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BANDLIMITED SIGNALS

Assume:
1. Class B
a. f is bandlimited f̂(ω) = 0, |ω| > π
b. f ∈ L2 ∩ L∞ and ‖f‖L∞

< 1

Shannon-Whitaker Formula

f(t) =
∑

n∈Z

f(n)
sin(t − n)

(t − n)
=

∑

n∈Z

f(n)sinc(t − n)

Nyquist Sample Rate Is One
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Most Natural Encoding: PCM1

1. m ≥ 1, 0 < x < 1
2. Bm(x) = b1(x)2−1 + · · ·+ bm(x)2−m first m-terms of binary
expansion of x.
3. Encode: f −→ {(b1(f(n)), . . . , bm(f(n)}n∈Z

4. Decode: f̄n := Bm(f(n))

f̄ =
∑

n∈Z

f̄nsinc(t − n)
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Optimal Bit Performance

Fix [0, T ] on which we want to recover f
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Optimal Bit Performance

Fix [0, T ] on which we want to recover f

For bit budget of m bits per Nyquist sample it seems
that PCM1 has minimal distortion:

‖f − f̄‖L2[0,T ] ≪ 2−m

for any T > 0
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Optimal Bit Performance

Fix [0, T ] on which we want to recover f

For bit budget of m bits per Nyquist sample it seems
that PCM1 has minimal distortion:

‖f − f̄‖L2[0,T ] ≪ 2−m

for any T > 0

Why is PCM1 not preferred in practice?
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Whoops: Some Problems

Need all samples of f
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Whoops: Some Problems

Need all samples of f

PCM not stable:
∑

n∈Z

|sinc(t − n)| = ∞

Can correct both of these by slight oversampling

Let λ > 1 Take g with ĝ smooth so that

ĝλ(ω) = 1, |ω| ≤ π

ĝλ(ω) = 0, |ω| > λπ
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Oversampling Continued

For any bandlimited f ∈ B:

f =
1

λ

∑

n∈Z

f(
n

λ
)gλ(t −

n

λ
)
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f =
1

λ

∑

n∈Z

f(
n

λ
)gλ(t −

n

λ
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ĝλ smooth implies gλ decays exponentially

1

λ

∑

n∈Z
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Oversampling Continued

For any bandlimited f ∈ B:

f =
1

λ

∑

n∈Z

f(
n

λ
)gλ(t −

n

λ
)

ĝλ smooth implies gλ decays exponentially

1

λ

∑

n∈Z

|gλ(t −
n

λ
)| ≤ M, for all t

PCM Encoding: f −→ {(b1(f(n)), . . . , bm(f(n)}n∈[−a,T+a]
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Oversampling Continued

For any bandlimited f ∈ B:

f =
1

λ

∑

n∈Z

f(
n

λ
)gλ(t −

n

λ
)

ĝλ smooth implies gλ decays exponentially

1

λ

∑

n∈Z

|gλ(t −
n

λ
)| ≤ M, for all t

PCM Encoding: f −→ {(b1(f(n)), . . . , bm(f(n)}n∈[−a,T+a]

Still not the answer: Sigma-Delta preferred over PCM in
practice
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Sigma-Delta Modulation: First order

1. Let λ >> 1
2. We want to assign one bit to each sample f(n

λ)

3. Set u0 = 0 and define recursively
{

un = un−1 + f(n
λ
) − qλ

n

qλ
n = sign

(
un−1 + f(n

λ)
)

,

4. Read f( 1
λ) assign qλ

1 , Read f( 2
λ) assign qλ

2 , etc.
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Sigma-Delta continued

4’. Can define a similar reccursion running backwards
5. Decode:

fλ(t) :=
1

λ

∑

n∈Z

qλ
ngλ(t −

n

λ
)

6. un state variable tracks differences in running sums:

un =

n∑

k=1

[f(
k

λ
) − qλ

k ]
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What is rate distortion for Sigma-Delta?

Summation by parts

f(t) − fλ(t) =
1

λ

∑

n∈Z

[f(
n

λ
) − qλ

n]gλ(t −
n

λ
)

=
1

λ

∑

n∈Z

[un − un−1]gλ(t −
n

λ
)

=
1

λ

∑

n∈Z

un[gλ(t −
n

λ
) − gλ(t −

n + 1

λ
)]
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Rate Distortion continued:

If state variable |un| bounded by M , then

|f(t) − fλ(t)| ≤
M

λ

∑

n∈Z

∫ n+1

λ

n

λ

|g′λ(s)| ds ≤ C
M

λ
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Rate Distortion continued:

If state variable |un| bounded by M , then

|f(t) − fλ(t)| ≤
M

λ

∑

n∈Z

∫ n+1

λ

n

λ

|g′λ(s)| ds ≤ C
M

λ

Prove |un| ≤ 1 by induction

un = un−1 + f(
n

λ
)

︸ ︷︷ ︸

∈[−2,2]

−sign(un−1 + f(
n

λ
))
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Compare:

m number of bits per Nyquist sample
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PCM has distortion O(2−m)
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Compare:

m number of bits per Nyquist sample

PCM has distortion O(2−m)

Sigma-Delta has distortion O(1/m)
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Compare:

m number of bits per Nyquist sample

PCM has distortion O(2−m)

Sigma-Delta has distortion O(1/m)

Why use Sigma-Delta?
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Where are we?

We still have no explanation of why engineers prefer
Sigma-Delta modulation
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We still have no explanation of why engineers prefer
Sigma-Delta modulation
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Where are we?

We still have no explanation of why engineers prefer
Sigma-Delta modulation

From the viewpoint of rate distortion PCM is better

The answer must lie elsewhere

Error in computation: circuit implementation
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Imperfect Quantizers

In circuit implementation Quantizers will not be perfect
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Imperfect Quantizers

In circuit implementation Quantizers will not be perfect

Consider the imperfect implementation of Q(x) := sign x

Qn(x) = sign(x) for |x| ≥ τ

|Qn(x)| = 1 for |x| ≤ τ
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Imperfect Quantizers

In circuit implementation Quantizers will not be perfect

Consider the imperfect implementation of Q(x) := sign x

Qn(x) = sign(x) for |x| ≥ τ

|Qn(x)| = 1 for |x| ≤ τ

Here τ can vary at each implementation but |τ | ≤ µ with
µ fixed
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Imperfect quantizer in PCM

Suppose x = 1/2 + δ with 0 < δ < τ . Then first bit b1(x)
may be wrong
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Imperfect quantizer in PCM

Suppose x = 1/2 + δ with 0 < δ < τ . Then first bit b1(x)
may be wrong

b1(x) 6= Q(x)

|x − x̄| ≥ δ

|f(t) − f̄(t)| ≥ cδ
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Imperfect quantization in Sigma-Delta Modulation

New Dynamical System

{

ūn = un−1 + f(n
λ
) − q̄λ

n

q̄λ
n = Qn

(
ūn−1 + f(n

λ)
)

,

CLAIM |ūn| ≤ 1 + δ

un−1 + f(
n

λ
)

︸ ︷︷ ︸

∈[−2−δ,2+δ]

−q̄λ
n
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Error Analysis

1. f̄(t) = 1
λ

∑

n∈Z
q̄λ
ngλ(t − n

λ)

2. |f(t) − f̄(t)| ≤ C/λ

We get same error bounds with quantization error

CSCAMM – p.17/28



Error Analysis

1. f̄(t) = 1
λ

∑

n∈Z
q̄λ
ngλ(t − n

λ)

2. |f(t) − f̄(t)| ≤ C/λ

We get same error bounds with quantization error

PCM gives error δ, Sigma-Delta gives error C/λ

CSCAMM – p.17/28



Error Analysis

1. f̄(t) = 1
λ

∑

n∈Z
q̄λ
ngλ(t − n

λ)
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We get same error bounds with quantization error

PCM gives error δ, Sigma-Delta gives error C/λ

Self correction is due to the feedback loop

CSCAMM – p.17/28



Error Analysis

1. f̄(t) = 1
λ

∑

n∈Z
q̄λ
ngλ(t − n

λ)

2. |f(t) − f̄(t)| ≤ C/λ

We get same error bounds with quantization error

PCM gives error δ, Sigma-Delta gives error C/λ

Self correction is due to the feedback loop

Same analysis works for higher order Sigma-Delta
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Can we have best of both worlds?

PCM offers exponential decay in distortion but no
quantization error correcting
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Can we have best of both worlds?

PCM offers exponential decay in distortion but no
quantization error correcting

Sigma-Delta offers quantization error correction but not
exponential decay in distortion

Can we have both exponential rate distortion and
quantization error correction
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Return to binary encoding

Quantizer Q(y) = 1, y ≥ 1, Q(y) = 0, y < 1

u1 = 2x

b1 = Q(u1)

un+1 = 2(un − bn)

bn+1 = Q(un+1)

x =

∞∑

n=1

bn2−n
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Beta EncoderDaubechies-DeVore-Günturk-Vash

Let 1 < β < 2
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Beta EncoderDaubechies-DeVore-Günturk-Vash

Let 1 < β < 2

If x ∈ [0, 1], then x =
∑

k bkβ
−k
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Beta EncoderDaubechies-DeVore-Günturk-Vash

Let 1 < β < 2

If x ∈ [0, 1], then x =
∑

k bkβ
−k

This decomposition is not unique
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Beta EncoderDaubechies-DeVore-Günturk-Vash

Let 1 < β < 2

If x ∈ [0, 1], then x =
∑

k bkβ
−k

This decomposition is not unique

Can use redundancy to have quantization error
correcting
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Delay Buffer:

Idea is to delay assigning bit of one till sure. Can do this
because we can always catch up
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Delay Buffer:

Idea is to delay assigning bit of one till sure. Can do this
because we can always catch up

To ensure representation exists after assigning
b1, . . . , bn, we need

0 ≤ x −

n∑

k=1

bkβ
−k ≤

∞∑

k=n+1

β−k =
β−n

β − 1
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Implement Delay

We shall use a delay δ > 0
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Implement Delay

We shall use a delay δ > 0

Ideal quantization

Q(x) = 1, x ≥ 1 + δ

Q(x) = 0, x < 1 + δ
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Determine bits

Encoding a number x ∈ [0, 1)

u1 = βx

b1 = Q(u1)

un+1 = β(un − bn)

bn+1 = Q(un+1)

x =
∞∑

n=1

bnβ−n
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Imperfect quanizer

Q̄(x) = 1, x ≥ 1 + δ + τ

Q̄(x) = 0, x < 1 + δ − τ

Q̄(x) ∈ {0, 1}
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Encoding a number

ū1 = βx

b̄1 = Q̄(u1)

ūn+1 = β(ūn − b̄n)

b̄n+1 = Q̄(un+1)
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ormance of beta encoder under imperfect quantization

Theorem Given µ and suppose each τ in the imperfect
quantizer satisfies |τ | ≤ µ. If delay δ satisfies
(i) µ ≤ δ

(ii) 1 < β < 2+µ+δ
1+µ+δ

Then, for each x ∈ [0, 1), we have

|x −
n∑

k=1

b̄kβ
−k| ≤ Cβ−n
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Encoding Signals

The beta encoder can be used to build an encoder for
signals with the same exponential decay in the face of
imprecise quantizers
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Encoding Signals

The beta encoder can be used to build an encoder for
signals with the same exponential decay in the face of
imprecise quantizers

Sample slightly above Nyquist rate

Quantize sample f(n
λ) using m bits from Beta encoder

This gives quantized f̄n
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Encoding Signals continued

f̄n decoding of these bits

|f(t) −
1

λ

∑

n∈Z

f̄ngλ(t −
n

λ
)| ≤ Cβ−m
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Encoding Signals continued

f̄n decoding of these bits

|f(t) −
1

λ

∑

n∈Z

f̄ngλ(t −
n

λ
)| ≤ Cβ−m

This encoder is impervious to quantization error
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