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Many-body Schrédinger equation

Xu Yang

In the Born-Oppenheimer approximation,

oV K2
ih— = HV=|_— A+V|w
Ihat <2me + > ’

V = Vne -+ Vee + W

Introduction

Ve — the electron-nucleus attraction energy
Vee — the electron-electron repulsion energy
W — the external potential

N electrons = dimensionality of equation 3N + 1

Conclusion:
nice equation but mission impossible to be directly solved



Hartree-Fock and TDDFT theory

Hartree-Fock theory: W has the form of determinant {14 }¥_,
— Slater determinant

Xu Yang

Introduction

2
ih% =— f
ot 2me

V=Vy+ Ve+W.

Ay + Vipy,

Vy - Hartree (Coulomb) potential
Ve - Fock (exchange) operator

TDDFT theory (Runge-Gross theorem, 1984): a unique map
between the time-dependent external potential and
time-dependent density.

V = Verr(p), p = 3 [k|? = Thomas-Fermi system
(orbital-free) and Kohn-Sham system (orbital-dependent).



Motivations

Xu Yang @ Understand the electron interactions under the picture of
Hartree-Fock or TDDFT;

Introduction

@ Derive effective equations in the background of crystals;

@ Aim at possible applications in nano-optics and
semiconductors.
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Thomas-
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Derivation of the Thomas-Fermi-Maxwell model

Begin from the quantum many-body action
A= / < \U‘iat = H‘\U > dt.

Take W as the Slater determinant {vy}¥_, and assume
i = ax exp(iS) — same phase function,

A= / < 81‘8—7 A— VS) >—<W|Ho|\|1> dt,

where p = 37, |ax|? we have also considered the magnetic
vector potential A in the Hamiltonian

(iV + AP + V, Hoz—%A+ V.

H=

I\)\—L



Euler-Lagrange equations

The Thomas-Fermi approximation of kinetic energy yields,
Xu Yang

Thomas-
Fermi-

’
A= /,0 <—a,s —5(A- v5)2) — Crep®® — pVi — exe(p) dt.
model The Euler-Lagrange equations read as

3tp+V'( (VS - A)) =0,

S + 5 (VS -~ A)? + 5ETF =0,

ETF—CTF/ °3 + /ch+/6xc

coupled with the Maxwell system

OPA— DA+ V(0 Ve)=J=p(VS—A),
— AV, =p—m, m— nucleicharge.




Linearized half space problem
(Ritchie, 1973, dispersion of surface plasmon)

TGS po(6,2) = 1,20, A=0, Vo—=0, VS=0,
— 9A .
Lnomas- Pert. E=-VV,— %, B=V x A,
Maxwell .
mode E = (E4(2),0,E3(2)) =D B = (0,By(z),0) k1.

Interface condition: E, B are continuous.
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Thomas-
Fermi-
Maxwell
model

Dispersion relation w ~7k
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Drude disperstion ’,

TF dispersion ’

= = = = linear ’

Thomas-Fermi

In Drude model electron has classical dynamics

do_ p_ _
dt_ - E7 J—POP

10
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Discussions on Thomas-Fermi-Maxwell model

@ Both Drude and Thomas-Fermi models lie in the linear
regime when the wave number k is small (long waves).

@ Out of the linear response regime, Drude model only
performs well for a certain range of wave number; as
k — oo (short waves), one needs to capture the many
body effects, for example, by Thomas-Fermi model.

@ The nonlinear Thomas-Fermi-Maxwell model could be
used to study the optical response of surface plasmon
polaritons. (W. Cai and his collaborators)



Kohn-Sham model

Xu Yang
.8¢j 1
5t = *QA?/)j + Verrihy,

Vert = Ve + W + Vie(p),
—AVe=p—m, p= Z \wj}z (spin degeneracy omitted).
i

Kohn-Sham
model and
scalings

1; - the wave function for the j-th independent electron;

Vs - the effective potential; W - the external potential;

Vic - the exchange-correlation potential (with adiabatic local
density approximation).

N electrons = N one body Schrédinger equation.

Goal:
Effective equations modeling electron dynamics in
crystals under macroscopic perturbations.




.. Nondimensionalization - rescalings

™ We rescale the system according to the time and length

scales of the external potential W.

The length scale L > 1, and we denote ¢ = 1/L;

The time scale T distinguishes two regimes
Kohn-Sham
model and

soalings @ High frequency: T = O(1).
@ Low frequency: T = O(1/¢);

The rescaled Schrédinger equations are given by

IO = — 32 A + V(x)s + W(x, t)y§  (High frequency);
ie0r; = — 32 Af + V(X)yf + W(x, t)p  (Low frequency),

Whel’e V — Vc+ ch.



Crystals - periodicity assumptions

Xu Yang

@ Assume the external potential W is 1-periodic in x.
@ The unit cell is e-periodic and contains N electron.

Kohn-Sham Then
model and
scalings

—2AVe = (p" — 1), Vie = (%),

where

2 3
, mF=¢e°m(x/e).

¥

Ze—3
>
=




High frequency regime - short time dynamics

Xu Yang

i@ﬂ/)f = —§€ A¢€ + V(x, t)¢5 + W(x, t) 7
—2AV, =8 (p° = m7),  Vxe=nl(e P)~

Denote Vit = V + W.

Homogenized
system -
high

frequency Remark that pa = 226_3

regime

2
|~ o(1/¢%).

Assume initially the system is at the ground state
p°(x,0) = e~3pg(x/e) of the unperturbed system (W = 0).

Interested in: macroscopic response in Vto Wase — 0.



Band structure

Xu Yang

Denote the Hamiltonian for the unperturbed system (in a.u.)

HO = —%A aF Vper with — Avper = po — M.
Bloch-Floquet theory shows

Homogenized

- Ho = Howdk = 3 En(k)lvne) (el dk.
n

frequency
regime

Yn k and Ex(k) are the eigenfunctions and eigenvalues
(sorted in increasing order) of Hy k. ¥k = Unk eXp(ik - X).

Band gap assumption:
The first Z bands are occupied with a gap from the others.



B .
Main results
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Viot(t, x) = (Vper(x/€) + Uo(t, X)) + O(e),

where U, satisfies,

t
—AxUp(t, x) / G(t —7): VaUydr = —AW(t, x),
0

Homogenized
system -

requeny  @nd 1 .
regime G(t) _ E / e—lth(w) dw.

A physically more clear form:

— Ay Up(w, x) — G(w) : VEUp(w, X) = —Ax W(w, x).
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Homogenized
system -

high
frequency
regime

G(w) is determined by the band structure

10k | Um,k) (Un,k |10k 5| Um.k) ik

(Un,
Gop(w) = Z Z /r* e : w + wmn(k)

n<Zm>Z

Un k| 1Ok, |Um, k) (Un,k |10k 4 | Um, k) dk

(
B Z Z ][r e w — wmn(k)

n<Zm>Z

- <fw,V(1 - XU,V)—1fwﬂ>,

wimn =Em(K) — En(k).



The function f and operator y,, from §V to dp,

Un kUn, & ,
Xu Yang fw,a = - Z Z f 7m7<u,77k‘/akalum7k> dk

n<Zm>Z Wt wmn(k)

Up k Um.k .
L b dk
£30Y P T ]

n<Zm>Z

Un kUn k
= — _ & hhR k
Xu}g Z Z f* w_'_wmn(k) <Un,k‘g’Um,k>d

n<Zm>Z

Homogenized
system -

ut  u -
high n,kYm.k U U dk
o 300 L nklglimi) dk
n<Zm>2Z
The linear map from dp to 6V,

Vh =¢ + 1/ (pper)h,
_Az¢ :h.
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Homogenized
system -

high
frequency
regime

Discussions on short time dynamics

@ Microscopic justification of the effective Poisson
equation in crystals (semiconductors or insulators).

@ The external could be viewed as generated by free
charge —AW, then £ = | + G gives the dielectric
response (permittivity) tensor.

@ The limit of w — 0 recovers the static dielectric response
(Baroni-Resta, 1986), recently rigorously studied by
Cancés-Lewin (2010) in the linear response regime.



Asymptotics
p= s_?’po(t, X,X/e)+ 5_2p1(t, X,X/e)+ 5_1p2(t,x,x/e) + .
Viot(t, X) = Vo(t, x, x/e) 4+ e V4 (t, x, x/e) + €2 Vao(t, X, X /) + - - -

Xu Yang
Schrodinger Coulomb+XC
V0 po VO
Solvability condition

Vl pl Vl
Homogenized
system - v o v
high
frequency 2 2 2
regime

Two scaled Coulomb equation, z = x/e,
DV —2Vyx -V Vi1 — AxVy_2 = pp — do¢em.
Solvability condition:
(po) =(m), (p1) =0, —Ax(Vo)=(p2).



Heisenberg’s picture:

e 75 —moo( ot [ (ro0( i [0))

p°(t, x) = P; (X, X),

Key observation:
The domain of dependence and influence in the evolution is

of scale of cell size O(e).

Homogenized
system -

high
frequency
regime
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Homogenized
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high
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regime

2
(3
HO(t’ X) = _?A}/ + VO(t’Xay/e)a

SHE (8, X) = (v — X) - Ve Vo(t, X, y /) + e Vi (t, x, y /€),
SH5(t, x) = %((y X) - V)2 Vo(t, x, y /e)
( )'VXV1(t7X7y/€)+52V2(t>x>y/€)'

t
Texp(—i/0 HE (7))

t
“Uyo(x0) — i /0 Us.» (X0)5HE (7, Xo)hr 0(Xo) d

t T2
_ /0 /0 Ut ry (X0)THE (72, X0 Uy ry (X0)
X OH® (4, Xo)Ur, 0(Xo)dTy dro + - - -,

t
Uss(0) = Texp(~i | Ho(r.x0)dr).
S




Low frequency regime - long time dynamics

Xu Yang

iedrpt = =32 Ay + V(x)9F + W(x, t)yr,
—e2AV = 3(p° — ).

Simplifications:
@ No exchange correlation potential;
@ Assume we only have valance and conduction bands;
Homogenized @ initially the system is at the ground state of the

systems -

frauency unperturbed system (W = 0).
Interested in: derivation of mesoscopic transport equations.

regime



EE: . .
Two species transport equations
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Homogenized
systems -
low
frequency
regime

Homogenized system:
81’1‘/,’/(C + VkEy - fo1v,7kC =K% qur,’/f + h"°(Vxw1),
a1k + VkEve- Vxq{k + Vx(vi + (V1)) =0,

cell problem:

(~B; + Ry = f (e ol + £ [xol?) + ¥ + g° dc
r*

\

Incompressibility condition: (py) = ff{k + fixdk = 0.

@ For each species, we have equations for the density £,
and current g/, interacted by KV:¢ (given later).

@ The interaction of these two species is through the
microscopic potential v;.
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Homogenized
systems -
low
frequency
regime

Discussions on long time dynamics

@ (V;) serves as the Lagrangian multiplier.

@ The closure strategy is different from the short time
dynamics. The response macroscopic potential serves
as the Lagrange multiplier.

@ Why interested in the first order system? The number
density is of order 2. If we try to recover the physical
system and take e = 1071, then the total charge density
is roughly of O(1).

@ If the initial conditions are zero, the system has (trivial)
solutions (zero). This is consistent with the fact that a
pure insulator does not conduct electricity. To make a
semiconductor, we need to disturb the system so that
the initial conditions of the first order system are
nonzero. For example, p-n junction.



Xu Yang

¢k = 5_3/27110,1((1.7)(’ X/S) + 6_1/2w1,k(ta X7X/€)

+ V24 k(t, X, x /) + - -

V(t, x) = W(t, x,x/e)+eVi(t, x,x/e)
+e2Vo(t, X, Xx/e) + - - -

Two scaled Coulomb equation, z = x/e,
AV =2V -V V4 — Ax Vo = pp — doem.

Homogenized  Gonstraints:

systems -
low
frequency

regime (po) = (M), (p1) =0, —ADx(Vo) = (p2)-
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Homogenized
systems -
low
frequency
regime

WKB analysis

¢o,k(t, X, Z) = (pO,k(ta X, Z) eXp(iSk(t, X)/E)'

Adiabatic approx. ¢ k(t, X, 2) = ao k(t, X)xn(VxSk, 2).

o = (3 (-192 +P)* + Vour2) ) xolp. 2) = Enp)rn(p. ),

Valence band: ag ,(t, x) = 1, §(0, x) = kx (full band)
Conduction band: ag ,(t, x) = 0, Sg(0, x) = kx (empty band)
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Homogenized
systems -
low
frequency
regime

To the leading order, one gets eikonal-transport equations,

01Sy° + Evo(VxSp©) =0 (=) Sp°(t,x) = kx — Eyo(K)t,
2
=S 0’

v |2 c &
<PO>:/‘aO,k‘ +‘ao,k‘ dk = (m).

‘ag,k’2 =1 3 ag,k

This fulfills the behavior of insulator: although each electron
has classical dynamics

Tt = V/(EV,C7

it does not conduct electricity. It proposes a constraint

(Vo) + W=0, (p2) =AW




The first order correction. Assume

1
Yyt X, 2) = ayixv.e(k, 2) + (#1%)

Xu Yang
Define
/¢ _ om V,C\* ,V,C vV, ~ v, YC
1k = 2Re ( (Vo) ¥i%), gk =Tm (¢ k) x¥olk ) -
then
K(‘;g = 29“&6(32(1)(%0, E;,1C(/ — PV7C)aZBXV7C> — 6Otﬂ7
ﬁv,c =H- EV,C>
:S;’QL‘?TM hv’c(va1) = —23m<v2Xv,07£;}:(l - 7DV’C)(VXV1XV,C)>a
frequenc
regc?me y Rvy = foﬁe(xf,’cﬁ;jc(wx\/’c)),

9" — 2 f Im(xyeLvell = PY)Vaxve) - a7 dk.



Xu Yang Conclusions:

@ We derive the Thomas-Fermi-Maxwell model and study
the half space problem.

@ Effective dielectric response equation is derived in the
high frequency regime of the Kohn-Sham model.

@ Effective transport equations are derived in the low
frequency regime of the Kohn-Sham model.

Future work:

Homogenized
systems -

low @ More realistic models in surface plasmon and

frequency . .

regime semiconductor.For example, the grating surface and p-n
junction.

@ Electron dynamics in the presence of magnetic field.



Thank You!

Questions?
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