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An example: coupled identical Hindmarsh-Rose neurons
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Ensembles of globally coupled oscillators

e Global coupling = all-to-all coupling = mean field coupling

e Models of many natural phenomena
— In physics: arrays of Josephson junctions, multimode lasers,. ..
— In neuroscience: pathological brain rhythms, binding problem,. ..
— In social behavior: synchronously blinking fireflies, pedestrians on

the Millennium Bridge, rhythmical applause in a large audience. ..

— etc

e Main effect. synchronization —>
— adjustment of phases of indvidual oscillators due to coupling
— appearance of a macroscopic mean field

Typically (most studied): increase of coupling facilitates synchrony

‘We concentrate on the opposite case\
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Linear vs nonlinear coupling

linear unit

nonlinear unit

Linear coupling <—> form of interaction does not depend on the mean

Nonlinear coupling <— form of interaction depends on

l.e. interaction is attractive for small I and repulsive for large

field amplitude r



Stability of the synchronous cluster

e consider a general system of identical oscillators
Xk = F(Xk, U,Y;€), u=G(u,Y;e),

where
— Xk describe individual systems,

— Y (X) are mean fields,
— U describe the dynamics of the coupling,
— € Is the coupling strength.
e generally, we expect that the stability of full synchrony can break with
an increase of € ——  we call such coupling nonlinear;

IN this case we expect complex dynamics



An example: nonlinearly coupled Landau-Stuart oscillator S

1) coupled via a common nonlinear load

d . -
d—atk — (1+i)ax— |ay|%a,+ €%u
du : : 2

= = (=y+iu+injucu+Y

Complex mean field Y = N_lzkak — rei@

2) nonlinearly coupled via mean field

d . .
~ X (1+Dac— a2 (b +ikR)Y — (1 +in2) Y [2Y

In phase approximation both models yield the same phase model
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Landau-Stuart model I:

loss of synchrony with increase of coupling
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e non-uniform distribution of oscillatorE/

phases, here for € — €q = 0.05 -

Landau-Stuart model I:

snapshot of the ensemble
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e different velocities of oscillators and of 2

the mean field

=
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Nonlinear phase model

@ = (1, €) +A(r,£)€ Im [eiB(“g)Ye_i‘Pk}

Dependence of coupling strength A€ and phase shift [3

on the mean field amplitude I = |Y|

Landau-Stuart models in phase approximation yield this model
with = const, A = const, and 3 = By -+ B1€2r?

Rosenblum and Pikovsky, PRL, 98, 054102 (2007)
Pikovsky and Rosenblum, Physica D, 238 (1), 27-37 (2009)
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Nonlinear phase model Il

O = i (1, €) +A(r,€)€ Im [eiB(r’S)Ye_i‘Pk}

Particular cases:

e = const, A= 1, 3 = const: the Kuramoto-Sakaguchi model
e (W = const, [3 = const: Filatrela et al., PRE 2007,
Gianuzzi et al., PRE 2007
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Linear vs nonlinear coupling once again

Let us consider phase model

O = W+ &r sin(@ — @+ B(r, €))

and guantify stability of the synchronous solution
e For the Kuramoto-Sakaguchi model with 3 = const:

the eigenvalue is A = —€C0S3 — stability grows with €
—> the coupling is linear

e For the nonlinear model A = —eco9[3(1,¢€))
Example: B = Bg—+€%r2 = synchrony breaks for € = \/E— Bo

2
—> the coupling is nonlinear
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Analytical tools

e \Watanabe-Strogatz theory for identical oscillators

e Extending WS theory for the case of nonidentical oscillators

e Linking WS and OA theories
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Watanabe-Strogatz theory (PRL 1993, Physica D 1994)

The model: sine-coupled identical phase oscillators
O = 0(t) + Im [H(t)e—‘%] Ck=1,...N>3

Particular cases:
e w=rconst, H =Py (the Kuramoto-Sakaguchi model)

o H= A(\Y\,e)aei BYLe) y (the generalized phase model)

Main result: for any functions w(t), H(t), N-dimensional system is com-
pletely described by 3 global variables plus N — 3 constants of motion

e global amplitude p,0 < p <1
e global phases V¥, ®
e constants of motion WYy
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WS equations (in our notations)

2

dp 1-p o

— = Re(He

g~ 2 el )
do 1+ p? -
& 0t P im(He )

dt 2P
v _1- p2|m(He_ic")

dt  2p

Remark: the global variables used differ from originally WS variables:

2P ~ -

W=Wimm P=0OP+T1

P 1 p2
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WS equations (equivalent form)

We introduce

5 — peiCD
a=o-Y
and re-write the equations as
dz 1 Z
———jwz+-H—-=H*
at T T
da
— = W+Im(Z'H)

dt
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Transformation to original variables

Time-dependent transformation:

K—P\ 1-p Py — ST
SIS WWTET R

Hier Yy, K=1,...,N are constants of motion, they obey 3 constraints:

Z dW =0, % cog(2yy) =0
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Meaning of the WS variables (qualitative)

e Amplitude P is related to the width A of

the bunch

Easy to check: if p=0thenr =0
p=1thenr=1

Hence,

amplitude P ~ mean field amplitude r

e Phase ® ~ mean field phase ©

e Phase W: shift of individual phases with

respect to P
e Reminder: our variables differ from

the original WS variables
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How to extend the WS theory to treat non-identical oscillato S:

the main idea
e Group oscillators into M groups, a=1,..., M, so that each group

contains identical units subject to common force

external
fields || e

e Apply the WS theory to each group: the dynamics is then 3M-dimensional
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How to extend the WS theory to treat non-identical oscillato rs |l

e Hierachically organized population: M subpopulations of size Na,

>aNa=N

e Microscopic equations of motion:

d
(([;l; = W+ Im (Hae I(pk )

e Macroscopic equations of motion:
M coupled systems of 3 WS equations each

e Infinitely large population:
— Thermodynamical limit I:

—> M finite, Ng — o0, several infinitely large subpopulations
— Thermodynamical limit II:
—> M — o0, continuous frequency distribution
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Local and global mean fields

We characterize every subpopulation by its own (local) Kuramoto mean

field (order parameter):

2TT

Za=ra6® — N; 1 Z e"Pk or Zg= ) Wa(@)e®do,
to be distinguished from the global mean field
. M 00
VY —re© N1 Z NaZa or Y :/ N(W)Z(w)dw

where N(W) is the frequency distribution
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WS equations for hierarchical population

Finite number of subpopulations

We label subpopulations with indicesa=1,.... M, b=1,... M

dzn 1.z
DA _ “H,— B
gt et zhaT 5 a
da

<o = Ga+Im(ZHa)

Here Hj is the effective force, common for all oscillators in a
E.g., for mean field coupling Ha = 5 p EgpnpZp,

where E5p quantifies coupling between subpopulations aand b
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WS equations for hierarchical population

Infinite number of subpopulations

We consider a system with a continuous distribution of frequencies and
identify subpopulation index a with the frequency W

Performing the limit M — oo, we obtain:

0z(w,t) 1 “h
ot loonréH(w’t)_EH (1)
da(wt) o im[Z*H (w,t)]

ot
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Direct WS reduction for a system with continuous
distribution of parameters

(following Watanabe and Strogatz, 1994)

e Continuit t'naw' a(W.)—Oforw( w,t)
ontinuity equatio p 'ch Q) = 0, W,

e Variable substitution in the continuity equation:

Low — 1=t P=Pwet),v=w

W((J.), (p7t) % O-(V7L|J7T)

e New density function 0(V, ), T) is stationary provided Z and O obey
the WS equations
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Further simplification. Link to OA ansatz

Transformation to original variables Il

We re-write the WS transformation

&—P\ 1-p P —W
an(32) 22 ()

In the exponential form

(ﬂ< i p_l_ei(l.pk—q-’)
eti=e 1+pe (W)

(Pikovsky and Rosenblum, PRL (2008))
(MoObius transformation, Marvel et al., CHAOS 2009)



Meaning of the WS variables (quantitative)

p_|_ei(L|Jk_LP)
1+pe (W)

we relate the WS variables to the complex Kuramoto mean field:

Using the WS transformation g% —g?®

| N |
Z=re®=N"1Y % =pPp,¥)=2/p,¥),
k=1

where

N 1+ p_lei (W—Y)

N
y(p,¥) =N k; 1+ p W)

Note: the relation is very simple, |Z = z|, if [y =1

Remark: this is valid for each subpopulation, i.e. for Y5 or y(w)
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Meaning of the WS variables (quantitative) Il

We write Y(p, W) as a series
y=1+(1-p" zq )

where C; are the amplitudes of the Fourier harmonics of the distribution

of constants of motion Wy:

N T .
C = N~ Z elW o C :/ O'(L|J)elltde|J
k=1

—Tt

—> For uniform distribution of ) and large N we have

V=1 — p=1,®=0 o z=~
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Reduction to one WS equation

For the case Ya = 1, i.e. Zg = Zg, WS equations are:

dZs 1 72
dt —|(JOaZa—|—2Ha—?H
da

dta — Wa+ IM(ZZHa)

Most common case: mean field coupling, Ha = leg\)/lzlEabanb
Hgi is independent of 0 —— 2nd equation becomes irrelevant
Similarly, for a continuous distribution we are left with

0Z(w, 1) 1. 72

—iZ 4 H - Sy
ot Wi

Ott—Antonsen equation (CHAOS 2008)
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Ott-Antonsen solution of the Kuramoto problem (CHAOS 2008)
e an infinitely large ensemble with the frequency distribution N(wW)
e the density function W(w, @,t) as a Fourier series

nw [, | & - 1
w(w,@,t) = é—T[)< 1+ Z fm(w,t)e”"™+cec.| 3
m=1

\ -/

e density functions with fm(,t) = [F((D,t)]m

satisfy the continuity equation ow 9 (wep) = 0
Y €Q at 90 P) =

e —> eqguation for the temporal dynamics of the field

e we call the set of found solutions the OA reduced manifold
e these solutions are the only attractors if N(w) is smooth
(Ott and Antonsen, CHAOS 2009)

OA ansatz <—> uniform distribution of Y in the WS theory
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Application of the theory: Nonlinearly coupled ensemble

(o’ +1)] 7
Effective force: H = AeePY = Age® [ _n(w)Z(w)dw

Full description:

Lorentzian frequency distribution N(w)

oz(wt) . AP AeeP ,
P 10Z > Y — > Y
da (w,t)

P W+ Im (AeeiBz*Y)
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Lorentzian distribution: reduced description
Reduced description (OA ansatz): z=/ — one WS equation

0Z(wt) . _  eAdP  eAeP_, |
o = 1wz > Y — > Z°Y

plus the integral Y = [*_ n(w)Z(w)dw = Z(i) (see OA, Chaos 2008)
—> WS-OA equation in the real form:

dr_ eA(rg) . 2
i —r4 5 r(1—r<)cosp(r,e)
d_@ _o-— EA(r7 E) (1_|_ I’Z) SinB(r, 8) ’

dt 2

Condition I = O yields an equation for r
If it is solved (numerically), then Q can be found, too.

Example: A= 1, B = Bg+ £4r2 Main result: multistability
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Diagram of regimes for A= 1and 3 =g+ g2r2
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lllustration of multistability for [Bg=10
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Beyond the OA approximation

e OA ansatz yields the asymptotic solutions

e Basins of attraction depend on the WS constants of motion Y

e For illustration, we simulate the ensemble for different dustributions
of Y

e The distributions are parameterized by 0 < g < 1,

g = 1 corresponds to the uniform distribution, and, hence,

to the OA solution
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Beyond the OA approximation: Numerics
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Nonlinearly coupled ensemble with the uniform frequency

distribution

Nonlinear model with A= 1, B = B+ €42, and —d< w< &

WS-equations in the OA approximation:

op(wt) 1-p°
= 5 ercog§0 — o+ )
2
0P(w) = - Ltp er sin(@ — & + )

ot

Equation for the mean field:

2p

. 0 o .
rel® — (25) % / Z(wt)dw= (28) 7" / pe¥doo
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Uniform frequency distribution: results
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Conclusions

e \Watanabe—Strogatz theory extended to the case of nonidentical os-
cillators and linked to the Ott-Antonsen ansatz

e powerful technique which yields a low-dimensional description of the
ensemble dynamics

e exact description of ensembles with global nonlinear coupling for

Lorentzian and uniform frequency distribution

M. Rosenblum and A. Pikovsky, PRL 98, 064101 (2007)
A. Pikovsky and M. Rosenblum, Physica D 238, 27-37 (2009)
A. Pikovsky and M. Rosenblum, PRL 101, 264103 (2008)
A. Pikovsky and M. Rosenblum, Physica D, submitted
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Example: two interacting subpopulations with chimera

Model by Abrams, Mirollo, Strogatz, and Wiley (PRL 2008):
wp=0wp=0 Ny =Ny

€11=€2 =W €12=¢€21=V # | and B = P.

Full description via WS equations

. 1
212=75 (H1,2 - Ziz"'iz)

012 =Im(Z oH1 2)
Hio= (WZ2+VZp1)€P,  Zio=2z1y12

Particular solution via OA ansatz, i.e. by setting Z1 2 = 71 2

(Abrams et al.)
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Results for the model of Abrams et al.

@ ' e

0.4 ' |

> C(O)'%ez

(a): uniform distribution of Y (OA manifold)

(b-d): nonuniform distribution of y == (qiasiperiodic chimeras
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Example: the Kuramoto-Sakaguchi model Il

Numerics: the same macroscopic initial conditions, r(0) = 0.5,
but different microscopic initial conditions, i.e. @(0)

10

Initial conditions (a): corresponds to the OA solution
Initial conditions (b): asymptotically tends to the OA solution
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WS variables vs. generalized order parameters

Generalized Daido parameter of the order m

! N 211 .
Zm =N Z elm(n( or Zm :/ W((P)el
K=1 0
Relation to WS variables:

Zm=Z"Ym(z,a)

For uniform distribution of ) and large N we have

ym:]. — Zm: m:Zm
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OA ansatz in terms of generalized order parameters

Time derivative of the order parameter:

_ 2T . 2T S
Zm:/O aw(wacpat)elm(pd(p: |m/0 W((D,(P,t)(Pelm(pd(P

ot

Substitution of @= W+ (He '?— H*&®) /2i yields

Zm=i0MZm+(HZm-1—H"Zm.1)

This system simplifies if Zm = Z™M

Z(w,1) =iwZ

—> | OA equation

1
S(H - H*Z?) .

OA ansatz <= uniform distribution of Y in the WS theory
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