter & Saxton ( '91)

Use the Lagrangian coordinates

X =ft.X(t3), X(08)=¢ (0=<<)
Define Y (t:6) = X (L, ).

V=) -1V, 10= ]

V tends to -«.

Global weak solution in the case of a= -2 (Bressan &
Constantin ‘05).



Blow-up occurs both in -o<a < -2 and in
-2 a<-1 but

Asymptotic behavior is quite different.

‘ fX (’[)‘ 2 blow up. (-~ <a < -2)

| £,

((2sa<-1)

, IS bounded. H fx (t) blows up.

LOO



-1=a<0. Follows the recipe of Chen
&O. Proc. Japan Acad., (2002)

Define CD(U) :‘ U ‘—1/a

Invariant

dx

X XX]

Dot @t x)dx =[O/, )[-fF,, +af
ajoq)( o (£ 30)dx = | @'(F,)[-ff, +2

_ j;[cb( £ Y+af @'(f)]f.dx=0.

1/a

1
Boundedness of f [ (t %) fo\ f (€, X)|dX



1sa<0. Continued.

|f, ()] <c

f+ff —af f_=f _ givesus

XX XXXX

d 1 2 . 1 2
EL f.(t, X) dx_(2a+1)jof f 2dx

X XX

d 1 2 1 2
- | fo(t)?dx <ca+D)] f,(t,x)dx



0=a<1. Follows the recipe of Chen
&O. Proc. Japan Acad., (2002)

Define f‘u‘u(l—a) (u <O)

YW= o<

d 1 (2
Then Ejocp(f Jdx =af fi0'(f,)dx <0

XXX XXX

Ll‘ 1:xxx (t1 X)‘dX IS bounded. H fXXHoo IS bounded.



Non-smooth, self-similar blow-up
solutions when -1 <a < +o

F (%)
T -t
F"+FF"—aFF"=0.

f(t,X) =

Nontrivial solution exists for all -1 < a < +w,.



‘Some protiles

= Periodic, but not smooth.

a=0




It 1 <a, we expect blow-up occurs even
for smooth initial data. .
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Conclusion.

Inviscid generalized Proudman-Johnson
equation is analyzed.

Except for the case of 1 < a < «», global
existence/blow-up are determined depending
on a.

Smooth initial data give us global solutions
for-1 <a<1. But non-smooth blow-up
solutions co-exist.

For 1 < a, even smooth initial data are
expected to lead to blow-up.



‘ Current Status

a=-3 a=-1 a=1

O<v

O=v

Self-similar
blow-up

Type of discrete points? everywhere?
blow-up




