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The Error Correction Problem

• We wish to transmit a “plaintext” f ∈ Rn reliably

• Frequently discussed approach: encoding, e.g. generate a “ciphertext”
Af , where A ∈ Rm×n is a coding matrix

• Assume a fraction of the entries of Af are corrupted → y

* * **
y

– Corruption is arbitrary

– We do not know which entries are corrupted

– We do not know how the corrupted entries are affected

• Is it possible to recover the plaintext exactly from the corrupted ciphertext?
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What is Possible?

• If the fraction of corrupted entries is too large, there iws no hope or
reconstructing the plaintext.

• Example: n � m; consider two distinct vectors f1, f2 ∈ Rn and

y =

A1f1

A2f2

 A =

A1

A2

 .

– y = A1f1 with at most half of its entries corrupted

– y = A2f2 with at most half of its entries corrupted

Cannot distinguish between f1 and f2.

• Common assumption: fraction of corrupted entries is not too large

• Ultimate limit of performance: fraction is less than 1−r
2

, r = n
m

.
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Fundamental Questions

• For which fractions ρ is accurate decoding possible?

• Interested in practical algorithms
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Decoding by Linear Programming

• `1-norm

‖x‖`1 :=
n∑

i=1

|xi|

• To recover f from corrupted data y = Af + e, simply solve the
`1-minimization problem

(P1) min
g∈Rn

‖y −Ag‖`1 .

• Equivalent linear program:

min
m∑

i=1

ti, subject to − t ≤ y −Ag ≤ t

optimization variables: t ∈ Rm, g ∈ Rn
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Surprise!

(P1) min
g∈Rn

‖y −Ag‖`1 .

Under suitable conditions on the coding matrix A, the input f is the unique
solution to (P1), provided that the fraction of corrupted entries is not too large,

i.e. does not exceed some strictly positive constant ρ∗(A)

• Minimizing `1 recovers all signals regardless of the corruption pattern

• Size of corruption does not matter

• There is nothing a clever opponent can do to corrupt the ciphertext, and
fool the LP decoder.
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Peek at the Results

• Random Gaussian coding matrix A: Aij i.i.d. N(0, 1)

• With overwhelming probability, if the fraction of the corrupted entries does
not exceed ρ∗, the solution to (P1) is unique and equal to f .

• Universal: probability that A allows exact decoding of all plaintexts is at
least 1 − O(e−αm)

• See also very recent work of Vershynin and Rudelson (2005).
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The Importance of `1
• Minimize instead the `2-distance

min
g∈Rn

‖y −Ag‖`2

• Solution given by least-squares

g? = (ATA)−1ATy = f + (ATA)−1AT e

• Error term:

– No reason to vanish

– Goes to infinity as ‖e‖`2 goes to infinity.
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Practical Performance, I

• Aij i.i.d. N(0, 1)

• f ∈ Rn

• Corruption: flip the sign of randomly selected entries
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Practical Performance, II
• Aij i.i.d. P(Aij = ±1) = 1/2

• f ∈ 0, 1n

• Corruption: flip the sign of randomly selected entries

• Solve ming∈Rn ‖y −Ag‖`1 subject to 0 ≤ g ≤ 1, and round up.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction fo corrupted entries

F
re

qu
en

cy

Empirical frequency of exact decoding, n = 128, m = 2n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction fo corrupted entries

F
re

qu
en

cy

Empirical frequency of exact decoding, n = 128, m = 4n

n = 128, m = 2n n = 128, m = 4n



11

Understanding this Phenomenon

• Corrupted ciphertext: y = Af + e

• (m− n) × n matrix B which annihilates A on the left, i.e. such that
BA = 0

ỹ = By = B(Af + e) = Be

• Equivalent problem: recover e from ỹ

• Need to solve an underdetermined system of linear equations

• Useful equivalence: set g = f + h

(P1) min
g∈Rn

‖y −Ag‖`1 , ⇔ min
h∈Rn

‖e−Ah‖`1 ,

⇔ min ‖d‖`1 , d = e−Ah

Observe that d = e−Ah ⇔ Bd = Be, i.e.

(P1) ⇔ min ‖d‖`1 , Bd = Be
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Sparse Solutions to Underdetermined Systems

• Equivalent problem

(P1) min ‖d‖`1 , Bd = Be

• Also known as Basis Pursuit (Chen, Donoho, Saunders, 1996)

• Ability to decode accurately ⇔ ability to find sparse solutions to
underdetermined systems
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Agenda: Finding sparse solutions to underdetermined systems

• Error correction

• Signal recovery from incomplete measurements

• Uniform uncertainty principles

• Stability

• Implications for information/coding theory

• Numerical evidence
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Model 1D Problem
f ∈ RN is a superposition of |T | spikes (|T | nonzero components)

f =
∑
t∈T

f(t)δt

(δt is a spike at t) and with Discrete Fourier Transform (DFT)

f̂(ω) =
N−1∑
t=0

f(t)e−i2πωt/N

Observe f̂(ω) on Ω, K := |Ω| � N
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Sparse Spike Train

Sparse sequence of |T | spikes Observe |Ω| Fourier coefficients
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`1 Reconstruction
Reconstruct by solving

min
g

‖g‖`1 :=
∑

t

|g(t)| s.t. ĝ(ω) = f̂(ω), ω ∈ Ω

original recovered from 30 Fourier samples
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A First Recovery Theorem

(P1) min
g∈RN

‖g‖`1 , ĝ(ω) = f̂(ω), ω ∈ Ω

Theorem 1 (C., Romberg, Tao) Suppose

• f supported on set T

• Observations selected at random with

|Ω| ≥ C · |T | logN.

Minimizing `1 reconstructs exactly with overwhelming probability.

• Unimprovable

• In theory, C ≈ 20

• In practice, C logN ≈ 2

• (Very) hard stuff
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Reconstructed perfectly from 30 Fourier samples
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Nonlinear Sampling Theorem

• Switch roles of time and frequency:

– f̂ supported on set Ω in freq domain

– sample on set T in time domain

• Shannon sampling theorem:

– Ω is a connected set of size B

– we can reconstruct from B equally spaced time-domain samples

– linear reconstruction by sinc interpolation

• Nonlinear sampling theorem:

– Ω is an arbitrary set of size B

– we can reconstruct from ∼ B logN randomly placed samples

– nonlinear reconstruction by convex programming
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A Second Recovery Theorem

• Gaussian random matrix

F (k, t) = Xk,t, Xk,t i.i.d. N(0, 1)

• This will be called the Gaussian ensemble

(P1) min
g∈RN

‖g‖`1 Fg = Ff.

Theorem 2 (C., Tao) Suppose

• f supported on set T

• K observations (random projection) with

K ≥ C · |T | logN.

Minimizing `1 reconstructs exactly with overwhelming probability.
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Gaussian Random Measurements and Random
Projections

y = Ff, yk = 〈f,X〉, Xt i.i.d. N(0, 1),
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Previous Work

• `1 reconstruction in widespread use

– Santosa and Symes (1986), and others in Geophysics (Claerbout)

– Donoho and Stark

• Sparse decompostions via Basis Pursuit

– Chen, Donoho, Saunders (1996)

– Donoho, Huo, Elad, Gribonval, Nielsen, Fuchs, Tropp (2001-2005)

• Novel sampling theorems

– Bresler and Feng (2002)

– Vetterli and others (2002-2004)

• Fast algorithms

– Gilbert, Strauss, et al. (2002-2005)



23

Numerical Results

• Signal length N = 1024

• Randomly place |T | spikes, observe K random frequencies

• Measure % recovered perfectly

• white = always recovered, black = never recovered
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Key to Recovery: Uncertainty Principles
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Weyl-Heisenberg Uncertainty Principle

W. Heisenberg, 1901-1976

Weyl-Heisenberg

• f ’lives’ on an interval of length ∆t

• f̂ ’lives’ on an interval of length ∆ω

∆t · ∆ω ≥ 1



26

Restricted Isometries

• Measurement matrix F , F ∈ RK×N ; FT columns of F corresponding to
T , FT ∈ RK×|T |.

• Restricted isometry constants δS

(1 − δS) Id ≤ F ∗
TFT ≤ (1 + δS) Id, ∀T, |T | ≤ S.

• F obeys a uniform uncertainty principle for sets of size F if δS ≤ 1/2, say.

• Uniform because must hold for all T ’s.
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Why Do We Call This an Uncertainty Principle?

• FΩ, rows of the DFT isometry (corresponding to Ω)

• FΩT , columns of FΩ (corresponding to T )

• UUP

(1 − δS)
|Ω|
N

· ‖fT ‖2 ≤ ‖FΩT fT ‖2 ≤ (1 + δS)
|Ω|
N

· ‖fT ‖2

• Implications

– f supported on T , |T | ≤ S

– If UUP holds, then

(1 − δS)
|Ω|
N

≤ ‖f̂ · 1Ω‖2/‖f̂‖2 ≤ (1 + δS)
|Ω|
N
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Sparse/Compressible Signals

• Sparse signal: f is sparse if f is supported on a “small” set T

• In real life, signals of interest may not be sparse but compressible

• Compressible signal: f is compressible if it is well-approximated by a
sparse signal.

• Frequently discussed model of compressible signals: rearrange the entries
in decreasing order |f(1)| ≥ |f(2)| ≥ . . . ≥ |f(N)|

|f |(k) ≤ C · k−s, ∀k

• Implications: fT truncated vector corresponding to the |T | largest entries
of f ∈ RN

‖f − fT ‖`2 ≤ C · |T |−(s−1/2)

• This is what makes transform coders work (sparse coding)



29

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
power decay law



30

Compressible Signals I: Wavelets in 1D
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Compressible Signals II: Wavelets in 2D
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UUP and Signal Recovery from Undersampled Data

(P1) min
g∈RN

‖g‖`1 , Ag = Af.

Theorem 3 (C., Tao, 2004) Assume δ3S + 3δ4S < 2 (UUP holds).

• If f supported on any set T , |T | ≤ S, then the recovery is exact.

• For all f ∈ RN

‖f − f ]‖`2 ≤ 8
‖f − fS‖`1√

S

This is a purely deterministic statement. Nothing is random here!

• If f is sufficiently sparse, the recovery is exact

• If f is compressible

‖f − f ]‖`2 ≤ 8 · S−(s−1/2)

• Useful if S is large
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Examples

• Gaussian ensemble Aij i.i.d. N(0, 1/K) obeys UUP with

S . K/ log[N/K]

• Binary ensemble Aij i.i.d. P (Aij = ±1/
√
K) = 1/2 obeys UUP with

S . K/ log[N/K]

• Fourier ensemble (K random rows) obeys UUP with

S . K/(logN)6

Probably true with log4N (C., Tao and Vershynin and Rudelson)

All with overwhelming probability.
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UUP for General Orthonormal Systems

• f is sparse in an orthogonal basis Ψ

f(t) =
∑

m∈I
αmψm(t)

• Measurements in different orthogonal basis Φ

yk = 〈f, φk〉 k ∈ Ω y = ΦΩf.

• Recover via
min ‖α‖`1 ΦΩΨ∗α = y

• General orthogonal ensemble ΦΨ∗ (random rows) obeys UUP with

S . K/[µ2(logN)6]

• Incoherence µ =
√
N max |〈φω, ψm〉|.
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Reconstruction of Piecewise Polynomials, I

• Randomly select a few jump discontinuities

• Randomly select cubic polynomial in between jumps

• Observe about 500 random coefficients

• Minimize `1 norm of wavelet coefficients
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Reconstruction of Piecewise Polynomials,II

• Randomly select 8 jump discontinuities

• Randomly select cubic polynomial in between jumps

• Observe about 200 Fourier coefficients at random
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Reconstruction of Piecewise Polynomials, III
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Recovery of Sparse/Compressible Signals

• How many measurements to recover f to within precision
ε = K−(s−1/2)?

• Intuition: at least K, probably many more.
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Where Are the Largest Coefficients?
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Implications of Approximate Recovery

• Gaussian ensemble: Ai,j i.i.d. N(0, 1/K)

• Random projection on a K-dimensional plane (y = Af )

• f compressible

‖f − f ]‖`2 ≤ C · (K/ log[N/K])−(s−1/2).

• See also recent work by D. Donoho (2004)
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Another Surprise!
Want to know an object up to an error ε; e.g. an object whose wavelet
coefficients are sparse.

• Strategy 1: Oracle tells exactly (or you collect all N wavelet coefficients)
which K coefficients are large and measure those

‖f − fK‖ � ε

• Strategy 2: Collect K log[N/K] random coefficients and reconstruct
using `1.

Surprising claim

• Same performance but with only K log[N/K] coefficients!

• Performance is achieved by solving an LP.
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Optimality

• Can you do with fewer than K log[N/K] for accuracy K−(s−1/2)?

• Simple answer: NO

• Connected with theory of Gelfand widths

• Connected with information theory (rate-distortion curve of compressible
signals)
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Stable Recovery?

• In real applications, data are corrupted

• Better model: y = Af + e, where e may be stochastic, deterministic.

• Recall most of the singular values of A are zero

• Hopeless?
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UUP and Stable Recovery from Undersampled Data
`1-based regularization

min ‖g‖`1 ‖y −Ag‖`2 ≤ ‖e‖`2

Theorem 4 (C., Romberg, Tao) Assume δ3S + 3δ4S < 2.

‖f − f ]‖`2 ≤ 8 ·
(‖f − fS‖`1√

S
+ ‖e‖`2

)
• No blow up!

• Reconstruction within the noise level

• Nicely degrades as noise level increases
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Geometric Intuition

• f feasible ⇒ f ] inside the diamond

• f ] obeys the constraint ⇒ f ] inside the slab (tube)
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Reconstruction from 100 Random Coefficients
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Reconstruction from Random Coefficients
Minimize TV subject to random coefficients + `1-norm of wavelet coefficients.
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Reconstruction from Random Coefficients
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original, 65k pixels wavelet 7207-term approx recovery from 20k proj

⇓ zoom ⇓ zoom
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original backprojection min TV

Ω ≈ 29% of samples ⇓ zoom ⇓ zoom



51

Naive Reconstruction
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Other Phantoms
Classical Reconstruction
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Error Correction: Epilogue
• Gaussian coding matrix A ∈ Rm×n, Aij i.i.d. N(0, 1)

• Corrupted entries y = Af + e.

• Annihilator: BA = 0, B random projection on a plane of co-dimension n

• Can think of the entries of B ∈ R(m−n)×m i.i.d. N(0, 1).

• Decoding by LP is exact if e is the unique solution to

min ‖d‖`1 , Bd = Be

• Need δ3S + 3δ4S < 2

Theorem 5 (C., Tao, 2004) Exact decoding occurs for all corruption patterns
and all plaintexts (with overwhelming probability) if the fraction ρ of error obeys

ρ .
1

log( m
m−n

)
.

1

log( 1
1−n/m

)
= ρ∗

For finite values of n/m (rate), the constant also matters! See Donoho (2004,
2005).



54

Summary

• Possible to reconstruct a sparse/compressible signal from very few
measurements

• Need to solve an LP (or SOCP)

• Tied to new uncertainty principles

• Many applications

– Finding sparse decompositions in overcomplete dictionaries

– Decoding of linear codes

– Biomedical imagery

• Extraordinary opportunities

– New A/D devices

– New paradigms for sensor networks
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Connections with Information Theory
(Mostly Speculative)
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Universal Codes
Want to compress sparse signals

• Encoder. To encode a discrete signal f , the encoder simply calculates the
coefficients yk = 〈f,Xk〉 and quantizes the vector y.

• Decoder. The decoder then receives the quantized values and
reconstructs a signal by solving the linear program (P1).

Claim: Asymptotically nearly achieves the information theoretic limit.
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Information Theoretic Limit: Example

• Want to encode the unit-`1 ball: f ∈ RN :
∑

t |f(t)| ≤ 1.

• Want to achieve distortion D

‖f − f ]‖2 ≤ D

• How many bits? Lower bounded by entropy of the unit-`1 ball:

# bits ≥ C ·D · (log(N/D) + 1)

• How many bits does the universal encoder need? Up to possibly a
log(1/D) factor

# bits ∼ D · (log(N/D) + 1)

– Same as the number of measurements

– Robustness vis a vis quantization
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Robustness

• Say with K coefficients

‖f − f ]‖2 � 1/K

• Say we loose half of the bits (packet loss). How bad is the reconstruction?

‖f − f ]
50%‖2 � 2/K

• Democratic!



59

Why Does This Work? Geometric Viewpoint
Suppose f ∈ R2, f = (0, 1).

y= F f

f ! = f

f !

f
y= F f

Exact Miss
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Higher Dimensions
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Equivalence

• Combinatorial optimization problem

(P0) min
g

‖g‖`0 := #{t, g(t) 6= 0}, F g = Ff

• Convex optimization problem (LP)

(P1) min
g

‖g‖`1 , F g = Ff

• Equivalence:

For K � |T | logN , the solutions to (P0) and (P1) are unique and are the
same!


