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Inviscid Limit: Time Matters

¢SE (t)ug, solution of incompressible Euler egns.

e SNS(t)ug, solution of incompressible NSE

Finite Time Zero Viscosity Limit:

im SN ()ug = ST (t)ug, for t < T.

v—0

Infinite Time Zero Viscosity Limit:

o 1T NS _ E
tim tim — [ () Wuo)dt = [ S(w)dp® (w),

Time and zero viscosity limits do not commute.



Finite Time Zero Viscosity Limit

eSmooth regime: Swann (1971) and Kato (1972) : short time. Constantin
(1986): As long as solution exists, convergence in o', with s’ < s, for
s > d/2 + 1. Optimal rate.

eSmooth regime: Convergence in H®: Kato (1975) short time, Masmoudi
(2006), as long as solution remains in H*. Optimal rate.

eNonsmooth regime = Vortex patches: Constantin and Wu (1996), Abidi
and Danchin (2004), Masmoudi (2006). Rates of convergence exist, but
deteriorate with loss of smoothness.



Damped Driven NSE

otu +u-Vu—vAu+~yu+ Vp = f,
V.-u=0

with v > 0O a fixed damping coefficient, v > O, f time independent with
zero mean and f € (W12 n H1)(R?).

Theorem 1 Let ug be smooth, divergence-free, ug € W1P(R2)2, p > 2.
Then the solution with initial datum uq exists for all time, is unique, smooth,
and obeys the energy equality

d 2 2 2., _
Q—dt/R2|u| dw+7/R2|u| dm—|—V/R2|Vu| d:v—/RQf-uda:.



The kinetic energy is bounded uniformly in time, with bounds independent
of viscosity:

[l Ol 2y < e {nu(-, 0 22y — %nfn,;z(Rz)} + 21l 2w
The vorticity w (the curl of the incompressible two dimensional velocity)
w = 01up — Oouy =V u
obeys
Ow+u-Vw —rvAw + yw = g,
with g € (L2N L>)(RR?) the vorticity source, g = V- f. The p-enstrophy

Is bounded uniformly in time, with bounds independent of viscosity

_ 1 1
oG, Bl pg2y < e {nw(-, 0)| Lo(r2) — ;ngnmz)} + gl oz,



Stationary Solutions

Let u(*) be a sequence of solutions of

—vAu+~vyu+ Vp+u-Vu=f,
V.-u=20

with vorticities w(¥) obeying

w=V+,. .

We let v — O but keep f, g, ~v fixed.

{’yw—l—u-Vw—l/Aw=g,



Theorem 2 There exists a subsequence w®) that converges weakly

w® = — lim w®
v—0

in L2. The function w(%) is a renormalized solution of the inviscid equation

w(0) = i .,4(0)

In addition, w(0) € L2(R2), u(9) ¢ H1(R2),the equation holds in ngcl,q(RQ)
forany 1 < q < 2, and the limit balance

N @2y = [, 90 @da

holds.



Absence of anomalous dissipation

Theorem 3 Let w(*) be a sequence of solutions. Then the enstrophy dis-
sipation vanishes in the limit v — O:

lim ,,/ Vo) 2de = 0
R2

vr—0

Proof Fatou + limit balance:

limsup v[| Vw175 poy < limsup

v—0 v—0 R

[t 1O~

, 90 dz —timiinf 3w 25 oy



Statistical Stationary Solutions

The Bogoliubov-Krylov method

1 T
LIMy oo /O S (SN (1)) at

and statistical stationary solutions in the sense of Foias:

Definition A stationary statistical solution (SSS) of the damped, driven

Navier-Stokes equation on the phase space of vorticity is a probability mea-
sure p¥ on L2(R?) such that

2 1% .
1. L2(R2) ”wHHl(RQ) dp” (w) < oo;



2 /L2(R2)<u - Vw +qw — g, V() + v(Vaw, Vo W' (w))dp” (w) = 0
for any test functional ¥ € 7, and

2 2 v
- Vlwli2 +vlwl® — (g w);du”(w) = 0.
/E1§||w||L2§E2{ L }

where the class of cylindrical test functions 7 is the set of functions W :
L2(R?) — R of the form

V(w) =9 ((a(w),w1),..., (a(w), Wwm)), (1)

where v is a C'! scalar valued function defined on R™, m € N: w1, ..., wm
belong to H&(Q), where Q C R? is a bounded domain, and

a(w) = JeB(Jew)



where 8 € C? is a compactly supported function of one real variable and
Je Is the convolution operator

Je(w) = Je xw

with a standard mollifier.



Theorem 4 For ug € (W N H1)(R?), the Banach limit

LJMT%O% /O ch(sNSN(s)uo)ds — /L | P(w)dp(w)

Is a SSS of the damped, driven NSE. Such limits are supported in

for: | oz < 1oL}

for 2 < p < o0.



Definition A probability measure 2 on L2(R?) is a renormalized station-
ary statistical solution of the damped, driven Euler equation if it satisfies

/ , B o
/LQ(RQ)WCU — g, V' (w)) — (uw, VzW'(w))du” (w) = 0;

for any test fuctional W € 7, where W € 7 is a subclass of W € 7,
where the functions w; satisfy w; € C&(Q), where Q is bounded in R2.
Furthermore, we say that a renormalized stationary statistical solution of
the Euler Equation p% satisfies the enstrophy balance if

/[,Q(RQ) {7 |w|%2 — (g,w>} dME(w) = 0.

Theorem 5 Any sequence of SSS of the damped, driven NSE equation
has a weakly convergent subsequence. The limit u£ is a RSSS of the
damped, driven Euler equation. If the supports of the SSS are uniformly
bounded in L then £ satisfies the enstrophy balance.



Idea for the proof of enstrophy balance

From cylindrical test functions one reaches

/LQ(R2)<B(W6))G, (' (we) (yw — 9)e)e>d,uE(w)

/ E _
F [ g (3)er (B (D) )e)dn () = 0

where he = Jch. The first integral converges to the required enstrophy

balance. The second integral converges to zero. In order to see that, we
write

Ige= [ ,(B(w))e |B'(we)p(upw)e] dx

Integrating by parts we write

Ige = Jget+ Kg,



with
Joe=— [ 0u(Bw)e |8 (w ()] dw

and

Kpe=— [(Bwe) [8"(w) (0w (ww)e] de
We split Jg . further

Jg)e = Lﬁ,e -+ M57€

with

Lye =~ [ 0(Bw)e [B/(w) (wp)e(w)e] da
and

Mg =~ [ 0(8we)e [B'(wpe(up,w)]_de



We estimate

1
|M5,€| < Csup|B|sup |5/|Z||Pe(uaw)||Ll(R2)
We used the fact that

1
10, (B)ell oo = C— 1] o

From the properties of p it follows that

Mgl < Csup8lsup |8l[lwl 2 [ 3()Izllbeswll 2

where (0pw)(x) = w(x — h) — w(x). We fix e > 0 and we consider a
sequence of compactly supported functions 8(y) that converge uniformly
on the compact Roo = [—2llglree 2”9”7”0] together with two derivatives

5
to the function y , (i.,e 8 — y, 3’ — 1, 3”7 — 0) and such that

B+ 18 W+ 18"W)) <C.




It is easy to see that for fixed ¢ > O

BIiLny/(LB,G + Kﬁ,e)dﬁ‘E =

On the other hand, from
[1Ks ddn® < [ [ Al 18ewll 2dzdn®
it follows that

lim lim sup/|K5€|du =0

e—0

We used that the support of u£ is bounded in L°.



Absence of anomalous dissipation

Theorem 6 Let f € (H1 n W) (R2). Let ug € HL N W12 be diver-
gence free. Let w” be the curl of the solution of the damped, driven NSE.
Then

T 2
lim lim sup Z/ /‘Vw(y)(:c,t)| dxdt = 0
vr—0 T—>ooT 0]

holds.



|Idea of proof

We argue by contradiction. We find 6 > 0, a sequence of viscosities,
v; — 0 and for each, a sequence of times T(J) — oo SO0 that at each
fixed v;, the time averges of the dissipation mtegrals are bounded below
by 6 > O. We use the NSE equation and the balance

(J) 1 p . |
(]) [ e Yzt G L {1tz = (g0} dt <T(3)>

Passmg to a subsequence of times, still at fixed v; we obtain a SSS of
NSE, "7, with

[ {22 = (g.w)pdps < —s

The support of the sequence is bounded apriori in L N L2, uniformly in j.
Passing to a subsequence we have a RSSS of the damped, driven Euler



equations 2 that satisfies

/{/ﬂw&? - <g,w>}d,uE(w) < -5

and that is absurd in view of the enstrophy balance of the limit.



Remarks

eresult conjectured by D. Bernard in 2000.

eFinite time zero viscosity limit without damping: Eyink, and Lopes-Filho,
Mazzucato, Nussenzveig Lopes.

eNoO vanishing rates known.

eNo infinite time result w/o damping known.



Stochastic Lagrangian Representation: Navier-Stokes

Theorem 7 Let W be an n-dimensional Wiener process. Let kK > 1 and
assume ug € Ck1T1.a is a deterministic divergence-free vector field. Let
(u, X) solve the stochastic system

([ dX = udt + V2vdW,
< A=Xx"1
L u= EP{(VTA) (ugo A)}

Then u solves the deterministic incompressible NSE:

ou+ u-Vu—vAQAu—+ Vp =0,

V-u=20

eWhen v = 0, all is deterministic, and we recover the Eulerian-Lagrangian
deterministic representation based on the Weber formula.



Remarks

eA = X1 s the spatial inverse (“back-to-labels™). It exists, and it is as
smooth as X. Both are stochastic.

eForced NSE

(

dX = udt + /2vdW,
4 A=x"1
u = EP {(VTA) [uo + JE(VEX) f( X, s)ds} o A(t)}

\

represents

ou—+u-Vu—vAu+Vp=f, V-u=0.

eRepresentations for Lans-alpha, Burgers. No direct representation for
Leray regularization.



Local Existence for the Stochastic System, Remarkable Formulae

Theorem 8 Let ug € CkT1.a pe divergence-free. There exists a T >
O depending on the norm of ug, but independent of viscosity, so that
a solution (u, X) of the stochastic system exists on [0,7]. Moreover,

|u]| k1,0 < U fort € [0, T] with U dependent on the norm of the ini-
tial data and T'.

Theorem 9 Letw =V X u, wg =V X ug. Then

w=E{((VX)wg)o A}.
In two dimensions,

w =K [wgo A].



For forced systems in n = 2, 3, replace in the formulae above wg by

t 1
£ = wo + /O(VXS) 9(Xs, 8)ds
with g =V x f.

eCirculation is conserved.

Let
U= IP’{(VtA)(uO 0 A)}
This is a stochastic incompressible velocity, with initial data ug and

u = KEu

]{X(v)?’l dr = ﬁuo - dr.



Stochastic Lagrangian Transport

e The “back-to-labels” process obeys

dA; + [u- VA — vAAldt + V2uVAIW = 0

For any smooth function ¢(a,t), v(x,t) = ¢(A(x,t),t) obeys

dvi + [u - Vv — vAv] dt + vV2vVudW = Orpo A

eCancellation, chain rule as if it were a first order PDE, due to the joint
guadratic variation.

eValid if u is smooth, not necessarily divergence-free.



Stochastically Passive Scalars

d0; + [u - VO — vA0] dt + V2uVOdW = 0

01, 0>, Sps = 0160-Sps

eWith viscosity, inviscid invariants become stochastically passive




Stochastic Particles

Let
m = M(a,a,t)
solve
dM = (u(X,t) 4+ G(X, M, t))dt + V2kdW
with
M(a,a,0) = a.
Let

(A(z,t), R(z,m, 1)) = (X (a,t), M(a,a,t))*
It exists and a.s. for all ¢

A(X(a,t),t) =a, R(X(a,t),M(a,a,t)) = .



Then

f(x,m,t) = fo(A(x,t), R(x,m,t))det (Vi R) (x,m,t)

solves
df + (u- Vaf +divg(Gf) — kAgf — vy f)dt =
—V26Vgf - dW —/2uVaf - dW = 0
and so

|
|

Ef

solves



OF + u-Vaof 4+ divg(GT) = kAgf + vAsT.

o > 0, > 0.

eCartesian noise.




|Idea of proof

If
dX = U(X,t)dt + V2uv MdW

with M a constant matrix and if we set
A=X"1land P(D) = Tr(MMT(V @ V)), then

Fa, 1) = fo(AGw, D)ean{ [ V(X(a,5), )dsjam (o}

solves

df + (u-Vaf —vP(D)f —V(z,t)f)dt + V2uVefMdW =0




Application: generalized relative entropies

Linear Fokker-Planck with potential

Dp = Dgp —divy(Up) + Vp

atf:Dfa 3tp=Dp, p>0

Oy + D¢ =0, ¢>0.

Michel, Mischer, Perthame: if H is convex, then

d f
£/H<;> opdx < 0.




Stochastic understanding and proof

dX = Udt + V/2dW

g (2,1) = fo(Al, 1)) exp { /O V(X (a8, 8)ds | A(x,t)} det(VoA) (z, 1)

Then ¢p = v, solves

dip + (Vo - (U) — Dgp — Vi) dt + V2Vgyp - dW = O

with initial datum v (x, 0) = fo(=x). Therefore E(z) ) solves the Fokker-
Planck eqn.



Deterministic
Op+D*¢=0, ¢>0=

M(a,t) = ¢(X(a,t),t) exp {/OtV(X(a, 5), s)ds}

IS a martingale.

’Qbf (xat) .
Yoo, D DH (005 =

po(A(z, 1)) H (L46003) M (A(z, 1), t)det(VaA)

Consequently we have almost surely

/¢po($,t)H <¢fo(x,t)> O(x,t)dr = /pg(a)H (fo(a)> M(a,t)da.

Ypo (2, 1) po(a)



(stochastically passive scalar)( martingale o A)(det(V;A)), integrated dx

MMP follows from

E(s,) uy
R e Rt t)

which follows from Jensen for




Variable diffusivity

Dp = v9;(a;;0;p) — divy(Up) + Vp
a;j(z,t) = oip(x,t)ojp(x,t)
A(D)p = a;;0;0;p
ui(z,t) = Uj(z,t) — vd;(a;j(z,t))
P =V —div;:(U)

Dp =vA(D)p—u-Vgp—+ Pp.



Stochastic Lagrangian Flow

In order to represent solutions of equations with variable diffusivity we need
to modify the drift:

vi(x,t) = u; + 2v(0k0jp)ogy = Uj — v(Okorp)ojp + v(Okojp) oy
Let X (a,t) be the strong solution of the stochastic differential system
dX;(t) = v;(X,t)dt + V2v0;p(X,t)dWp
with initial data X (a,0) = a. The map X is smooth and the determinant
D(a,t) = det(9,X (a,t))
obeys the SDE

d(D(a,t)) = [D(a,t)]x
{[(divav)(z,t) + 20 E(z, )] |p=x (a.t) 4t + V20 (O (1)) (2, 1) X (0,6) Wi |



with
E(x,t) = Z Z det(@iajp)ij.

i<j D
The map A(x,t) satisfies the stochastic partial differential system
dA; + (u VzA; — I/A(D)Aj) dt + V20 (8 A;)oppdWp = 0
The process ¢ = ¢, given by

0z, t) = fo(AGz, ) exp { [ P(X(a,), 9)dsjuz oy
solves
dip — (D) dt + V2uVapodW = 0
with initial datum ¢ (x,0) = fo(x).



If ¢ solves 0;¢ + D*¢ = 0 then

t
M(a,t) = ¢(X(a,t),t) det (3,X (a,t)) exp { /O P(X(a,s). s)ds}

IS a martingale.



Theorem 10 Let hg and pg be smooth time independent deterministic func
tions. Consider the stochastically passive scalar 0;, (z,t) = ho(A(z,t))
and the process 1, with initial datum pg. Consider also ¢(z,t), a deter-
ministic solution of 9:¢ + D*¢ = 0. Then the random variable

E(t) = /R ¢, oo (2, )0y (. t)da

Is a martingale. Consequently, if H Is convex, p = Ep,, f = K¢, then

opH <£> dr < »(0)pH <&> dx
R7 P

- JR? PO
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Stochastic Representation: Language

f e BVI[0,T] & S;JDDZ | f(tpg1 — f(tR)] < o0
k
f € BV = df isaRadon measure

T
/o ¢df usual Stieltjes integral

eBrownian motion is not BV.

Y W (tg1) — W(t)| =00 as.
k



Stochastic (It0) Integral

N—1
/Ot paW = 1im > ¢(te) (W (tey1) — W (k)
> k=0

EY (W(tga1) —W(tp))2 =T
k

X continuous (F;) adapted. Martingale:
E(X¢|Fs) = Xs, a.s t > s.

Example:

Xt:a:—l—/otqde



Semimartingale:

Sy = M + B, (Martingale + BV).

t N—-1 t
o 045 = Jim_ 3 6(t)(M (tig1) = M(t)) + [ o

Example: SDE
dX = u(X)dt + o(X)dW

Is the semimartingale eqn

t t
X, = zg +/O o (Xs)dW +/O w(Xs)ds




Quadratic Variation

N—1
) 2
<X>t — ||A|I|I|Tl>o k;_o: (Xt/\tk_|_1 - Xt/\tk)

Examples:

eContinuous BV process: (X)+ = 0.
eBrownian motion: (W), = t.
olf X} is a continuous bounded (r. local) martingale then (X); exists, and

X7 — (X)

Is a bounded (r. local) martingale.



Joint Quadratic Variation

N-1
(X, Y ) = HA”\TLO Y (Xintar — Xienty) Viatyyq — Yiat,)
k=0

olf M is a continuous local martingale and f € L2((M)) then the Ito
integral

/OtfdM

IS a continuous local martingale and

([ gant, Ny = [ fod(vr, wys

vV N continuous local martingale.



1td Formula

olf I'(x1,...,xn,t) is deterministic and smooth and X = (Xq,...Xy) is
a continuous (vector valued) semimartingale then

F(Xtat) - F(XC)aO) —
JEBsF (X5, 5)ds + [§ VF(Xs, ) - dXs + L [§ EEKss) i x, x.
00sF(Xs,8)ds + Jo VI(Xs,8) - dXs + 5 6 “55,00, - UXi Xj)s

In differential form:

1 0%F
4 CE0) = Q)N + (G50

d(X;, X;) + 875th>




Generalized 1to -Wentzell- Bismut- Kunita Formula

olf F(z,t) is a continuous C? process and a C1 semimartingale, and if
g+ IS a continuous vector-valued predictable process, then the composition
F'(g¢,t) is a continuous predictable process and

: 2 ) .
F(gi,t) = Fg0,0) = J§ 0,F (g5, )dgl + 5 J§ S (g, od)
_I_ fé F(gS7 dS) _I_ <fct) a’LF(987 dS)? g%>

In differential form:

. 2 :
A(F(gt,1)) = 9;F (e, g} + 575050 d(g], g])
+(dF)(gt, 1) + d{J5 9iF (gs, ds), g})-




Here

N-1
[ Flgs,ds) = tim b (Fgty tet1) — Floty te))
and
N-1
/@:F(gs, ds) = lim _ > (@'F(th,tk+1) — 3¢F(9tk,tk)>
k=0

are usual It integrals.

Proof explains it:

F(gt,t) — F(90,0) = Sp=g { F gt tr1) — Flans t) } +
_I_Z]]{V:_(_‘:)L {F(gtk+1atk+l) - F(gtkatk+1)}



and

N-1
> AF Gt tep1) = Flog trg) ) =T+ T+ K
k=0
with
N-1 | |
I= ) {@'F(th, tk+1) — OiF (g, tk)} (9t,41 — 9t,,);
k=0
N-1 | .
J= 3 0iF (g, t)(gt,,, — 9t,)
k=0

K

_1 Nil O%F (&g tha1)

i g J _J

k=0



im I=([0,F(g,ds),g"), Iim J= [8F(g5)dg’
|A[|—0 ' |A[l—0 Z

1 [ O0°F
im k= [9F9s)
|A]|—0 2 Ox;0x;

d(g’,g’).



