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Overview

® Our main result is a very general, simple and
easily applied criterion for determining the
stability of discrete state dynamical models of
gene regulation.

® This result makes possible treatment of
network topology and of many other real
factors previously inaccessible to study.
Importantly, the result can be applied to
networks derived from experimental data.

® We hypothesize that a dynamical instability in
the gene network may be a causal mechanism
contributing to the occurrence of cancer.



Gene Expression and
Reqgulation

® Genes: Functional segments of DNA.

® Gene expression: The function of a given gene
may be to produce (“express”) a specific protein.

® Regulation: A gene’s expression is regulated, in
large part, by the binding of particular proteins to
Its promoter region.
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The resulting directed network of
Interactions is given by the network’s
‘adjacency matrix’ A

A = 1if there is a link or O otherwise.

cese  Ledeses. :




Naive Boolean Model

The state of each gene (network node) Is either
on (symbol 1) or off (symbol 0).

Time Is discretized: t=0,1,2,3,....

At time t, the states of each node I, denoted o}
(=0 orl), are simultaneously updated using a
deterministic Boolean function (truth table) of

the time t-1 states, g%, of the K/" nodes, j, that
input to node i. (K" = the in- degree of node I.)




Update Truth Table

current state State of Kim =2

at time t genei at

(inputtogenei) |4 iiq @

Genej, |Genej, |(OutPUl) \

0 0 0
1 0 1




Properties of the Boolean Model

® Finiteness: Eventually the system must
return to a previously visited state.

® Determinism: Upon this return, the
subsequent dynamics will be the same
as for the previous Visit.

® Attractors: Every initial condition
produces a trajectory that eventually
goes to a periodic orbit, called the
“attractor” of that initial condition, and
different initial conditions can go to
different periodic orbit attractors.




Assumed significance of attractors

® Attractor may be thought of as representing
a specific patterns of protein expression that
defines the character of cells [Kauffman

("69)].

ES Cells




Kauffman’s N-K Net Model

S. Kauffman, J.Theor.Biol. 22,437 (1969).
Kin = K independent of i. N=# of nodes.

The K inputs to each node i1 are randomly
chosen from amongst all the N-1 other
nodes.

The output entries for each node’s truth
table are randomly chosen with probability
of 0 being Y2 and probability of 1 being %A.



Stability

® (State) = o= (0, 0, ..., Oy)

® Distance between two states, o and o :
H(o,d)=2;lo,— &1 (the Hamming
distance)

® Instability (stability): If at t=0, H << N, then
H initially grows (shrinks) with increasing
time t.



Chaotic and stable dynamics

for different networks
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Past Work on Stablility

Derrida & Pomeau, Europhys. Lett. 1, 45 (‘86).

p = probability of a 0 In the truth table
output.

Network and truth table are “annealed”.

Unstable if 2p(1-p) > 1/K.

Others consider in-degree distribution P(K'")
with input nodes still chosen uniformly
randomly [e.g., Aldana and Cluzel (PNAS
(2003)): P(K'") scale-free].




Motivation for Our Work

Real networks are far from the model networks
previously analyzed.

We would like to be able to analyze any fixed
network, and we are interested in such effects
as assortativity, community structure, a
different p, at each node, asynchronous
update, nonsynchronous updates with
heterogeneous link time delays.

We can do these [Pomerance et al. PNAS (‘09)]!



Network Instability and Cancer

Tumor dissections show that nearby cells In
cancer tumors are very heterogeneous and
have widely different gene expression patterns.
(This contrasts with normal tissue, where, e.g.,
cells in muscle are similar.)

We conjecture that this observed variability of

nearby cells in the same tumor might be due to
mutation-induced breakdown of the dynamical

stability of the gene network.

Ongoing, rapid experimental advances in gene
network reconstruction may soon make tests
and applications of this conjecture feasible.



Review of Derrida-Pomeau Method

(Basis of all previous work on stability.)
K"and p are the same at each node.
Annealing: At each time-step

(1) Truth table outputs are randomly chosen.

(2) At each node the K'" other nodes that
Input to that node are randomly chosen.

But we are really interested in the frozen case.

However, the annealed situation can be
analyzed, but not the frozen case.

Assumption: For N>>1,
(annealed results) ~ (frozen results).




Our Technique: ‘Semi-Annealing’

Pomerance, Ott, Girvan, Losert, PNAS
(2009)

The network i1s held fixed.

Each node | has its own p; (bias to be on or
off).

Semi-annealed: At each time step, only the
truth table is randomly chosen, and this iIs
done at each node | according to the fixed
bias probability p, for that node.

For N>>1, our numerical simulations show:
(semi-annealed) ~ (frozen)



Semi-Annealed Analysis

e Consider two node states, o(t) and o(t), where o and o
evolve from slightly different initial conditions.

o et y; (t) = (the probability that ¢;(t) and &; (t) differ).

e Letq; =[theprobability that ¢;(t)and &;(t) differ,™ "™
giventhatthe o(t-1)and g(t-1) inputsto i differ]

i =1-[pi®+(1-pj)*1=2pi(1- p;)



Update Truth Table

current state State of Kim =2

at time t genei at

(inputtogenei) |4 iiq @

Genej, |Genej, |(OutPUl) \

0 0 0
1 0 1




Update of Nodal Probability y;(t)

prob. that the inputs at t-1 to | are not all the same

yit)=qiq1— 1 [i-y;t-1)]
U

prob. that inputs are all the same
Perturbe around o = o (l.e., y; << 1); linearization gives

N N
yi (1) = q; _21 Ajjyj(t—1)= _ZlQij yj(t—1),ory(t) = Qy(t-1)
)= )=

where Qj; = @; Ajj =""modified adjacency matrix".



Stability
yi(t)= Zleij yi(t-1), Q;=0iA;

Ao = largest eigenvalue of Q , which,

according to the Perron - Frobenius

theorem, Is real and positive (Q;; = 0).
Ao <1, y=0 Isstable,

Ao >1, y=0 Isunstable,
Ao =1, y=0 Is"edge of chaos ".



Numerical Tests

We show tests of predictions of
(1) Ag stability criterion,
(11) Predicted saturated normalized
Hamming distance between o and o :
y = lim iz yi (1).
t>oo N

(re - show slide #11)



We compare results of the semi-annealed

theory with frozen simulations. Issues we
study include:

Nodal in/out degree correlation
Assortativity / disassortativity
g, correlation with nodal degrees

Differing time delays along different links
Community structure
Motifs

Finite size effects

Experimentally determined network for yeast



An Example 025 A (e -2

0.20 B A=29
' A )L=23
_ 0.15 Solid: All T = 1
N = 10’000 1> Open: Half t = 10

0.10
P(K)oc K21
0.05
for K <15 0.00
| | | |
0; == Ao =0Aa 0.1 02 03 04 05

<K I out > tuned by swapping of out degrees

~ INn 1, out
A= (KK 1K) e
® Solid line and arrows = semi-annealed theory.

® Symbols = numerical results for frozen case.

® Open symbols: different delay times.



Another Example

e Same as In previous slide but for three networks
with different assortativ ity / disassortativity.

e Starting with a randomly constructed non - assortative
network, the assortativ ity coefficient,

out 1IN
D= <K' KJ >edges joi 1% . &O'BO 1B ® Assortative
in . out ' ' i B Neutral
<K K >node | ) 020 = A Disassortative
IS tuned by swapping edges : > ]
@ = > Q@
®Ag =0An Jpliad 0.10
<K IN K out > ° " ® -*
Ap = K node. 0.00
node



A Possible Strategy
for Cancer Treatment

® Our cancer/network-stability hypothesis
combined with our stability analysis suggests
a possible cancer therapy strategy: Namely,
design drugs that target those genes or links
whose disabling would most reduce A, .



Summary

We introduce a ‘semi-annealing’ technique for

studying the stability of discrete state gene network
models.

Our technique greatly expands the range of factors
that can be treated, allowing treatment of arbitrary
network topology, node-specific bias p;, etc.

We conjecture that gene network instability may be
an important causal factor in some cancers.

Reference: A. Pomerance, E. Ott, M. Girvan, and W.
Losert, “The effect of network topology on the

stability of discrete state models of genetic control”
PNAS 106, 8209 (2009).




Estimating the network and the node

blas probabilities p; from data

* Network: Undirected links
can be inferred from data by
looking at co-expression
patterns across a range of
perturbation experiments,
and other techniques can
determine directed links.

experiments

genes

*The nodal bias probabilities
p; can be estimated from
clinical expression data.




The Perron-Frobenius Eigenvalue

e Recall that, since A;; and Q;; are non - negative, their

stability - determinin g eigenvalue of maximum magnitude

Is real and positive (Perron - Frobenius Theorem).

e ""Markov" theory for 4, , the Perron - Frobenius eigenvalue
(Note: Ay =q4, If g; = q s the same on all nodes.)

Restrepo, Ott, Hunt, Phys. Rev. E 76,056119(2007).

<KinK0ut>
nodes
<k(>nodes

E.g., 4,2 P



Perron-Frobenius Eigenvalue (cont’d)

e Markov theory for Aq with Q;; =q; A; :

Ott and Pomerance, Phys. Rev. E 79,056111 (2009).

E.g., if q; is correlated with K"K,

IN 1, OUl
2 :<QK A >nodes
>TK
nodes




Finite Size Effects
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Flg. $2. The steady-state fractional Hamming distance k2 /N for (a) IV = 10% and (b) N = 10% as a function of the sensitivity g for various values of £, both in the
frozen case (filled symbols) and the annealed case (open symbols). The largest eigenvalue of this network’s adjacency matrix is A == 5. While the theory does not

depend on the value of ¢, finite-size effects cause a dependence on the number of flipped bits. The inset to (a) shows a histogram of measured Hamming distances at
g = 0.4 and ¢ = 0.01 (up amow).

g =fraction of Initially flipped bits.
no. of Initially flipped bits =& N
Apparently we neede N > 5.



(Gene expression and regulation

DNA —>  mMRNA —=>  Protein

Transcriptional regulation: Proteins called transcription
factors bind to specific sequences of the DNA to help

determine whether or not an individual gene produces its
MRNA and the subsequent

protein which, in turn, may then

/=
regulate another gene by binding ‘/7
O

to its associated DNA sequence.




