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The missing satellite problem.
quantified via veLocL’cg function

Klypin, Kravtsov, Valenzuela & Prada 1999
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one can brealk the M’Lemmlx\g

by changing properties of dark matter
and erasing small-scale fluctuations

Hot dark matter Warm dark matter Cold dark matter

Credit: Ben Moore http.//www.nbody.net



N(<My)

Still missing after all these years...

observations got better... but so did simulations...
(e.g. discovery of increasing number
of the ultra-faint dwarfs) Diemand et al. 2008; Stadel et al. 2008;

Springel et al. 2008)

(>billion particles per halo simulations circa 2008
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what makes small halos faint or
ooquLeteLg darie?

suppression of gas accretion

due to cosmic UV heating

(parameterized by filtering mass of N. Gnedin 2000;
accurately quantified by
Hoeft et al. '06; Crain et al. '07;
Tassis et al '08; Okamoto et al. ‘08)
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A large region around the Milky Way progenitor
is expected to be reionized early by the progenitor itself
or by the progenitors of other massive nearby halos
(e.qg., Virgo cluster)
HIl region around a
MW progenitor
at z=9 in a simulation with

radiative transfer
(Tassis, Kravtsov, Gnedin 2008)
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Some of the dwarf spheroidals could be
“fossils” of the reionization epoch

Bullock, Kravtsov & Weinberg 2000;
Ricotti & Gnedin 2005; Gnedin & Kravtsov 2006
Moore et al. 2006; Madau et al. 2008; Busha et al. 2008
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“Fossils” have dSph morphology
and structural properties
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Many of the dwarf satellite halos
were able to grow the mass after reionization
Kravtsov, Gnedin & Klypin 2004
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We thus expect progenitors of the luminous
dwarfs to have a wide variety of masses
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L circles and were identified using semi-analytic

galaxy formation model of Kravisov, Gnedin &
Klypin 2004, which contains two key
ingredients:

O suppression of gas accretion into progenitor
satellite halos due to the UV heating of
intergalactic medium.

Q inefficient star formation at low gas surface
densities



Is this consistent with observations?

Observed Milky way dwarf satellites exhibit variation of
~2 ovaders of mag in [Fe/H], >4 orders of mag in L
but almost constant M (<200 pe)
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Does constant M(<300pe) ’u/vq:Lg stmilar
halo masses for the dwarfs?

Not necessarily (and most likely not)...
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M(<300pc)-L relation is consistent with progenitor
masses varying by a factor of ~20-50 or more

such dependence is what is approximately what is needed

to explain difference in slope between faint end field LF and similar arguments along these lines:
predicted halo mass function and comes out of simulations Helmi et al. 09: Maccio et al. 09
of dwarfs (e.g. Ricotti & Gnedin '05), so there is nothing
crazy about it...




Environment of dwarf galaxies does seem to

determine their morphology and gas content
(morphology segregation in the Local Group:
dwarf spheroidals tend to be near MW and Andromeda,
dirrs — tend to be found far from them)
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star formation history, however,
Ls at best weakly dependent on environment

Orban et al. 2008 (astro-ph/0805.1058)
based on HST observations of Dolphin et al. 2005, Holtzman et al. 2006
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The key to understand faintness of dwarf
galaxies and thetr high M/L ratios Ls

L thelr internal processes
[such as UV heating, star formation, supernova feedback...]
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| will focus on
Inefficiency of star formation in dwarfs

L

at low surface densities (dwarfs, LSBs, outskirts of large spirals) galaxies are
inefficient in converting “cold” HI gas into stars

BLUE is HI (ATCA) NGC 2915
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Observed dwarfs have low surface gas densities,
low molecular fractions, and correspondingly low rate,
centrally-concentrated star formation

a dwarf galaxy NGC 3741 (Vmax=45 km/s)

with HI disk extending to ~40 optical distribution of HI and H2 column densities

disk scale lengths in nearby galaxies
but HZ2 is expected only in the very center
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possible cause of inefficiency is inability of galaxies

to form molecular gas efficiently at low gas surface densities
Robertson & Kravtsov, 2008 ApJ (astro-ph/0710.2102)
Tassis, Gnedin & Kravtsov 2009, ApJ (astro-ph/0810.4148)
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The substructure problem is likely explained by inefficiency of star formation in

small-mass halos (no indications yet that CDM has a problem here)
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Luminous satellite dwarfs form in
small-mass DM halos if

a Halos form before reionization and do not
evolve significantly afterwards (“fossils”)

O Halos become sufficiently massive and stay
above cutoff mass after reionization (most
satellite halos do)

These halos can subsequently lose most of
their DM halo (but may be not stars) due to
tidal stripping, so that the current dynamical
mass of their host halo can be small.

Q Low efficiency of SF, related to difficulty in
forming molecular H2 in low density, low
metallicity gas, can help explain extended and
varied SF history of nearby dwarfs and their
high M/L values



