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An example: coupled identical Hindmarsh-Rose neurons
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k+3x2
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ε
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j=1x j
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Ensembles of globally coupled oscillators

• Global coupling = all-to-all coupling = mean field coupling

• Models of many natural phenomena

– in physics: arrays of Josephson junctions, multimode lasers,. . .

– in neuroscience: pathological brain rhythms, binding problem,. . .

– in social behavior: synchronously blinking fireflies, pedestrians on

the Millennium Bridge, rhythmical applause in a large audience. . .

– etc

• Main effect: synchronization =⇒

– adjustment of phases of indvidual oscillators due to coupling

– appearance of a macroscopic mean field

Typically (most studied): increase of coupling facilitates synchrony

We concentrate on the opposite case
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Object and methods of our study

Large ensembles

with
global nonlinear

coupling
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Linear vs nonlinear coupling

N2 31

linear unit

N2 31

nonlinear unit

Linear coupling ⇐⇒ form of interaction does not depend on the mean

field amplitude r

Nonlinear coupling ⇐⇒ form of interaction depends on r

i.e. interaction is attractive for small r and repulsive for large r
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Stability of the synchronous cluster

• consider a general system of identical oscillators

ẋk = F(xk,u,Y;ε) , u̇ = G(u,Y;ε) ,

where
– xk describe individual systems,

– Y(x) are mean fields,

– u describe the dynamics of the coupling,

– ε is the coupling strength.

• generally, we expect that the stability of full synchrony can break with

an increase of ε =⇒ we call such coupling nonlinear;

in this case we expect complex dynamics
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An example: nonlinearly coupled Landau-Stuart oscillator s

1) coupled via a common nonlinear load

dak
dt

= (1+ i)ak−|ak|
2ak+eiξu

du
dt

= (−γ+ i)u+ iη|u|2u+Y

Complex mean field Y = N−1∑kak = reiΘ

2) nonlinearly coupled via mean field

dak
dt

= (1+ i)ak−|ak|
2ak+(µ1+ iµ2)Y− (η1+ iη2)|Y|

2Y

In phase approximation both models yield the same phase model
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Landau-Stuart model I:

loss of synchrony with increase of coupling

Parameters:

γ = 0.5

η = 103

ξ = 0.475π
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Landau-Stuart model I:

snapshot of the ensemble

• non-uniform distribution of oscillator

phases, here for ε− εq = 0.05

• different velocities of oscillators and of

the mean field

Re(ak),Re(Y)

Im
(a

k)
,I

m
(Y

)
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Nonlinear phase model

φ̇k = ωk(r,ε)+A(r,ε)ε Im
[

eiβ(r,ε)Ye−iφk
]

Dependence of coupling strength Aε and phase shift β
on the mean field amplitude r = |Y|

Landau-Stuart models in phase approximation yield this model

with ω = const, A= const, and β = β0+β1ε2r2

Rosenblum and Pikovsky, PRL, 98, 054102 (2007)

Pikovsky and Rosenblum, Physica D, 238 (1), 27-37 (2009)
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Nonlinear phase model II

φ̇k = ωk(r,ε)+A(r,ε)ε Im
[

eiβ(r,ε)Ye−iφk
]

Particular cases:

• ω = const, A= 1, β = const: the Kuramoto-Sakaguchi model

• ω = const, β = const: Filatrela et al., PRE 2007,

Gianuzzi et al., PRE 2007
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Linear vs nonlinear coupling once again

Let us consider phase model

φ̇k = ω+ εr sin(Θ−φk+β(r,ε))

and quantify stability of the synchronous solution

• For the Kuramoto-Sakaguchi model with β = const:

the eigenvalue is λ =−εcosβ =⇒ stability grows with ε
=⇒ the coupling is linear

• For the nonlinear model λ =−εcos(β(1,ε))
Example: β = β0+ ε2r2 =⇒ synchrony breaks for ε =

√

π
2−β0

=⇒ the coupling is nonlinear
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Analytical tools

• Watanabe-Strogatz theory for identical oscillators

• Extending WS theory for the case of nonidentical oscillators

• Linking WS and OA theories
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Watanabe-Strogatz theory (PRL 1993, Physica D 1994)

The model: sine-coupled identical phase oscillators

φ̇k = ω(t)+ Im
[

H(t)e−iφk
]

, k= 1, . . . ,N > 3

Particular cases:

• ω = const, H = εeiβ Y (the Kuramoto-Sakaguchi model)

• H = A(|Y|,ε)εeiβ(|Y|,ε) Y (the generalized phase model)

Main result: for any functions ω(t), H(t), N-dimensional system is com-

pletely described by 3 global variables plus N−3 constants of motion

• global amplitude ρ, 0≤ ρ ≤ 1
• global phases Ψ, Φ
• constants of motion ψk
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WS equations (in our notations)

dρ
dt

=
1−ρ2

2
Re(He−iΦ)

dΦ
dt

= ω+
1+ρ2

2ρ
Im(He−iΦ)

dΨ
dt

=
1−ρ2

2ρ
Im(He−iΦ)

Remark: the global variables used differ from originally WS variables:

ρ̃ =
2ρ

1+ρ2 Ψ̃ = Ψ+π Φ̃ = Φ+π
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WS equations (equivalent form)

We introduce

z= ρeiΦ

α = Φ−Ψ

and re-write the equations as

dz
dt

= iωz+
1
2
H −

z2

2
H∗

dα
dt

= ω+ Im(z∗H)
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Transformation to original variables

Time-dependent transformation:

tan

(

φk−Φ
2

)

=
1−ρ
1+ρ

tan

(

ψk−Ψ
2

)

0 2π0

2π

φ k
−

Φ

ψk−Ψ

Hier ψk, k= 1, . . . ,N are constants of motion, they obey 3 constraints:

N

∑
k=1

eiψk = 0 , ∑cos(2ψk) = 0
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Meaning of the WS variables (qualitative)

• Amplitude ρ is related to the width ∆ of

the bunch

Easy to check: if ρ = 0 then r = 0

ρ = 1 then r = 1

Hence,

amplitude ρ ∼ mean field amplitude r

• Phase Φ ∼ mean field phase Θ
• Phase Ψ: shift of individual phases with

respect to Φ
• Reminder: our variables differ from

the original WS variables

∆
Ψ

Φ
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How to extend the WS theory to treat non-identical oscillato rs:

the main idea

• Group oscillators into M groups, a = 1, . . . ,M, so that each group

contains identical units subject to common force

a

b
M

external

external

fields

fields

2 31 Na

a

Σ

linear/nonlinear unit

• Apply the WS theory to each group: the dynamics is then 3M-dimensional
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How to extend the WS theory to treat non-identical oscillato rs II

• Hierachically organized population: M subpopulations of size Na,

∑aNa = N
• Microscopic equations of motion:

dφ(a)k
dt

= ωa+ Im

(

Hae−iφ(a)k

)

• Macroscopic equations of motion:

M coupled systems of 3 WS equations each

• Infinitely large population:
– Thermodynamical limit I:

=⇒ M finite, Na → ∞, several infinitely large subpopulations

– Thermodynamical limit II:

=⇒ M → ∞, continuous frequency distribution
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Local and global mean fields

We characterize every subpopulation by its own (local) Kuramoto mean

field (order parameter):

Za = raeiΘa = N−1
a

Na

∑
k=1

eiφ(a)k or Za =

∫ 2π

0
wa(φ)eiφdφ ,

to be distinguished from the global mean field

Y = reiΘ = N−1
M

∑
a=1

NaZa or Y =

∫ ∞

−∞
n(ω)Z(ω)dω

where n(ω) is the frequency distribution
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WS equations for hierarchical population

Finite number of subpopulations

We label subpopulations with indices a= 1, . . . ,M, b= 1, . . . ,M

dza
dt

= iωaza+
1
2
Ha−

z2
a
2

H∗
a

dαa

dt
= ωa+ Im(z∗aHa)

Here Ha is the effective force, common for all oscillators in a

E.g., for mean field coupling Ha = ∑bEabnbZb,

where Eab quantifies coupling between subpopulations a and b
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WS equations for hierarchical population

Infinite number of subpopulations

We consider a system with a continuous distribution of frequencies and

identify subpopulation index a with the frequency ω
Performing the limit M → ∞, we obtain:

∂z(ω, t)
∂t

= iωz+
1
2
H(ω, t)−

z2

2
H∗(ω, t)

∂α(ω, t)
∂t

= ω+ Im[z∗H(ω, t)]
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Direct WS reduction for a system with continuous

distribution of parameters

(following Watanabe and Strogatz, 1994)

• Continuity equation
∂w
∂t

+
∂

∂φ
(wφ̇) = 0 for w(φ,ω, t)

• Variable substitution in the continuity equation:

t, φ, ω → τ = t, ψ = ψ(ω,φ, t), ν = ω

w(ω,φ, t) → σ(ν,ψ,τ)

• New density function σ(ν,ψ,τ) is stationary provided z and α obey

the WS equations

27



Further simplification. Link to OA ansatz

Transformation to original variables II

We re-write the WS transformation

tan

(

φk−Φ
2

)

=
1−ρ
1+ρ

tan

(

ψk−Ψ
2

)

in the exponential form

eiφk = eiΦ ρ+ei(ψk−Ψ)

1+ρei(ψk−Ψ)

(Pikovsky and Rosenblum, PRL (2008))

(Möbius transformation, Marvel et al., CHAOS 2009)
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Meaning of the WS variables (quantitative)

Using the WS transformation eiφk = eiΦ ρ+ei(ψk−Ψ)

1+ρei(ψk−Ψ)

we relate the WS variables to the complex Kuramoto mean field:

Z = reiΘ = N−1
N

∑
k=1

eiφk = ρeiΦγ(ρ,Ψ) = zγ(ρ,Ψ) ,

where

γ(ρ,Ψ) = N−1
N

∑
k=1

1+ρ−1ei(ψk−Ψ)

1+ρei(ψk−Ψ)

Note: the relation is very simple, Z = z , if γ = 1

Remark: this is valid for each subpopulation, i.e. for γa or γ(ω)
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Meaning of the WS variables (quantitative) II

We write γ(ρ,Ψ) as a series

γ = 1+(1−ρ−2)
∞
∑
l=2

Cl(−ρe−iΨ)l ,

where Cl are the amplitudes of the Fourier harmonics of the distribution

of constants of motion ψk:

Cl = N−1
N

∑
k=1

eil ψk or Cl =

∫ π

−π
σ(ψ)eil ψdψ

=⇒ For uniform distribution of ψ and large N we have

γ = 1 =⇒ ρ = r , Φ = Θ or z= Z
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Reduction to one WS equation

For the case γa = 1, i.e. za = Za, WS equations are:

dZa

dt
= iωaZa+

1
2
Ha−

Z2
a

2
H∗

a

dαa

dt
= ωa+ Im(Z∗

aHa)

Most common case: mean field coupling, Ha = ∑M
b=1EabnbZb

Ha is independent of α =⇒ 2nd equation becomes irrelevant

Similarly, for a continuous distribution we are left with

∂Z(ω, t)
∂t

= iωZ+
1
2
H −

Z2

2
H∗

Ott–Antonsen equation (CHAOS 2008)
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Ott-Antonsen solution of the Kuramoto problem (CHAOS 2008)

• an infinitely large ensemble with the frequency distribution n(ω)
• the density function w(ω,φ, t) as a Fourier series

w(ω,φ, t) =
n(ω)
2π

{

1+

[

∞
∑

m=1
fm(ω, t)e−imφ+ c.c.

]}

• density functions with fm(ω, t) = [F(ω, t)]m

satisfy the continuity equation
∂w
∂t

+
∂

∂φ
(wφ̇) = 0

• =⇒ equation for the temporal dynamics of the field

• we call the set of found solutions the OA reduced manifold

• these solutions are the only attractors if n(ω) is smooth

(Ott and Antonsen, CHAOS 2009)

OA ansatz ⇐⇒ uniform distribution of ψ in the WS theory
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Application of the theory: Nonlinearly coupled ensemble

Lorentzian frequency distribution n(ω) = [π(ω2+1)]−1

Effective force: H = AεeiβY = Aεeiβ∫ ∞
−∞ n(ω)Z(ω)dω

Full description:

∂z(ω, t)
∂t

= iωz+
Aεeiβ

2
Y−

Aεe−iβ

2
z2Y∗

∂α(ω, t)
∂t

= ω+ Im
(

Aεeiβz∗Y
)
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Lorentzian distribution: reduced description
Reduced description (OA ansatz): z= Z =⇒ one WS equation

∂Z(ω, t)
∂t

= iωZ+
εAeiβ

2
Y−

εAe−iβ

2
Z2Y∗

plus the integral Y =
∫ ∞
−∞ n(ω)Z(ω)dω = Z(i) (see OA, Chaos 2008)

=⇒ WS-OA equation in the real form:

dr
dt

=−r +
εA(r,ε)

2
r(1− r2)cosβ(r,ε)

dΘ
dt

= Ω =
εA(r,ε)

2
(1+ r2)sinβ(r,ε) ,

Condition ṙ = 0 yields an equation for r
If it is solved (numerically), then Ω can be found, too.

Example: A= 1, β = β0+ ε2r2 Main result: multistability
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Diagram of regimes for A= 1 and β = β0+ ε2r2
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Illustration of multistability for β0 = 0
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Beyond the OA approximation

• OA ansatz yields the asymptotic solutions

• Basins of attraction depend on the WS constants of motion ψ
• For illustration, we simulate the ensemble for different dustributions

of ψ
• The distributions are parameterized by 0< q≤ 1;

q= 1 corresponds to the uniform distribution, and, hence,

to the OA solution
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Beyond the OA approximation: Numerics
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Nonlinearly coupled ensemble with the uniform frequency

distribution

Nonlinear model with A= 1, β = β0+ ε2r2, and −δ ≤ ω ≤ δ
WS-equations in the OA approximation:

∂ρ(ω, t)
∂t

=
1−ρ2

2
εr cos(Θ−Φ+β)

∂Φ(ω, t)
∂t

= ω+
1+ρ2

2ρ
εr sin(Θ−Φ+β)

Equation for the mean field:

reiΘ = (2δ)−1
∫ δ

−δ
Z(ω, t)dω = (2δ)−1

∫ δ

−δ
ρeiΦdω
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Uniform frequency distribution: results
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Conclusions

• Watanabe–Strogatz theory extended to the case of nonidentical os-

cillators and linked to the Ott-Antonsen ansatz

• powerful technique which yields a low-dimensional description of the

ensemble dynamics

• exact description of ensembles with global nonlinear coupling for

Lorentzian and uniform frequency distribution

M. Rosenblum and A. Pikovsky, PRL 98, 064101 (2007)

A. Pikovsky and M. Rosenblum, Physica D 238, 27-37 (2009)

A. Pikovsky and M. Rosenblum, PRL 101, 264103 (2008)

A. Pikovsky and M. Rosenblum, Physica D, submitted
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Example: two interacting subpopulations with chimera

Model by Abrams, Mirollo, Strogatz, and Wiley (PRL 2008):

ω1 = ω2 = 0, N1 = N2

ε11= ε22= µ, ε12= ε21= ν 6= µ, and βab= β.

Full description via WS equations

ż1,2 =
1
2

(

H1,2−z2
1,2H∗

1,2

)

α̇1,2 = Im(z∗1,2H1,2)

H1,2 = (µZ1,2+νZ2,1)e
iβ, Z1,2 = z1,2γ1,2

Particular solution via OA ansatz, i.e. by setting Z1,2 = z1,2

(Abrams et al.)
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Results for the model of Abrams et al.
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(a): uniform distribution of ψ (OA manifold)

(b-d): nonuniform distribution of ψ =⇒ qiasiperiodic chimeras
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Example: the Kuramoto-Sakaguchi model III

Numerics: the same macroscopic initial conditions, r(0) = 0.5,

but different microscopic initial conditions, i.e. φk(0)
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t

r
(a)

(b)

Initial conditions (a): corresponds to the OA solution

Initial conditions (b): asymptotically tends to the OA solution
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WS variables vs. generalized order parameters

Generalized Daido parameter of the order m

Zm= N−1
N

∑
k=1

eimφk or Zm=
∫ 2π

0
w(φ)eimφdφ .

Relation to WS variables:

Zm= zmγm(z,α)

For uniform distribution of ψ and large N we have

γm= 1 =⇒ Zm= zm= Zm
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OA ansatz in terms of generalized order parameters

Time derivative of the order parameter:

Żm=
∫ 2π

0

∂w(ω,φ, t)
∂t

eimφdφ = im
∫ 2π

0
w(ω,φ, t)φ̇eimφdφ

Substitution of φ̇ = ω+(He−iφ−H∗eiφ)/2i yields

Żm= iωmZm+
m
2
(HZm−1−H∗Zm+1)

This system simplifies if Zm= Zm =⇒ OA equation

Ż(ω, t) = iωZ+
1
2
(H −H∗Z2) .

OA ansatz ⇐⇒ uniform distribution of ψ in the WS theory
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