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Inviscid Limit: Time Matters

•SE(t)u0, solution of incompressible Euler eqns.

•SNSν (t)u0, solution of incompressible NSE

Finite Time Zero Viscosity Limit:

lim
ν→0

SNSν (t)u0 = SE(t)u0, for t ≤ T.

Infinite Time Zero Viscosity Limit:

lim
ν→0

lim
T→∞

1

T

∫ T
0

Φ(SNSν (t)u0)dt =
∫

Φ(u)dµE(u),

Time and zero viscosity limits do not commute.



Finite Time Zero Viscosity Limit

•Smooth regime: Swann (1971) and Kato (1972) : short time. Constantin
(1986): As long as solution exists, convergence in Hs′, with s′ < s, for
s > d/2 + 1. Optimal rate.

•Smooth regime: Convergence in Hs: Kato (1975) short time, Masmoudi
(2006), as long as solution remains in Hs. Optimal rate.

•Nonsmooth regime = Vortex patches: Constantin and Wu (1996), Abidi
and Danchin (2004), Masmoudi (2006). Rates of convergence exist, but
deteriorate with loss of smoothness.



Damped Driven NSE

{
∂tu+ u · ∇u− ν∆u+ γu+∇p = f,

∇ · u = 0

with γ > 0 a fixed damping coefficient, ν > 0, f time independent with
zero mean and f ∈ (W1,∞ ∩H1)(R2).

Theorem 1 Let u0 be smooth, divergence-free, u0 ∈ W1,p(R2)2, p ≥ 2.
Then the solution with initial datum u0 exists for all time, is unique, smooth,
and obeys the energy equality

d

2dt

∫
R2
|u|2dx+ γ

∫
R2
|u|2dx+ ν

∫
R2
|∇u|2dx =

∫
R2
f · udx.



The kinetic energy is bounded uniformly in time, with bounds independent
of viscosity:

‖u(·, t)‖L2(R2) ≤ e−γt
{
‖u(·,0)‖L2(R2) −

1

γ
‖f‖L2(R2)

}
+

1

γ
‖f‖L2(R2)

The vorticity ω (the curl of the incompressible two dimensional velocity)

ω = ∂1u2 − ∂2u1 = ∇⊥ · u

obeys

∂tω+ u · ∇ω − ν∆ω+ γω = g,

with g ∈ (L2∩L∞)(R2) the vorticity source, g = ∇⊥ ·f . The p-enstrophy
is bounded uniformly in time, with bounds independent of viscosity

‖ω(·, t)‖Lp(R2) ≤ e−γt
{
‖ω(·,0)‖Lp(R2) −

1

γ
‖g‖Lp(R2)

}
+

1

γ
‖g‖Lp(R2)



Stationary Solutions

Let u(ν) be a sequence of solutions of{
−ν∆u+ γu+∇p+ u · ∇u = f,

∇ · u = 0

with vorticities ω(ν) obeying{
γω+ u · ∇ω − ν∆ω = g,

ω = ∇⊥ · u.

We let ν → 0 but keep f, g, γ fixed.



Theorem 2 There exists a subsequence ω(ν) that converges weakly

ω(0) = w − lim
ν→0

ω(ν)

in L2. The function ω(0) is a renormalized solution of the inviscid equation

{
γω(0) + u(0) · ∇ω(0) = g

ω(0) = ∇⊥ · u(0)

In addition, ω(0) ∈ L2(R2), u(0) ∈ H1(R2),the equation holds inW−1,q
loc (R2)

for any 1 < q < 2, and the limit balance

γ‖ω(0)‖2
L2(R2) =

∫
R2
gω(0)dx

holds.



Absence of anomalous dissipation

Theorem 3 Let ω(ν) be a sequence of solutions. Then the enstrophy dis-
sipation vanishes in the limit ν → 0:

lim
ν→0

ν
∫
R2
|∇ω(ν)|2dx = 0

Proof Fatou + limit balance:

lim sup
ν→0

ν‖∇ω(ν)‖2
L2(R2) ≤ lim sup

ν→0

∫
R2
gω(ν)dx− lim inf

ν→0
γ‖ω(ν)‖2

L2(R2)

≤
∫
R2
gω(0)dx− γ‖ω(0)‖2

L2(R2) = 0.



Statistical Stationary Solutions

The Bogoliubov-Krylov method

LIMT→∞
1

T

∫ T
0

Φ(SNS,γ(t))dt

and statistical stationary solutions in the sense of Foias:

Definition A stationary statistical solution (SSS) of the damped, driven
Navier-Stokes equation on the phase space of vorticity is a probability mea-
sure µν on L2(R2) such that

1.
∫
L2(R2)

‖ω‖2H1(R2) dµ
ν(ω) <∞;



2.
∫
L2(R2)

〈u · ∇ω+ γω − g,Ψ′(ω)〉+ ν〈∇xω,∇xΨ′(ω)〉dµν(ω) = 0

for any test functional Ψ ∈ T , and

3.
∫
E1≤‖ω‖L2≤E2

{
γ |ω|2L2 + ν ‖ω‖2 − 〈g, ω〉

}
dµν(ω) = 0.

where the class of cylindrical test functions T is the set of functions Ψ :

L2(R2) → R of the form

Ψ(ω) = ψ (〈α(ω),w1〉, . . . , 〈α(ω),wm〉) , (1)

where ψ is aC1 scalar valued function defined on Rm,m ∈ N; w1, . . . ,wm

belong to H1
0(Ω), where Ω ⊂ R2 is a bounded domain, and

α(ω) = Jεβ(Jεω)



where β ∈ C2 is a compactly supported function of one real variable and
Jε is the convolution operator

Jε(ω) = jε ? ω

with a standard mollifier.



Theorem 4 For u0 ∈ (W∞ ∩H1)(R2), the Banach limit

LIMT→∞
1

T

∫ T
0

Φ(SNS,γ(s)u0)ds =
∫
L2

Φ(ω)dµ(ω)

is a SSS of the damped, driven NSE. Such limits are supported in{
ω :

∣∣∣∣∣ ‖ω‖Lp ≤ ‖g‖Lp
γ

}
for 2 ≤ p ≤ ∞.



Definition A probability measure µE on L2(R2) is a renormalized station-
ary statistical solution of the damped, driven Euler equation if it satisfies∫

L2(R2)
〈γω − g,Ψ′(ω)〉 − 〈uω,∇xΨ′(ω)〉dµE(ω) = 0;

for any test fuctional Ψ ∈ T0, where Ψ ∈ T0 is a subclass of Ψ ∈ T ,
where the functions wj satisfy wj ∈ C1

0(Ω), where Ω is bounded in R2.
Furthermore, we say that a renormalized stationary statistical solution of
the Euler Equation µE satisfies the enstrophy balance if∫

L2(R2)

{
γ |ω|2L2 − 〈g, ω〉

}
dµE(ω) = 0.

Theorem 5 Any sequence of SSS of the damped, driven NSE equation
has a weakly convergent subsequence. The limit µE is a RSSS of the
damped, driven Euler equation. If the supports of the SSS are uniformly
bounded in L∞ then µE satisfies the enstrophy balance.



Idea for the proof of enstrophy balance

From cylindrical test functions one reaches∫
L2(R2)

〈β(ωε))ε, (β′(ωε)(γω − g)ε)ε〉dµE(ω)

+
∫
L2(R2)

〈β(ωε))ε, (β′(ωε)∂k(ukω)ε)ε〉dµE(ω) = 0

where hε = Jεh. The first integral converges to the required enstrophy
balance. The second integral converges to zero. In order to see that, we
write

Iβ,ε =
∫
R2

(β(ωε))ε
[
β′(ωε)∂k(ukω)ε

]
ε
dx

Integrating by parts we write

Iβ,ε = Jβ,ε +Kβ,ε



with

Jβ,ε = −
∫
∂k(β(ωε))ε

[
β′(ωε)(ukω)ε

]
ε
dx

and

Kβ,ε = −
∫

(β(ωε)ε)
[
β′′(ωε)(∂kωε)(ukω)ε

]
ε
dx

We split Jβ,ε further

Jβ,ε = Lβ,ε +Mβ,ε

with

Lβ,ε = −
∫
∂k(β(ωε))ε

[
β′(ωε)(uk)ε(ω)ε

]
ε
dx

and

Mβ,ε = −
∫
∂k(β(ωε))ε

[
β′(ωε)ρε(uk, ω)

]
ε
dx



We estimate

|Mβ,ε| ≤ C sup |β| sup |β′|
1

ε
‖ρε(u, ω)‖L1(R2)

We used the fact that

‖∂k(β)ε‖L∞ ≤ C
1

ε
‖β‖L∞

From the properties of ρ it follows that

|Mβ,ε| ≤ C sup |β| sup |β′|‖ω‖L2

∫
j(z)|z|‖δεzω‖L2dz

where (δhω)(x) = ω(x − h) − ω(x). We fix ε > 0 and we consider a
sequence of compactly supported functions β(y) that converge uniformly
on the compact R∞ = [−2‖g‖L∞γ ,2‖g‖L∞γ ] together with two derivatives
to the function y , (i.e β → y, β′ → 1, β′′ → 0) and such that

|β(y)|+ |β′(y)|+ |β′′(y)|) ≤ C.



It is easy to see that for fixed ε > 0

lim
β→y

∫
(Lβ,ε +Kβ,ε)dµ

E = 0

On the other hand, from∫
|Kβ,ε|dµE ≤ C

∫ ∫
j(z)|z|‖δεzω‖L2dzdµ

E

it follows that

lim
ε→0

lim sup
β→y

∫
|Kβ,ε|dµE = 0

We used that the support of µE is bounded in L∞.



Absence of anomalous dissipation

Theorem 6 Let f ∈ (H1 ∩W1,∞)(R2). Let u0 ∈ H1 ∩W1,∞ be diver-
gence free. Let ων be the curl of the solution of the damped, driven NSE.
Then

lim
ν→0

lim sup
T→∞

ν

T

∫ T
0

∫ ∣∣∣∇ω(ν)(x, t)
∣∣∣2 dxdt = 0

holds.



Idea of proof

We argue by contradiction. We find δ > 0, a sequence of viscosities,
νj → 0 and for each, a sequence of times T (j)

k → ∞ so that at each
fixed νj, the time averges of the dissipation integrals are bounded below
by δ > 0. We use the NSE equation and the balance

νj

T
(j)
k

∫ T (j)
k

0
‖∇ωνj‖2

L2dt+
1

T
(j)
k

∫ T (j)
k

0

{
γ‖ωνj‖2

L2 − 〈g, ωνj〉
}
dt = O(

1

T
(j)
k

)

Passing to a subsequence of times, still at fixed νj we obtain a SSS of
NSE, µνj , with ∫ {

γ|ω|2
L2 − 〈g, ω〉

}
dµνj ≤ −δ

The support of the sequence is bounded apriori in L∞∩L2, uniformly in j.
Passing to a subsequence we have a RSSS of the damped, driven Euler



equations µE that satisfies∫ {
γ|ω|2

L2 − 〈g, ω〉
}
dµE(ω) ≤ −δ

and that is absurd in view of the enstrophy balance of the limit.



Remarks

•result conjectured by D. Bernard in 2000.

•Finite time zero viscosity limit without damping: Eyink, and Lopes-Filho,
Mazzucato, Nussenzveig Lopes.

•No vanishing rates known.

•No infinite time result w/o damping known.



Stochastic Lagrangian Representation: Navier-Stokes

Theorem 7 Let W be an n-dimensional Wiener process. Let k ≥ 1 and
assume u0 ∈ Ck+1,α is a deterministic divergence-free vector field. Let
(u,X) solve the stochastic system

dX = udt+
√

2νdW,
A = X−1,

u = EP
{(
∇TA

)
(u0 ◦A)

}
Then u solves the deterministic incompressible NSE:

∂tu+ u · ∇u− ν∆u+∇p = 0,

∇ · u = 0

•When ν = 0, all is deterministic, and we recover the Eulerian-Lagrangian
deterministic representation based on the Weber formula.



Remarks

•A = X−1 is the spatial inverse (“back-to-labels”). It exists, and it is as
smooth as X. Both are stochastic.

•Forced NSE
dX = udt+

√
2νdW,

A = X−1

u = EP
{
(∇TA)

[
u0 +

∫ t
0(∇tX)f(Xs, s)ds

]
◦A(t)

}
represents

∂tu+ u · ∇u− ν∆u+∇p = f, ∇ · u = 0.

•Representations for Lans-alpha, Burgers. No direct representation for
Leray regularization.



Local Existence for the Stochastic System, Remarkable Formulae

Theorem 8 Let u0 ∈ Ck+1,α be divergence-free. There exists a T >

0 depending on the norm of u0, but independent of viscosity, so that
a solution (u,X) of the stochastic system exists on [0, T ]. Moreover,
‖u‖Ck+1,α ≤ U for t ∈ [0, T ] with U dependent on the norm of the ini-
tial data and T .

Theorem 9 Let ω = ∇× u, ω0 = ∇× u0. Then

ω = E {((∇X)ω0) ◦A} .

In two dimensions,

ω = E [ω0 ◦A] .



For forced systems in n = 2,3, replace in the formulae above ω0 by

ξt = ω0 +
∫ t
0
(∇Xs)−1g(Xs, s)ds

with g = ∇× f .

•Circulation is conserved.

Let

ũ = P
{
(∇tA)(u0 ◦A)

}
This is a stochastic incompressible velocity, with initial data u0 and

u = Eũ∮
X(γ)

ũ · dr =
∮
γ
u0 · dr.



Stochastic Lagrangian Transport

•The “back-to-labels” process obeys

dAt + [u · ∇A− ν∆A] dt+
√

2ν∇AdW = 0

For any smooth function φ(a, t), v(x, t) = φ(A(x, t), t) obeys

dvt + [u · ∇v − ν∆v] dt+
√

2ν∇vdW = ∂tφ ◦A

•Cancellation, chain rule as if it were a first order PDE, due to the joint
quadratic variation.

•Valid if u is smooth, not necessarily divergence-free.



Stochastically Passive Scalars

dθt + [u · ∇θ − ν∆θ] dt+
√

2ν∇θdW = 0

•θ1, θ2, sps ⇒ θ1θ2sps

•with viscosity, inviscid invariants become stochastically passive



Stochastic Particles

Let

m = M(a, α, t)

solve

dM = (u(X, t) +G(X,M, t))dt+
√

2κdW

with

M(a, α,0) = α.

Let

(A(x, t), R(x,m, t)) = (X(a, t),M(a, α, t))−1

It exists and a.s. for all t

A(X(a, t), t) = a, R(X(a, t),M(a, α, t)) = α.



Then

f(x,m, t) = f0(A(x, t), R(x,m, t))det (∇mR) (x,m, t)

solves

df + (u · ∇xf + divg(Gf)− κ∆gf − ν∆xf)dt =
−
√

2κ∇gf · dW −
√

2ν∇xf · dW = 0

and so

f = Ef

solves



∂tf + u · ∇xf + divg(Gf) = κ∆gf + ν∆xf.

•ν ≥ 0, κ ≥ 0.

•Cartesian noise.



Idea of proof

If

dX = U(X, t)dt+
√

2νMdW

with M a constant matrix and if we set
A = X−1 and P (D) = Tr(MMT (∇⊗∇)), then

f(x, t) = f0(A(x, t))exp{
∫ t
0
V (X(a, s), s)ds|a=A(x,t)}

solves

df + (u · ∇xf − νP (D)f − V (x, t)f)dt+
√

2ν∇xfMdW = 0



Application: generalized relative entropies

Linear Fokker-Planck with potential

Dρ = ∆xρ− divx(Uρ) + V ρ

∂tf = Df, ∂tρ = Dρ, ρ > 0

∂tφ+D∗φ = 0, φ ≥ 0.

Michel, Mischer, Perthame: if H is convex, then

d

dt

∫
H

(
f

ρ

)
φρdx ≤ 0.



Stochastic understanding and proof

dX = Udt+
√

2dW

ψf0(x, t) = f0(A(x, t)) exp
{∫ t

0
V (X(a, s), s)ds|a=A(x,t)

}
det(∇xA)(x, t)

Then ψ = ψf0 solves

dψ+ (∇x · (Uψ)−∆xψ − V ψ) dt+
√

2∇xψ · dW = 0

with initial datum ψ(x,0) = f0(x). Therefore E(ψf0) solves the Fokker-
Planck eqn.



Deterministic

∂tφ+D∗φ = 0, φ ≥ 0 ⇒

M(a, t) = φ(X(a, t), t) exp
{∫ t

0
V (X(a, s), s)ds

}

is a martingale.

ψρ0(x, t)φ(x, t)H
(
ψf0(x,t)

ψρ0(x,t)

)
=

ρ0(A(x, t))H
(
f0(A(x,t))
ρ0(A(x,t))

)
M(A(x, t), t)det(∇xA)

Consequently we have almost surely∫
ψρ0(x, t)H

(
ψf0(x, t)

ψρ0(x, t)

)
φ(x, t)dx =

∫
ρ0(a)H

(
f0(a)

ρ0(a)

)
M(a, t)da.



(stochastically passive scalar)( martingale ◦A)(det(∇xA)), integrated dx

d

dt
E
{∫

ψρ0H

(
ψf0
ψρ0

)
φdx

}
= 0.

MMP follows from

E
(
ψρ0

)
H

(
E(ψf0)

E(ψρ0)

)
≤ E

{
ψρ0H

(
ψf0
ψρ0

)}

which follows from Jensen for

Pf = E
(
ψρ0

Eψρ0
f

)
.



Variable diffusivity

Dρ = ν∂i(aij∂jρ)− divx(Uρ) + V ρ

aij(x, t) = σip(x, t)σjp(x, t)

A(D)ρ = aij∂i∂jρ

uj(x, t) = Uj(x, t)− ν∂i(aij(x, t))

P = V − divx(U)

Dρ = νA(D)ρ− u · ∇xρ+ Pρ.



Stochastic Lagrangian Flow

In order to represent solutions of equations with variable diffusivity we need
to modify the drift:

vj(x, t) = uj + 2ν(∂kσjp)σkp = Uj − ν(∂kσkp)σjp + ν(∂kσjp)σkp

Let X(a, t) be the strong solution of the stochastic differential system

dXj(t) = vj(X, t)dt+
√

2νσjp(X, t)dWp

with initial data X(a,0) = a. The map X is smooth and the determinant

D(a, t) = det(∂aX(a, t))

obeys the SDE

d(D(a, t)) = [D(a, t)]×{
[(divxv)(x, t) + 2νE(x, t)]|x=X(a,t) dt+

√
2ν(∂k(σkp))(x, t)|X(a,t)dWp

}



with

E(x, t) =
∑
i<j

∑
p
det(∂iσjp)ij.

The map A(x, t) satisfies the stochastic partial differential system

dAj +
(
u · ∇xAj − νA(D)Aj

)
dt+

√
2ν(∂kAj)σkpdWp = 0

The process ψ = ψf0 given by

ψ(x, t) = f0(A(x, t)) exp
{∫ t

0
P (X(a, s), s)ds|a=A(x,t)

}
solves

dψ − (Dψ) dt+
√

2ν∇xψσdW = 0

with initial datum ψ(x,0) = f0(x).



If φ solves ∂tφ+D∗φ = 0 then

M(a, t) = φ(X(a, t), t) det (∂aX(a, t)) exp
{∫ t

0
P (X(a, s), s)ds

}
is a martingale.



Theorem 10 Let h0 and ρ0 be smooth time independent deterministic func
tions. Consider the stochastically passive scalar θh0

(x, t) = h0(A(x, t))

and the process ψρ0 with initial datum ρ0. Consider also φ(x, t), a deter-
ministic solution of ∂tφ+D∗φ = 0. Then the random variable

E(t) =
∫
Rn
φ(x, t)ψρ0(x, t)θh0

(x, t)dx

is a martingale. Consequently, if H is convex, ρ = Eψρ0, f = Eψf0, then∫
Rn
φρH

(
f

ρ

)
dx ≤

∫
Rn
φ(0)ρH

(
f0
ρ0

)
dx
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Stochastic Representation: Language

f ∈ BV [0, T ] ⇔ sup
P

∑
k

|f(tk+1 − f(tk)| <∞

f ∈ BV ⇒ df is a Radon measure∫ T
0
φdf usual Stieltjes integral

•Brownian motion is not BV.∑
k

|W (tk+1)−W (tk)| = ∞ a.s.



Stochastic (Itô) Integral

∫ t
0
φdW = lim

N→∞

N−1∑
k=0

φ(tk)(W (tk+1)−W (tk))

E
∑
k

(W (tk+1)−W (tk))
2 = T

Xt continuous (Ft) adapted. Martingale:

E(Xt|Fs) = Xs, a.s t > s.

Example:

Xt = x+
∫ t
0
φdW



Semimartingale:

St = Mt +Bt, (Martingale + BV).

∫ t
0
φdS = lim

N→∞

N−1∑
k=0

φ(tk)(M(tk+1)−M(tk)) +
∫ t
0
φdB

Example: SDE

dX = u(X)dt+ σ(X)dW

is the semimartingale eqn

Xt = x0 +
∫ t
0
σ(Xs)dW +

∫ t
0
u(Xs)ds



Quadratic Variation

〈X〉t = lim
‖∆‖→0

N−1∑
k=0

(
Xt∧tk+1 −Xt∧tk

)2
Examples:

•Continuous BV process: 〈X〉t = 0.
•Brownian motion: 〈W 〉t = t.
•If Xt is a continuous bounded (r. local) martingale then 〈X〉t exists, and

X2
t − 〈X〉t

is a bounded (r. local) martingale.



Joint Quadratic Variation

〈X,Y 〉t = lim
‖∆‖→0

N−1∑
k=0

(Xt∧tk+1 −Xt∧tk)(Yt∧tk+1 − Yt∧tk)

•If M is a continuous local martingale and f ∈ L2(〈M〉) then the Itô
integral ∫ t

0
fdM

is a continuous local martingale and

〈
∫
fdM, N〉t =

∫ t
0
fsd〈M,N〉s

∀ N continuous local martingale.



Itô Formula

•If F (x1, . . . , xn, t) is deterministic and smooth and X = (X1, . . . Xn) is
a continuous (vector valued) semimartingale then

F (Xt, t)− F (X0,0) =∫ t
0 ∂sF (Xs, s)ds+

∫ t
0∇F (Xs, s) · dXs + 1

2

∫ t
0
∂2F (Xs,s)
∂xi∂xj

d〈Xi, Xj〉s

In differential form:

d(F (X, t)) = (∂iF )dXi +

(
1

2

∂2F

∂xi∂xj
d〈Xi, Xj〉+ ∂tFdt

)



Generalized Itô -Wentzell- Bismut- Kunita Formula

•If F (x, t) is a continuous C2 process and a C1 semimartingale, and if
gt is a continuous vector-valued predictable process, then the composition
F (gt, t) is a continuous predictable process and

F (gt, t)− F (g0,0) =
∫ t
0 ∂iF (gs, s)dgis + 1

2

∫ t
0
∂2F (gs,s)
∂xi∂xj

d〈gis, g
j
s〉

+
∫ t
0 F (gs, ds) + 〈

∫ t
0 ∂iF (gs, ds), git〉

In differential form:

d(F (gt, t)) = ∂iF (gt, t)dgit +
1
2
∂2F (gt,t)
∂xi∂xj

d〈git, g
j
t 〉

+(dF )(gt, t) + d〈
∫ t
0 ∂iF (gs, ds), git〉.



Here ∫
F (gs, ds) = lim

N→∞

N−1∑
k=0

(
F (gtk, tk+1)− F (gtk, tk)

)
and ∫

∂iF (gs, ds) = lim
N→∞

N−1∑
k=0

(
∂iF (gtk, tk+1)− ∂iF (gtk, tk)

)
are usual Itô integrals.

Proof explains it:

F (gt, t)− F (g0,0) =
∑N−1
k=0

{
F (gtk, tk+1)− F (gtk, tk)

}
+

+
∑N−1
k=0

{
F (gtk+1, tk+1)− F (gtk, tk+1)

}



and
N−1∑
k=0

{
F (gtk+1, tk+1)− F (gtk, tk+1)

}
= I + J +K

with

I =
N−1∑
k=0

{
∂iF (gtk, tk+1)− ∂iF (gtk, tk)

}
(gitk+1

− gitk),

J =
N−1∑
k=0

∂iF (gtk, tk)(g
i
tk+1

− gitk)

K =
1

2

N−1∑
k=0

∂2F (ξk, tk+1)

∂xi∂xj
(gitk+1

− gitk)(g
j
tk+1

− g
j
tk
)



lim
‖∆‖→0

I = 〈
∫
∂iF (g, ds), gi〉, lim

‖∆‖→0
J =

∫
∂iF (g, s)dgi

lim
‖∆‖→0

K =
1

2

∫
∂2F (g, s)

∂xi∂xj
d〈gi, gj〉.


