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We report on early results of a numerical and statistical study of binary black hole inspirals. The
two black holes are evolved using post-Newtonian approximations starting with initially randomly
distributed spin vectors. We characterize certain aspects of the distribution shortly before merger.
In particular we note the uniform distribution of black hole spin vector dot products shortly before
merger and a high correlation between the initial and final black hole spin vector dot products in the
equal-mass, maximally spinning case. These simulations were performed on Graphics Processing
Units, and we demonstrate a speed-up of a factor 50 over a more conventional CPU implementation.

PACS numbers:

I. INTRODUCTION

With a number of gravitational wave detectors
(LIGO [1], Virgo [2], TAMA [3], and GEO600 [4]) now
measuring signals at design sensitivity, the prospect of
direct detection of gravitational radiation is becoming in-
creasingly real and hence there is now a definite need to
understand as much as possible about the most likely sig-
nal source – the stellar-mass binary black hole (BBH) sys-
tem. Over recent years numerical relativity has reached
the point were accurate and reliable inspiral and merger
calculations can be produced by a number of differ-
ent groups [5]. However, these calculations require sig-
nificant computational effort, and the generation of a
large-scale bank of numerical templates is currently in-
tractable. Recent comparisons between numerical rela-
tivity and post-Newtonian (PN) approximate waveforms
show good agreement surprisingly close to merger (up to
a few orbits) [6, 7], corresponding to a gravitational wave
frequency of about ωGW ≈ 0.1 or an orbital frequency of
ω ≈ 0.05.

The main purpose of this work is to start a detailed
study of the phase space of the PN equations of motion
(see also [8]). We randomly choose initial conditions for
those equations corresponding to circular orbits at some
chosen orbital frequency ω0. We then integrate the PN

equations of motion to some termination frequency ωf

shortly before merger, but in a region where the approx-
imation has still been validated by numerical relativity.
There are a number of interesting physical questions one
can address in this context. It might be that there are
certain configurations that are preferred shortly before
merger. If so, maybe these regions should be studied us-
ing full numerical relativity. Another motivation regards
partial information: If one had from some other obser-
vation (such as an electromagnetic counterpart) enough
information about a BBH system long before merger to
estimate a fraction of the parameters, it would be valu-
able to be able to estimate the system’s properties shortly
before merger. For example, assume that the spin vector
and mass of one BH have been measured, but only the
mass of the other is known. Using an initially uniform
distribution for the unknown spin vector an interesting
question would be the final distribution of spin vectors
shortly before merger. Would there be a uniform dis-
tribution or would it be strongly peaked, and how does
it change given changes in the known parameters? We
start to address some of these questions in this work, but
much remains to be addressed in future research.

Another motivation for this work is provided by grav-
itational recoil. Numerical relativity has been able to
obtain estimates for the gravitational recoil in unequal-
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mass [9, 10, 11] and spinning [12, 13, 14] configurations;
in particular, extremely high recoil values have been ob-
tained for specific configurations [14, 15, 16]. Initial stud-
ies using effective-one-body techniques have shown that
very large kicks are unlikely to arise [17]. Using the PN
inspiral approach, it might be possible to predict the like-
lihood of certain configurations shortly before merger and
then relate this result to the recoil using one of the many
recoil formulas available in the literature.

To perform this study, we use the significant perfor-
mance advantages of Graphics Processing Units (GPUs)
to study the phase space of the BBH problem in a post-
Newtonian (PN) setting. Each inspiral is described by
a set of ordinary differential equations (ODEs) and the
collection of inspirals are all decoupled. Therefore the
computational problem is of the “embarrassingly paral-
lel” kind, which is perfectly suited for GPUs. At this

early stage in our studies, in which we focus on small
portions of the full parameter space, the performance
benefits provided by GPUs are not essential to perform
the research. However, we anticipate that once we be-
gin studies of larger sections of the parameter space the
performance gains will become important.

II. PN EQUATIONS OF MOTION

We integrate the post-Newtonian equations (Eqs. (1)-
(4) and (9)) from Ref. [18] (see Erratum [19]), which de-
scribe a circular inspiral of 2 spinning BHs. The evolution
is given by a system of coupled ODEs for the orbital fre-
quency ω, the individual spin vectors Si for the 2 BHs,
and the unit orbital angular momentum vector L̂n.

ω̇ = ω2
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(1)

Ṡi = Ωi × Si (2)

˙̂
Ln = − (Mω)1/3

ηM2

dS

dt
(3)

where dS/dt = dS1/dt+dS2/dt, γE = 0.577 . . . is Euler’s

constant, and θ̂ = 1039/4620. The total mass is denoted
by M = m1 + m2 and η = m1m2/M

2 is the symmetric
mass ratio. The magnitude of the angular momentum

can be computed via |Ln| = ηM5/3ω−1/3.

The evolution of the individual spin vectors Si for the
2 BHs is described by a precession around Ωi with

Ω1 =
(Mω)2

2M

(

η(Mω)−1/3(4 + 3
m2

m1

)L̂n + 1/M2(S2 − 3(S2 · L̂n) L̂n)

)

, (4)

and Ω2 is obtained by 1 ↔ 2. Note that the spin vectors
Si are related to the spin unit vectors Ŝi via Si = χim

2
i Ŝi,

i.e. χi ∈ [0, 1] is the Kerr spin parameter of BH i. The

system of coupled ODEs for ω, L̂n, and Si given mass and
spin parameters mi, χi are integrated from an initial fre-
quency ω0 to a final frequency ωf . Typically, we choose
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ω0 corresponding to an initial separation of r ≈ 40M and
ωf = 0.05, which is a conservative estimate of where the
PN equations still hold [6, 7]. Integrating the equations
in a range of ω rather than t provides a slightly more
gauge-invariant measure to compare different systems.

The ODEs are integrated using the Dormand-Prince
method. We set an error tolerance of 5 × 10−7 and start
with an adaptive time step of size h = 10.

The 2 initial spin vectors Si span a 6-dimensional pa-
rameter space for each choice of parameters mi, ω0, and
ωf . Note that the BBH problem is scale free, and we
can therefore fix the total mass M = m1 + m2 = 1 and
need to study only the dependence on m1. The last 2
parameters ω0 and ωf are only interesting as consistency
checks, and it is likely sufficient to analyze the situation
for a few select choices. This still results in a challenging
7-dimensional (m1 {1 dof}, S1 {3 dof}, and S1 {3 dof},
dof: degrees of freedom) problem. Here we break down
the problem into a much more manageable 4-dimensional
one by fixing not just mi, but also the spin magnitudes
χi, which then means only the unit spin vectors Ŝi are
chosen freely. Each unit spin vector has only 2 degrees
of freedom (since the third is given by the normalization
condition).

III. NOTES ON GPU COMPUTING

We use NVIDIA’s CUDA runtime and programming
system [20] to implement the PN evolution code on
GPUs. The GPUs today provide most impressive speed-
ups over CPUs for single-precision computations. GPUs
are primarily designed for computer games and hence
current and future capabilities are essentially set by that
market. This means it is unlikely that double-precision
will be supported at similar speed-ups as single-precision.
While double-precision arithmetic is now supported on
some of the high-end cards, the performance gains over
CPU codes are not very impressive and in our opinion do
not yet justify the effort of porting the code to the CUDA
infrastructure if double-precision is necessary throughout
the code. Note that some results have been obtained
where the code has been examined carefully and only a
few critical computations where done in double-precision,
providing most of the single-precision speed-up. By com-
paring single-precision and double-precision CPU results
on a number of inspiral configurations we have verified
single-precision is sufficient for our problem.

Porting the code to the CUDA architecture was rela-
tively straightforward – we implemented the right-hand-
side (RHS) computations of the ODEs on the GPU in
a device kernel. The ODE integrator runs on the CPU
and spawns kernels on the GPU, transferring the initial
state. The full evolution is then performed on the GPU,
including all necessary calculations of the RHS. At the
end of the simulation, the state is transferred back to the
CPU for output and analysis.

GPUs demonstrate significant global memory access

latency (for the NVIDIA S1070, 400-600cycles [20]),
and even worse access times are encountered for “non-
coalesced” memory access. The latter is defined slightly
differently on different NVIDIA GPU generations [20],
but for the latest generation it happens most frequently
if multiple memory segments are accessed within a group
of 16 threads called a half-warp. We have measured the
non-coalesced memory stores and loads using the CUDA
profiler and found no uncoalesced memory access, signifi-
cantly simplifying the programming since this eliminates
the need to avoid certain global memory access patterns
using shared memory.

We found error detection and result verification on the
GPU to be critical exercises. The computations on the
GPUs are surprisingly resilient to errors happening on
the cards. For instance, the on-board memory is not
error correcting and kernel failures are not caught by de-
fault. This “error resilience” can lead to rather interest-
ing failure modes from a scientific computing perspective.
When too many inspirals are spawned simultaneously the
runtime warns and terminates the program with an er-
ror message. As the number of inspirals is reduced a
regime of “silent” failure is entered, where the program
runs without any indication of error or warning, but it
produces incorrect results. This can be caught by ex-
plicitly checking each kernel, but the runtime does not
generate errors itself. Issues like this highlight the case
for independent error checks for scientific computing.

We therefore decided to write our code in a multi-
threaded way on the CPU. We first generate the ran-
dom initial data for our inspiral studies on the GPU
for the maximum number of parallel inspirals that can
run successfully. We then transfer the initial data to the
CPU and select a random subset of typically about 1%
of these inspirals on the CPU. While the GPU is per-
forming all the inspirals, we also evolve the selected in-
spirals on the CPU in double-precision in a separate CPU
thread. After the GPU is done, we copy the data back to
the CPU memory and compare the single-precision GPU
data against the double-precision CPU data for the se-
lected subset. This also validates that single-precision
does not introduce unacceptable errors in this problem.
We believe such cross checks are currently crucial for
GPU computing. We want to stress however that we
have not observed problems or errors once the initial ones
were worked out.

IV. PERFORMANCE RESULTS

We now evaluate performance advantages GPUs de-
liver in this context. We executed our code on a single
core of the quad-core Intel Xeon E5410 CPU running at
2.33GHz, which is rated at around 5GFlops in double-
precision. Note that the problem is “embarrassingly par-
allel,” so the CPU will be able to provide excellent scaling
over the 4 cores. We integrated one of our test inspirals
in the range [ω0 = 0.004, ωf = 0.1] 100 times serially
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FIG. 1: Performance of the GPU card. We vary the num-
ber of inspirals N scheduled simultaneously on the GPU. For
fewer than 100,000 inspirals peak performance is not reached,
as there are not enough simultaneously executing threads to
mask memory access latency. At 100,000 inspirals saturation
is reached as the GPU works serially through the extra inspi-
rals.

and found we could achieve around 0.057 inspirals per
millisecond (ms) on a single core.

For comparison, one of the four GPUs on our high-end
unit (the NVIDIA Tesla S1070) is rated at 1035GFlops in
single-precision, delivering a theoretical performance ad-
vantage of about a factor 200 over the single-core CPU.
We ran our test setup, spawning a large number of simul-
taneous inspirals in parallel. Fig. 1 shows results for the
performance of the GPU card. As we increase the number
of simultaneously scheduled inspirals N the speed levels
off at about 2.7 runs/ms. The GPU has 240 processors,
which can work in parallel. Naively one would therefore
expect the performance to improve until 240 inspirals are
performed in parallel and after that the performance to
level off as the processors need to work through the in-
spirals serially. However, the runtime CUDA scheduler
has to be able to keep these 240 processors working si-
multaneously without waiting for memory access, which
can be extremely slow. This is the likely reason why the
performance still rises even after N = 10, 000, as the run-
time has a better chance of squeezing the optimal perfor-
mance out of the card by interleaving different inspirals
without having to wait for costly memory transfers. We
performed this study using block sizes of 256 threads. We
found similar behavior with 128-thread blocks.

Based on this data, we achieve a very impressive speed-

up of about a factor 50. While this comparison is slightly
unfair to the CPU because we only use a single core and
double-precision on the CPU, there is no doubt the per-
formance gains are very significant. Note also that for
this test problem we integrated the exact same problem
in all cases. This means the individual threads run in
perfect lock-step, the best possible case for the GPU. We
typically see differences of about 10% in the runtime of
different inspirals, and this would result in a slight ineffi-
ciency on the GPU as some of the threads in a block may
finish before others. The double versus single-precision
on the CPU has only a moderate effect, and the paral-

lelization on the CPU will only be simple as long as the
problem remains of the “embarrassingly parallel” type.
We plan to extend our studies toward more dynamic ex-
plorations of phase space requiring dynamic feedback and
communication between individual results. This would
then require a significant implementation effort on the
CPU in actually parallelizing the code, which is likely to
be more difficult than the conversion to CUDA.

V. SOME INSPIRAL RESULTS

In this section we highlight some of our findings from
a completed initial study of the inspiral space. We em-
phasize that at this point we have focused on a few select
situations only. We plan to soon move on to study larger
regions of the initial configuration space and use more
advanced statistical analysis tools to try to dynamically
identify “interesting” regions.

For these simulations we integrate the ODEs Eq. (1)-
(3) in the range ω0 = 0.00395 → ωf = 0.05. The ini-
tial orbital frequency ω0 corresponds to a separation of
r ≈ 40M , and the final ωf is chosen such that the grav-
itational wave frequency still matches numerical relativ-
ity results. We have varied both frequencies and, except
in one case, have not found significant qualitative dif-
ferences in the results. We leave detailed experimenta-
tion with different ω0 and ωf as a topic of future study.
The initial unit angular momentum is chosen as the unit
vector in the z-direction L̂n = (0, 0, 1) without loss of
generality.

For each choice of the black holes masses and spin mag-
nitudes we sample in a uniform and random way their
spin orientations. The latter corresponds to uniformly
sampling a sphere, using the algorithm of [21]. We use
N = 100, 000 randomly selected initial spin orientations
for each black hole. That is, a total of N = 108 spin
configurations.

In analyzing the data we have found the scalar prod-
ucts between the different unit vectors a useful quantity
to investigate. This is also motivated by the crucial role
these scalar products play in the recoil velocity.

A. Equal-mass, maximally spinning black holes

We start by looking at the case of two equal-mass
(mi = 0.5), maximally spinning (χi = 1) black holes
with randomly oriented initial unit-vector spin configu-
rations. For this case all the pre-factors in the ODEs
Eq. (1)-Eq. (3) for the spin terms are identical and the
∑

i χiL̂ · Ŝi term in the RHS for ω in particular simplifies

to a form L̂ · S with S = S1 + S2. Note however that
there is still a term of the form Ŝ1 · Ŝ2, which will change
for the different configurations used.

As a first measure of the spin dynamics, we look at the
scalar product between the two unit spin vectors Ŝ1 · Ŝ2
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FIG. 2: Uniform distribution of the scalar product Ŝ1 · Ŝ2 of
the final configuration at ωf . The plot shows the convergence
of the Gaussian kernel estimated probability density function
for different N towards the uniform distribution case (which
would be at 0.5) as well as a histogram for the N = 100, 000
case.

as well as the scalar products with the unit angular mo-
mentum Ŝi · L̂n. The simulations start out from an ini-
tially uniform distribution in each of these scalar prod-
ucts. Fig. 2 shows a histogram of the final value of Ŝ1 ·Ŝ2

for N = 100, 000 inspirals and Nbins = 20 bins. The fig-
ure also shows the probability density estimator for the
final value of Ŝ1 ·Ŝ2 at ωf , using a Gaussian kernel for dif-
ferent choices of the number of inspirals N . The density

estimator is given by p̂(x) = 1/(Nh)
∑N

j K ((x − xj)/h),
where h is the bandwidth and for the Gaussian kernel:
K ((x − xi)/h) = 1/

√
2π exp

(

−(x − xi)
2/2h2

)

. We con-

struct the bandwidth h using h = 1.06σN−1/5, where σ
is the standard deviation and N is the number of inspi-
rals [22]. As N is increased, the probability density es-
timator goes toward a uniform distribution. This shows
that there is no structure in the final spin scalar prod-
uct, i.e. that it is uniformly distributed. Note that the
steep fall-off near the boundaries is an artifact of the
estimator, which assumes the variable is distributed in
the real line instead of [−1, 1] and smoothes out the dis-
continuous jump at ±1. This feature converges away in
N . For Ŝi · L̂n the distributions look very similar. In
the equal-mass, maximum spin case there is no preferred
angle between the spin vectors generated in the inspiral.

To further validate this even distribution of final dot
product values, we used the Kolmogorov-Smirnov test to
measure the uniformness of the final values. For this test,
the BHs had equal mass and were non-maximally spin-
ning, with χi = 0.7. We used a large sample contain-
ing 362,799,815 inspirals with random Ŝi vectors over
the unit sphere. The K-S test returned a p-value of
5.17× 10−5, indicating a very uniform final distribution.
The final histogram for this large test is displayed in
Fig. 3, using Nbins = 100 bins. It is visually apparent
that no final dot product of the spin vectors is favored.

While the final distribution in Ŝ1 · Ŝ2 remains uni-
form, we do find a high linear correlation between the
initial and final values of this scalar product, as can

FIG. 3: Uniform distribution of the scalar product Ŝ1 · Ŝ2

of the final configuration at ωf when BH masses are even
and χi = 0.7. The plot shows a histogram for the N =
362, 799, 815 case.
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Ŝ1 · Ŝ2 [initial]

−1.0

−0.5

0.0

0.5

1.0
Ŝ
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FIG. 4: Final versus initial spin scalar product Ŝ1 · Ŝ2. The
plot shows a high correlation in the scalar product between
initial and final scalar product for the equal mass (m1 = m2 =
0.5), maximally spinning (χ1 = χ2 = 1) case. In light gray
we show the 0-contour line to make it easier to see how far
the configurations have spread.

be seen in Fig. 4. The latter shows a bivariate his-
togram for (Ŝ1 · Ŝ2)i and (Ŝ1 · Ŝ2)f . Note that the
histogram is normalized such that the maximum value
is 1. We have also plotted the 0-contour line in light
gray to make it easier to see how far configurations have
spread. We have used Nhist = 79 bins in each dimen-
sion, which was found by following the procedure in
Ref. [23] and forcing equal numbers of bins in both di-
mensions. This linear correlation can be quantified using
the Pearson product-moment coefficient which is given
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FIG. 5: Final versus initial scalar product Ŝ1 ·L̂n for the same
case as in Fig. 4. There is much less correlation between these
initial and final scalar products compared to Ŝ1 · Ŝ2.

by r = 1/(N−1)
∑N

i=1
((xi − x̄)/σx) ((yi − ȳ)/σy), where

x̄, ȳ are the sample means, σx, σy are the standard devi-
ations, and N is the number of inspirals. For the case of
Fig. 4 we find r = 0.99. Note that the correlations for
Ŝ1 · L̂n and Ŝ2 · L̂n are not nearly as high, with r = 0.65
for both cases. In Fig. 5 we show a similar histogram
plot for Ŝ1 · L̂n. The case for Ŝ2 · L̂n looks similar. The
lower correlation is clearly visible compared to Fig. 4, as
the values are much further spread from the diagonal in
Fig. 5.

B. Unequal-mass, maximally spinning black holes

Having found the high correlation between the initial
and final scalar products of spin vectors mentioned above
we now change the mass m1 of one BH while keeping χ1 =
χ2 = 1 and study the resulting change in correlation. In
Fig. 6 we show the correlation coefficient r of the initial
and final values of Ŝ1 · Ŝ2 as the mass m1 changes. Recall
that we normalized the masses such that M = m1+m2 =
1, and hence m1 ∈ [0, 1]. Fig. 6 shows that the correlation
drops quickly as the masses become uneven. This would
indicate it would be harder to predict in a probabilistic
sense the final value of this scalar product for a of a BBH
inspiral in which the BHs have dissimilar masses and high
spins.

C. Equal-mass, equal-spin, non-maximally spinning

Next we vary the spin χ for each black hole while keep-
ing the same rate (χ1 = χ2), and fixing the masses to be
even (m1 = m2 = 0.5) to see if there is a similar behav-

0.0 0.2 0.4 0.6 0.8 1.0

mass m1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
rr

el
at

io
n

co
ef

fic
ie

nt
r

FIG. 6: The correlation coefficient r of (Ŝ1 ·Ŝ2)i and (Ŝ1 ·Ŝ2)f

for maximally spinning black holes as the mass of the bodies
is changed. The correlation falls quickly as the masses become
uneven.
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r(Ŝ1 · L̂N )
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FIG. 7: The correlation coefficient r between the initial and
final values of Ŝ1 · Ŝ2 and Ŝj · L̂n (j = 1, 2). The masses
are kept constant and equal (m1 = m2 = 0.5) while the spin
parameters are changed at the same rate, χ1 = χ2 = χ. The
correlation remains nearly constant and large for the Ŝ1 · Ŝ2

scalar product, but varies for Ŝj · L̂n.

ior in the correlation between (Ŝ1 · Ŝ2)i and (Ŝ1 · Ŝ2)f as
we found when changing m1. A similar behavior could
be expected as the mass and spin parameters enter simi-
larly in the spin evolution equations. However, as Fig. 7
shows, the correlation coefficient r of the initial and fi-
nal values of Ŝ1 · Ŝ2 remains constantly large (r > 0.98),
unlike the case of changing m1 above. In Fig. 7 we also
show the correlation coefficient r for Ŝj · L̂n (j = 1, 2),

which shows significant variation. In the case of Ŝj · L̂n

the behavior is similar for each j, which is expected since
both BHs enter symmetrically into the expressions. The
only difference between the BHs is their initial location.

D. m1 = 0.4, equal-spin χ = 0.05

As an example of the rich structure that can be found
if one leaves the equal mass case, we show in Fig. 8 a plot
of the final versus initial spin scalar product Ŝ1 ·Ŝ2 for the
case of m1 = 0.4, and χ1 = χ2 = χ = 0.05. In this case
a ring-like structure appears in the scalar product and
the data is now anti-correlated with r = −0.14. Though
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FIG. 8: Final versus initial scalar product of spin vectors
Ŝ1 · Ŝ2 for m1 = 0.4 and equal-spin χ = 0.05 as an example of
the richer structure away from highly symmetric cases. Note
that the correlation is now negative.

in other investigations presented in this paper the results
were generally insensitive to the values of ω0 and ωf ,
we found in this case that the structure of the bivariate
histogram could vary significantly based on these values.
We leave a more full investigation of these cases to future
work.

VI. DISCUSSION

We have described our implementation of parallel in-
tegrations of the PN equations describing the circular

inspiral of 2 black holes. Using the inherent parallelism
of the problem of the inspiral space study of this sys-
tem, we chose to implement this on Graphics Processors
well adapted to the task. We achieved a speed-up of 50×
compared to a single-core CPU. This speed-up will be
important for more advanced studies of large numbers of
inspirals planned for the future.

First results from initial studies indicate there is a rich
structure for certain regions of initial inspiral conditions.
For an example see Fig. 8. In particular, the equal-mass
case appears special, leading to more correlated dynamics
compared to the equal-spin case. We used scalar prod-
ucts between the unit vectors to judge the dynamics.

For the future we plan to significantly expand our stud-
ies of the initial configuration space and to use more ad-
vanced statistical methods for analysis.
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