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Vortex Methods

Flow field is represented using gridfree vortex elements 

Navier-Stokes equation governs the dynamics of the freely convecting 
vortex elements

Velocity is recovered from the vortices using the  Biot-Savart law 

For turbulent flow simulation vortex methods operate as a LES: 
not economical to resolve the smallest scales. 



Viscous Diffusion Vortex Stretching

Blob methods Accurate, if:
blobs overlap 
occasional remeshing 

Unstable - depends on 
calculation of velocity 
derivatives. 

Filament 
methods

Not straightforward. Convect tube end points.     

“Blobs” or:       filaments made up of tubes:

Vortex Elements



Filament methods: 

•preferred for turbulent flow simulation since vortex stretching is 
an essential and dominant flow process.

•viscous diffusion is not significant away from walls.

•viscous dissipation is "subgrid" and can be modeled via loop 
removal.

Blob methods: 

•rarely applied to turbulence due to vortex stretching instability

•best suited to moderate Reynolds number flows where viscous 
diffusion is an essential aspect of the dynamics (e.g. laminar 
vortex rings, low speed jets).  



Vortex Filament Scheme

• Computational elements: straight vortex tubes linked end-to-
end forming filaments.

• Convect tubes via their endpoints: this models the convection 
and vortex stretching term in the equations of motion.   

• Circulation G on filaments is constant (Kelvin's Theorem)
• Tubes subdivide when stretched beyond length h. 

x1 x2 h



Not economical to resolve the dissipation scales. 

Moreover, viscous diffusion would have to be modeled 
directly. 

Loop removal offers a means around the impasse.

In turbulent flow: 
vortex filaments stretch
and fold - taking energy to
small, dissipative scales



Vortex loops are removed as they form, thus providing  
spatially intermittent local dissipation: in fact, vortex 
loops contribute only to the local velocity field.

In principle, energy is removed at inertial range scales 
without the hardship of computing energy transfer to the 
smallest scales. 

Loop removal is non-diffusive (unlike traditional sub-grid 
models).

Does not prevent or interfere with backscatter: (e.g. 
filaments combine to form larger scale structures).

Prevents runaway growth in the number of tubes.

loop removal can be used as a "sub-grid model" (Chorin).



a:  without loop removal, 
h = 0.0375 (max 
tube length)

b:  with loop removal, 
h = 0.025

c: with loop removal 
h = 0.0375

Number of tubes vs. time



Near-Wall Considerations

Flow near solid walls contains strong vorticity gradients that 
determine viscous production of new vorticity. 

Mean vorticity near 
wall in a turbulent 
boundary layer

In general, LES is not appropriate next to walls since all scales need 
to be resolved. 

DNS resolution is necessary. 



Near-wall vorticity gradients are not readily accounted for 
via gridfree vortex elements. 

All viscous effects must be computed next to a wall.

Solid surfaces are often specified via triangularizations.

Sheet-like vortices on a thin prismatic wall mesh can be 
used to efficiently resolve the steep vorticity gradients. 



With these constraints in mind: 

a fine resolution finite volume scheme is employed to solve the full 
3D, viscous vorticity equation on a thin region (y+ < 30-50) next to 
boundaries.

Triangular prism mesh (usually 11 layers) is grown from surface 
triangles.

No-slip BC at wall; constant flux BC at top sheet layer.

Dy+ ≈ 3

Dz+ ≈ 30

X

Y

Z



y+ ≈ 30

New filaments are produced 
from the vorticity arriving at 
the top layer.

Orientation of new vortices is determined from local vorticity.

The circulation strength G is determined by the condition that 
the prism and new tube have the identical far field velocity:

VT = prism volume         s = axial vector on tube.



Velocity Computation

Utotal = Utubes +  Usheets + Upotential

where  xi = (x1,i + x2,i)/2,   ri = x – xi, ri = |ri|,   si = x2,i – x1,i

desingularizes the Biot-Savart kernel. 

Usheets   → sum over individual contributions: near field from 
exact formulas, far field as equivalent tubes.

Upotential → sum over surface sources to enforce non-penetration.

For N tubes:    Utubes =



Velocity on a line through a vortex.

Variations of the velocity over distances smaller than the 
tube length cannot be known accurately.

For example,  s has some effect on the local velocity surrounding
any vortex - but it is not physical. 

s  = 0.0025
s  = 0.005
s  = 0.01



Approximation to Biot-Savart law for a tube introduces local errors: 

In this example, v(z) should be a constant, 
independent of z, and it is once the tube 
size h < L. 

h, G and Dt should be kept as small as is practical

h=1.25L

h=2.5L

h=0.87L
h=0.63L



h = 0.005

h = 0.025

Magnitude of h has a significant visual effect on simulations:



Predictions converge to experimental values as h is reduced: 
0.025 → 0.003125

•  Bell/Mehta experiment

Large h is linked to over-prediction of Reynolds Stresses in some cases.

In the case of a plane mixing layer:

h=.025

h=.003125 



Use of Biot-Savart law means that in many applications vorticity 
outside the domain of  interest may contribute to the velocity field.

Computational Domain



Numerical Aspects of Velocity Computation

O(N
2
) cost reduced to O(N) via use of an adaptive Fast Multipole 

Method (Greengard & Rohklin). 

Parallel efficiency is excellent through 22 processors. 

O(N) scaling in the FMM Parallel efficiency. (Dashed – ideal).
- 13M tubes
- 10M tubes + 8 periodic extensions

round jet

planar jet



Summary of Numerical Parameters (Filament Calculations)

h – tube length    

Δt  - time step 

G  - circulation    

σ - smoothing parameter in Biot-Savart Law  

d - criterion for loop removal  



Among the advantages of vortex methods:

The representation of vortices in terms of their end points and 
circulation represents a gain in efficiency over grid-based 
methods.

Vortices remain sharp (without dissipation) as they convect.

Opportunity to employ non-diffusive "subgrid" modeling.

Gridding requirements are easier to accommodate than grid-
based schemes (e.g. number of prisms ~ Re3/2).

Direct view of vortical structures provides a new way of 
exploring the physics of turbulence. 



Some Applications of the Vortex Filament Scheme

1. "Isotropic Turbulence"

2. Spatially developing shear layer

3. Boundary layer

4. Automotive Flows

5. Rotorcraft Flows

6. Co-flowing round jet



"Isotropic" Turbulence



A more or less isotropic region of turbulence is created from a 

short duration pulse of a planar jet. 

• Orifice has unit width.

• 20 layers of filaments, h=0.005.

• Incoming circulation corresponds to Poiseulle Flow at the 

orifice exit. 

• 4 periodic extensions to either side used in computing 

velocities.

H



Turbulence statistics 
computed from spanwise 
velocity traces. 



Two point longitudinal, f(r), and transverse, g(r), correlation functions

Symbols show consistency with the isotropy condition:

g(r) = f(r)+ r/2  df/dr(r) 

λ

f(r)

g(r)



1D spectra and Kolmogorov law. 

Assuming that the universal form: E(k)=0.53 ε2/3 k-5/3 holds, 
the dissipation ε can be computed.



__________
Structure functions  S2(r),  S3(r), S4(r) where  Sn(r)=   |u(x+r)-u(x)|n.

Dashed lines have slopes, 2/3, 1, 4/3, respectively. 

ε can also be computed from the universal form  Sn(r)= 2.13 ε2/3 r2/3



Reynolds Number

Substituting ε and λ into the isotropic identity    ε = 15 n u′2/ λ2 yields

Re = UL/n =  15 u′2/ (λ2 ε)
and then

Rλ = u′ λ /n =  Re u′ λ.

Furthermore, Kolmogorov length and time scales may be computed (non-

dimensionalized with U,L):

η = Re
-3/4 ε-1/4              td=(Re ε)-1/2     

For blob flow with ζ = 0.01:

Rl = 71 Re = 155354     λ= 0.023      η = 0.0017 ε = 0.00008   td=0.23



Mixing Layer



Mixing Layer

Spatial extent of one periodic image of the shear layer:

2000 θ X 1000 θ in the x and z directions, respectively,

where θ is the momentum thickness: 

     
2/ lhlh UUdyUUUU

periodic images



Correct linear growth in momentum               Mean velocity is self-similar and
thickness.                                                       matches error function. 

Reynolds stresses 
close to experiment.

Quantitative predictions are consistent with Bell/Mehta experiment:



Experimental observations have categorized 3 kinds of 
vortex structure in transition:

1. Roller/Rib   

2. Vortex lattice (chain link fence) 

•Response to asymmetric forcing.

3. Oblique roller vortices with partial pairing.

•Associated with upstream turbulence. 



Roller/rib transition



Vortex lattice/chain link fence transition 



Oblique roller vortices with partial pairing



Close up view 
of roller/ribs

Close up view
of lattice



Three transition modes seen in experiment:

Roller/Rib

Vortex lattice 
(response to 
lateral perturbation)

Oblique roller vortices &
partial pairing (response to
upstream turbulence).



Boundary Layer



Boundary Layer Simulations

test section:
-0.25<z<0.25

U = 1

1.5

2.5

62,272 surface triangles, 
684,992 prisms, 
22,000,000 vortex tubes
Re = 50,000, 80,000

74,274 surface triangles, 
817,014 prisms, 
28,000,000 vortex tubes
Re = 80,000





Blasius BL 

Mean Velocity Predictions

Computed U+ (R = 670)  vs.
Spalart DNS (R = 670).

Scaling with d and 



 yU

  66.5ln437.
1  

yU

maxUU

y



Reynolds Stresses



Transition is dominated by the appearance of 
vortex furrows - spaced approximately at the 
boundary layer thickness.



Vortex furrows override low speed streaks.

Vortex 
furrows

Low speed
streaks

U contours



Transverse cuts through the furrows.



Vortex furrows erupting into mushroom-shaped filaments



Ejection of low speed fluid.



Counter-rotating motion is 
associated with the uplifted
filaments in the furrows.



Initially the counter-rotating motion is 
produced by forward tilted filaments in the 
arches: there are no streamwise filaments. 

True streamwise vorticity is 
prevalent in the lobes of the 
mushroom profile, 

Furrow viewed from above. Tubes within 
p/16 of the streamwise direction are 
indicated in blue (+) and red (-).

Projection onto cross plane of vortex 
tubes in mushroom-shaped furrow. 



When viewed as isocontours of rotational motion  (2nd eigenvalue 
of S2+W2), the furrows have the appearance of hairpin vortices.

Isocontours (shown in red)
representing the "legs of 
hairpin vortices mark the 
counter-rotating motion 
associated with the furrows. 



Shear roll-up of spanwise vorticity is the apparent 
source of arch-type vortices that straddle the furrows.  



Breakdown of furrows into turbulence



Ground Vehicle Flows



Ahmed body 

12.5, 25, 30 degree base slant angle

Re=500,000

Inviscid ground plane

Front: x=0 

Back:  x=1 



Ahmed Body with 30o base slant angle

Side                                       Front 

Top                                   Rear during startup



Ahmed Body with 12.5o base slant angle



Ahmed Body with 30o base slant angle



U on centerline. 



U in wake.



U on window, x = 0.8678.



K on centerline and wake.



MIRA Vehicle 

Re=500,000

Inviscid ground plane, or

Moving, viscous ground plane











Rotorcraft Simulations















Coflowing Round Jet



Co-flowing Round Jet

Coflows = 1/2, 1/3, 1/4, 1/5, 1/10.

5 vortex rings at unit diameter orifice.

Potential flow:
disk shaped source 
maintains unit 
velocity at inlet

(a) Remove rings when > L1
or

(b) Remove rings if any part > L2

x=L1 x=L2
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Uc h BC L/d
1/10 0.055 a 5.25

1/5 0.04 a 6.65

1/4 0.04 b 11.0

1/3 0.045 b 12.75

1/2 0.04 b 15.5

Co-flowing Round Jet  

22 /
0

breUU 

θ →  momemtum thickness

b →  Gaussian scale



Velocity Excess in Coflowing Round Jet vs. Streamwise Position

Uexcess = (Ucenterline – Ucoflow)/Ucoflow

+ – experiments
(Nickels and Perry)
x – experiments 
(Chu, Lee and Chu)

o – 1/10
o – 1/5
o – 1/4
o – 1/3
o – 1/2



+ – experiments 
(Nickels and Perry)
o – 1/10
o – 1/5
o – 1/4
o – 1/3
o – 1/2

δ/θ vs. streamwise position



+ – experiments 
(Chu, Lee and Chu)

o – 1/10
o – 1/5
o – 1/4
o – 1/3
o – 1/2

b/θ vs. streamwise position



+ Chu, Lee, and Chu data

Self-similar Gaussian mean velocity in coflowing round jet



Concentration Statistics



The vortex filament approach appears to offer
an attractive means for efficiently simulating a 
variety of complex turbulent flows. 

Good resolution of the wall region flow is essential
to accurate predictions. Further improvements to the
numerical implementation (e.g. parallelism) will 
enable the treatment of higher Reynolds number 
flows. 

The use of vortex filaments in directly representing
vortical structure is seen to offer a view of the physics 
that has not been previously achieved with grid-based
methods. 


