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Reduced Basis representations of multi-mode black hole ringdown gravitational waves
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We construct compact and high accuracy Reduced Basis (RB) representations of single and mul-
tiple quasinormal modes (QNMs). The RB method determines a hierarchical and relatively small
set of the most relevant waveforms. We find that the exponential convergence of the method allows
for a dramatic compression of template banks used for ringdown searches. Compressing a catalog
with a minimal match MM = 0.99, we find that the selected RB waveforms are able to represent any
QNM, including those not in the original bank, with extremely high accuracy, typically less than
1073, We then extend our studies to two-mode QNMs. Inclusion of a second mode is expected to
help with detection, and might make it possible to infer details of the progenitor of the final black
hole. We find that the number of RB waveforms needed to represent any two-mode ringdown wave-
form with the above high accuracy is smaller than the number of metric-based, one-mode templates
with MM = 0.99. For unconstrained two-modes, which would allow for consistency tests of General
Relativity, our high accuracy RB has around 10* fewer waveforms than the number of metric-based
templates for MM = 0.99. The number of RB elements grows only linearly with the number of
multipole modes versus exponentially with the standard approach, resulting in very compact repre-
sentations even for many multiple modes. The results of this paper open the possibility of searches

of multi-mode ringdown gravitational waves.
I. INTRODUCTION

We are quickly approaching the era of gravitational
wave astronomy with a world-wide network of advanced
interferometric detectors. By 2014, all advanced LIGO
interferometers are expected to be operational and will
be joined by at least three other detectors, the GEO600,
advanced Virgo, and LCGT interferometers. Detection
rates for binary neutron star coalescences have been es-
timated to likely be around ~ 40yr~! and ~ 20yr—! for
binary black holes [I, 2]. With the potential for discovery
and rich science, it will be important to accurately detect
these signals. The method of matched filtering, which is
currently used for searches of known gravitational wave-
forms in LIGO’s S1-S6 runs, is the optimal method to de-
tect signals buried in Gaussian noise [3]. While LIGO’s
noise is not Gaussian, the method, supplemented with
additional signal-based vetoes and multi-detector coinci-
dence requirements, is quite suitable for detection pur-
poses, nevertheless.

Black hole perturbation theory and numerical simu-
lations have shown that, according to General Relativ-
ity (GR) and many alternative theories of gravity, per-
turbed black holes experience an exponentially decaying
and oscillatory (or ringdown) phase in which the gravita-
tional wave signal is dominated by a series of quasinormal
modes (QNMs) (see [4] for a review). LIGO ringdown
searches currently assume that the waveform is domi-
nated by the fundamental ] = m = 2 mode [5]. However,
a single mode ringdown search for black holes of final
mass M = 102Mg, can miss more than 10% of events
in both LIGO and advanced ground-based detectors [6].

Furthermore, parameter estimation errors can be large
for such single mode searches when the actual waveform
contains a second mode [6]. Two-mode searches have
also been proposed for consistency tests of GR and the
no-hair theorem [6H§] and for inferring information about
the progenitors of the final black hole formation [9]. De-
tection of the ringdown signal from an intermediate mass
black hole may also provide information into the forma-
tion history of these potential gravitational wave sources
via the black hole’s spin [10, [T1]. Thus, if feasible, it is
reasonable to expect that future ringdown searches will
look for multi-mode signals.

However, multi-dimensional template banks (or cata-
logs) can result in such a large number of templates that
multi-mode ringdown searches might not be possible in
practice. The traditional method for building catalogs
is to compute a metric for the parameter space that one
uses in an algorithm to place points at a given proper
distance away from each other and thereby guarantees a
minimal match between a signal and template [12HI6].
Using this method for a minimal mismatch of 97%, a
two-mode catalog suitable for testing the no-hair theo-
rem with advanced ground-based detectors would require
roughly 10° templates versus 10% for a similar one-mode
search. This implies a huge increase in the computational
cost of matched filtering searches.

A number of reduced order modeling techniques, such
as Proper Orthogonal Decompositions, Singular Value
Decompositions, or Principal Component Analysis, can
be applied to represent the original template bank by po-
tentially much fewer elements (see, for example, [17H20]).

Following [21], in this paper we show that the Reduced



Basis (RB) approach provides a dramatically compact
representation of multi-mode QNM catalogs. The main
two features responsible for such savings are (1) the expo-
nential convergence of the training space representation
error (the square of Eq. @ below) with respect to the
number of waveforms selected by the algorithm and (2)
the linearity of multi-mode ringdown waveforms.

We summarize some of our key results in this paper.
Additional details and an exploration of RB represen-
tations for ringdown searches and parameter estimation
will be presented elsewhere.

II. RINGDOWN WAVEFORMS

Each QNM has a characteristic complex angular fre-
quency wem, where {£,;m} label the angular multi-
pole and n labels the fundamental or overtone index.
The real part of wy,,, characterizes the oscillation and
equals 27 fpnn Where fo,,, is called the central frequency.
The imaginary part is the inverse of the damping time
T formn/ Qemn wWhere Qppmy, is referred to as the quality fac-
tor. Thus, a single QNM waveform has the form

homn(t) = Agmn(Q)%e_(”f“'”'t/@“"")t cos (27 fomnt)
(1)
where Ay, (2) is the orientation-dependent dimension-
less amplitude, r is the distance to the source, M is
the black hole mass, and for simplicity we have set the
phase and arrival time to zero. We work in units where
G = ¢ = 1 unless otherwise stated. We will ignore the
angular dependence in the amplitude and regard Ay, as
constants since, as we discuss in Section [V} the linearity
of the problem implies that the reduced bases are valid
for all values of the amplitudes and, hence, for all angles.
Defining hgpmy (t) = 0 for t < 0, the Fourier transform
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Afmn (flmn - 2'LfQEmn)QEmn
[4(fz2mn_f2)Q%mn + fZQnm - 4iff€an€nrr(z] )
2
For our purposes, a multi-mode signal impinging on the
detector at time ¢ = 0 and its Fourier transform are then

h(t) = Z hémn(t)v il(f) = Z ﬁémn(f)v

£mmn Lmn

with hemn(t) and ﬁgmn(f) given by Egs. and , re-
spectively.

The central frequency and quality factor for each multi-
pole can be related to the black hole mass M and dimen-
sionless spin parameter j through the following fitting
formulae:

_ i+ f(1 —j)f3
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where values for the (¢, m,n) dependent constants f; and
g; can be found in Refs. [6, B]. For example, for the

(2,2,0) and (3,3,0) modes considered in the following
sections we have:

27 M fazo = 1.5251 — 1.1568(1 — ;)°1292

4
Q220 = 0.7000 + 1.4187(1 — j)~0-49% (4)

and

2m M f330 = 1.8956 — 1.3043(1 — 5)0-1818

5
Q330 = 0.900 + 2.3430(1 — j) 04810, (5)

III. REDUCED BASIS

The RB approach is a framework for efficiently solv-
ing parametrized problems, representing the solutions
in a compact way, and predicting new ones based on
an offline-online decomposition (see [21] and references
therein). In the current context, the method identi-
fies a set of parameter points such that the associated
waveforms constitute a nearly optimal basis for accu-
rate “spectral” expansions of any other waveform [22].
If the waveforms depend smoothly on the parameters of
the problem the expansion is expected to converge very
quickly to the original waveform as the number of ba-
sis elements is increased. We have found that in the case
of gravitational waves from non-spinning compact binary
inspirals such convergence is exponential [21]. Below we
show that this is also the case for ringdown waveforms
(see, for example, Fig. [1)). In fact, due to the smooth
dependence of the theory on the source parameters we
expect the convergence to be exponential for essentially
all sources of gravitational waves [34].

In what follows we denote a generic waveform, which
can be in the time or frequency domain, by h; and
the relevant parameters by [, which is in general
multi-dimensional. In the current application, @ =
{(fermns Qemns Aemn)} [35]. The scheme starts with a
training space T = {ji;}.; of P numerical values of
the parameter ji and associated normalized waveforms
{hz, }2 1, which we call the training space catalog. (The
underlines denote waveforms or parameters present in the
training space.) The natural scalar product used is di-
rectly related to the one of Wiener filtering (see, for ex-
ample, [23]). For two functions F, G in frequency space

fu *
mm/LFggﬂw (6)

with S, (f) the one-sided power spectral density (PSD)
of the detector and fr, fu frequency limits implied by
the structure of the PSD. The scalar product of @ is
related to the standard overlap integral [24] by (F,G) :=
4Re(F,G). For definiteness, in this paper we use the
Adv LIGO PSD fit of [25]. While any PSD may be used,
as discussed in [21], the high accuracy of the reduced
basis implies that it can be used with other PSD’s with
a marginal increase in the representation error.



The training space can be constructed by any means,
including simple random or uniform sampling, more so-
phisticated stochastic methods [26], the metric approach
[12], or those of Ref. [27], for example. Regardless of
the method used to populate it, the RB formalism pro-
duces a compact and highly accurate representation of
the training space catalog, among other things.

Part of the output of the algorithm is a sequential
selection of N parameter points {fi1, fie,...,fin} C T
and their associated waveforms {hgz, ,hz,,...,hiy} C
{h;, 321 The set of waveforms {hjz }i', (or a linear

combination of them) constitutes the reduced basis. It is
sometimes convenient [see Eq. }, though not necessary,
to work with an orthonormal set {e;}Y ; instead of the
{hyz, fiy

The points {ji;}, are selected by a greedy algorithm
[28] and are sometimes referred to as greedy points. A
choice for the first one, fi; (called the seed), is needed to
initialize the algorithm. The seed can be chosen arbitrar-
ily, and since the greedy scheme is a global optimization
method it is insensitive to its choice; we explicitly illus-
trate this in Section [[VB] (see Fig. [I). The algorithm
ends when a prescribed tolerance error, defined below in
Eq. @D, in the representation of the training space cata-
log is reached.

The reduced basis is used to approximate other wave-
forms, whether they were in the training space catalog
or not, through linear combinations that represent an or-
thogonal projection (with respect to the scalar product
(©)) onto its span,

hﬂ = PNhﬁJr(Shﬁ. (7)

The RB approximation is Pyhz and satisfies
(Pnhg,0hz) = 0, by construction. If using an or-
thonormal basis {e;} ; then

N

N
PNh,J;. = Z<ei7hﬂ}>ei = Zaijei, (8)
i=1

i=1

where we have implicitly introduced the projection coef-
ficients c;;. Another output of the algorithm is precisely
the set of a;; projection coeflicients for waveforms in the
training space catalog, whereas coefficients for any other
waveforms may be easily computed.

The greedy algorithm sequentially selects N = N(e)
greedy points and associated waveforms until the max-
imum error to represent every element in the training
space catalog reaches the specified tolerance e,

€:=

Ohy 9
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where the norm ||-|| is the one induced by the scalar prod-
uct (6). As discussed in [21], in the limit of sufficiently
dense training spaces the square of € is comparable to the
minimal match (MM) through [36]

2 ~1-MM as P — oo. (10)

Therefore, we refer to €2 as the training space represen-
tation error [37]. The exponential convergence of the RB
method implies that e can be made arbitrarily small with
a reduced number N of basis elements (thus the Reduced
Basis denomination) with N < P and, in many cases,
N < P. The quantity

C,:=P/N (11)

is called the compression ratio [29]. Unless otherwise
noted, all the results that we quote are for €2 = 10712 in
order to avoid roundoff artifacts that gradually appear
(otherwise we could choose €2 around double precision
roundoff, €2 ~ 1071*). Therefore, any waveform hz in

the training space catalog equals its RB approximation
Pyhg to this level of accuracy.

Another error of interest is associated with the RB rep-
resentation of any waveform hjz, not necessarily present
in the training space catalog. We call this error the wave-
form representation error, §(fi), and define it as,

§(fi) := ||6hz||* = 1 — Re(hz, Pxhy) (12)

We quantify this error through Monte Carlo simulations,
where we randomly sample f and compute (jif). Re-
markably, as discussed in Sections and [V A] a train-
ing space with a modest, finite minimal match will pro-
duce a reduced basis that represents the whole space of
QNM waveforms with extremely high accuracy.

In the simplest, idealized conceptual matched filtering
search one would compute the overlap between the signal
s and every member of the training space through its RB
representation

N
(s, Pxhg,) =4Re Y (s,e)ai; + O (%) . (13)
=1

Since the a;; have been precomputed offline, the filter-
ing now involves computing significantly fewer integrals
if N < P, as is usually the case.

The greedy points are hierarchical (i.e. nested) imply-
ing that for extra/less accuracy in the RB representation
points are simply added/removed. Each greedy sweep is
embarrassingly parallel and the computational complex-
ity in going from 4 to (i + 1) basis waveforms is indepen-
dent of 7. In other words, the total cost of building a RB
with N waveforms is linear in N. These features allow
the framework to handle large training spaces (cf. Table
. Another salient aspect of the RB approach is that it
allows one to efficiently identify on the fly those param-
eters most relevant for numerical simulations, without
any a-priori knowledge of the solutions (see, for example,
[300).



IV. ONE MODE RINGDOWN CATALOGS
A. DMetric-based catalogs

Searches for gravitational waves from perturbed black
holes have so far used template banks with only the fun-
damental (¢, m,n) = (2,2,0) quasinormal mode (see [5]
and references therein). The ringdown analysis pipeline
constructs a 2-dimensional lattice template bank in the
(f, @) space where the mismatch between two templates
differing in ringdown frequency by df and in quality fac-
tor by dQ is given by the metric [5 13} [31]

s 1| 3+16Q s, 3+4Q?
T s |@arar T aagn @Y
2
Tl +ng df?], (14)

which assumes white noise. Currently, the population
algorithm uses only the diagonal terms containing df?
and dQ?. Starting with the smallest central frequency
and quality factor, the algorithm places templates along
Q in steps of

_ dse@ (1 + 4Q2)

d 15
? V3 +16Q4 (15)

and along d¢ = dlog(f) in steps of
dp = — 2ot (16)

V3+8Q?

where dseg = 44/(1 — MM) and MM is the specified min-
imal match between template and signal. An example of
a ringdown template bank for

MM = 0.99, (17)
fao € [10,4000] Hz, Qa0 € [21187, 20] (18)

is shown in Fig. [2] as the gray points. This catalog has
a total of 2,213 templates. From Egs. these par-
ticular parameter choices correspond to the spin of the
black hole j in the range [0,0.9947] and mass M in the
range [2.9744, 3025.7] M. While the (fa20, Q220) param-
eter space is a rectangle by construction, the correspond-
ing shape in (M, j) space is a “warped rectangle” and so
our stated ranges are not inclusive. Except when other-
wise noted, the values and ranges in and are
our default throughout the remainder.

B. One-mode Reduced Basis

We begin by using the single-mode QNM metric tem-
plate bank of Eqs. (17[18) and Fig. | as our default
training space for building a reduced basis. In order to
explicitly show the robustness of the method we use all
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FIG. 1: Representation error as a function of the number of
reduced basis waveforms for a single mode catalog and all
possible choices of seeds (see Section . The dark line
shows the average and the shaded area the maximum disper-
sion around it. Clearly, the method is robust and does not
require any fine tuning. Notice that the exponential rate of
convergence of the error is present from the outset.

2,213 possible elements of the training space as a seed
and run the algorithm 2,213 times, once for each possi-
ble seed. The results are summarized in Fig. [I, which
clearly shows that the method is robust and its accuracy
and exponential convergence rate do not depend on any
fine tuning of the seed. This is actually expected as a
consequence of the greedy algorithm being a global op-
timization method. As a result, in practice one chooses
a single, arbitrary value of the seed. Notice also from
Fig. [I] that the exponential convergence of the error is
not asymptotical (i.e. for large number of RB waveforms)
but is present from the outset.

Fig. |2| shows the points in the training space and the
subset selected by the greedy algorithm for our default
training space representation error of €2 = 10~'2. The se-
lected points are essentially those with the largest quality
factor @ (corresponding to the slowest decaying modes)
and a very few extra ones with lower () and with large and
small central frequencies. The figure illustrates the global
nature of the algorithm and the redundancy present in
sampling via a local criteria.

As the maximum quality factor in the training space
is increased, we find that the number of RB waveforms
grows linearly with the corresponding number of tem-
plates in the training space, leading to a roughly con-
stant compression ratio [as defined by Eq. } for any
chosen e. The qualitative behavior of selected points re-
mains the same, with the vertical right red line in Fig. [2]
shifting to higher @) values and the reduced basis asymp-
totically resembling a Fourier representation with a few
fast decaying waveforms to account for the damping of
QNMs.

Columns 2 and 3 in Table [ show the number of RB
waveforms needed to represent training space catalogs
with different minimal matches. The first element pop-
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FIG. 2: One-mode metric placement catalog (gray dots),
which is taken to be the training space, and the subset of
points selected by the greedy algorithm (red bars) for the
(2,2,0) mode. The settings are discussed in Sections
and [[VBl

1 — MM 1-mode
Nmetric |INRB (2,2,0) NrB (3,3,0)
0.03 999 487 711
1072 2,213 505 732
1073 19,900 565 930
107% | 192,747 595 972
107° | 1,903,689 603 987

TABLE I: Number of RB waveforms (Nrg) needed to repre-
sent 1-mode training spaces for the (¢,m,n) = (2,2,0) and
(3,3,0) QNMs with different minimal matches MM. The
training space representation error is taken to be €2 = 1072
The number of metric-based templates scales with MM as
Nuetric o¢ (1 — MM)™! for the 2-dimensional, 1-mode QNM
catalog [12].

ulated by the metric placement algorithm is used as the
seed for the greedy algorithm but the results are insen-
sitive to any other choice (cf. Fig. [I| and related discus-
sion).

It might appear from Table[l]that for MM = 0.97—0.99
and for a high-accuracy training space representation er-
ror of €2 = 10712 the compression ratio should be modest
(C, ~2—4) for a single mode catalog and would only be
significant for larger MMs and/or smaller RB representa-
tion errors. However, as discussed below in Section [[V C|
it turns out that the reduced basis represents any wave-
form in the given ranges of central frequency and quality
factor with extremely high accuracy, leading to huge com-
pression factors even when the reduced basis is built from
catalogs with comparatively coarse minimal matches.

As in the case of inspiral waveforms [21], we find that
for any finite range of parameters (e.g., of the central
frequency and quality factor) we can represent the whole

continuum of waveforms within any given training space
representation error €2 by a finite number of RB wave-
forms. One way of showing this (as was done in [21])
is by explicitly computing the number of RB waveforms
needed to represent training spaces built from different
values of MM. An extrapolation to the limit that the
training space becomes the continuum space of wave-
forms (i.e., MM — 1) turns out to asymptote to a finite
number of RB waveforms (see also [32] where a similar
result is found for MM < 0.99 in the context of singular
value decompositions for inspiral waveforms). Another
way, which actually has broader implications and has not
been demonstrated before, is discussed next.

C. Reduced Basis representation accuracy of
arbitrary one-mode waveforms

Every waveform from the training space catalog is rep-
resented with an arbitrarily small error (¢ < 1072 in all
of our cases) by a relatively small number of RB elements.
We now discuss the accuracy of the basis in representing
waveforms that are mot necessarily part of the training
space.

Starting from a catalog with a given MM to build
the basis, the worst possible scenario would be a rep-
resentation error for some particular waveform hj; of
|6hz]|> ~ (1 — MM). However, one expects the accu-
racy to be much better since the RB framework exploits
the global structure of the template space. As we show
below, the accuracy turns out to be not much better but
extremely better.

We first built a RB representation of our default train-
ing space catalog as specified by Egs. and .
We then randomly sampled more than 6 x 10® single-
mode QNM waveforms drawn uniformly from the same
ranges of central frequency and quality factor . We
finally evaluated the waveform representation error
for each sample, which gives the fractional signal-to-noise
loss from approximating a waveform by its RB represen-
tation. The results of these Monte Carlo computations
are shown in Fig. ] The error in representing any of
the randomly chosen waveforms with its RB representa-
tion is found to be smaller than 9 x 107!°. In order to
pinpoint this upper bound we refined the Monte Carlo
simulations to draw samples from the regions of parame-
ter space with the largest waveform representation errors
(i.e., the areas shaded red in Fig. )

The average waveform representation error for a Monte
Carlo simulation with 107 points, corresponding to Fig.
is approximately 4.51 x 10713, which is less than the
training space representation error of €2 = 107'2, and
the most frequent value is ~ 2.6 x 1074,

In other words, in all of our Monte Carlo simulations,
any waveform, not just those present in the training space
catalog, is found to be represented by the RB with ex-
tremely high accuracy.

A simple extrapolation from Table || shows that ~ 10'°



metric templates would be needed to achieve a MM com-
parable to the above waveform representation error of
~ 1072 for our reduced basis with 505 elements, imply-
ing an effective compression ratio of C, ~ 107. Further-
more, the fact that our simulations strongly indicate that
the maximum waveform representation error is strictly
bounded (by 9 x 107! in the settings discussed) would
imply a formally infinite compression ratio. This again
reflects another facet of being able to represent the whole
spectrum of waveforms with a finite number of basis ele-
ments. The key distinction here, compared to the discus-
sion at the end of the previous subsection 7 is that
one does not need to explicitly compute a set of bases
with increasingly larger number of training space points
to reach a target accuracy limit. This would allow for
the a priori construction of high accuracy reduced bases
for sources with larger number of parameters, such as
precessing binary inspirals, at a fraction of the projected
computational cost.

We have done exhaustive additional tests to support
the conclusion that the representation error is extremely
small for all waveforms with parameter values in the set
ranges [e.g., as in Eq. ] For example, since a ran-
dom, uniform sampling of (fa20,@220) leads to a non-
uniform sampling of (M, ;) [see Eq. ()] we have per-
formed Monte Carlo simulations with random, uniform
sampling of mass and spin such that the correspond-
ing central frequencies and quality factors are within the
ranges of Eq. . In addition, instead of selecting wave-
forms at random, we have used all those from a metric-
based catalog with a minimal match of about 0.9999, cor-
responding to more than 10° templates. We represented
the waveforms using the RB generated by our default
training space [from Egs. (17) and ] and computed
the corresponding waveform representation errors. In all
cases the errors were found to be bounded by the previ-
ously quoted value of 9 x 10719,

As discussed in the next section, the high accuracy
associated with representing arbitrary waveforms by a
RB carries over to the case of multiple QNMs.

V. MULTI-MODE RINGDOWN CATALOGS

In this section we discuss how the RB approach can
be used to efficiently build, compress, and represent the
space of multiple QNM waveforms. We present two kinds
of multi-QNM reduced basis. The first is for a two-mode
ringdown waveform wherein the two central frequencies
and quality factors are related to each other through a
constraining relation provided by GR for distorted black
holes. The second is for a ringdown waveform consist-
ing of p modes where the central frequencies and quality
factors are unconstrained by any model or theory. In
particular, this latter case is amenable for providing a
test of the no-hair theorem [6], through a test of the pre-
cise relationship between the multiple ringdown modes
as predicted by GR.
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FIG. 3: Waveform representation error of randomly selected
QNMs that are not necessarily present in the training space.
(a) Distributions of waveform representation errors for 1-
mode (gray) and 2-mode (white) using reduced bases built
from a training space with MM = 0.99. In all cases, the error
is found to be < 9 x 107 for single modes and < 9.8 x 107*°
for two modes. See Section and for details. (b) The
waveform representation error [defined in (12)] as a function
of the randomly chosen values of (f220,Q220) for the 1-mode
case with the same setup as in (a). The color map indicates
the value of the error on a log,, scale. The worst errors oc-
cur for the largest Q220 values and are mostly independent
of fa20. The crosses indicate the parameters selected by the
greedy algorithm for this reduced basis.

A. Constrained two-mode Reduced Basis

Here we consider two-mode ringdown waveforms with
(¢,m,n) =(2,2,0) and (3,3,0), which are of the form

h=C[(1— A)haz + Ahss) (19)

where A € [0,1] and C is fixed by the normalization con-
dition (h, h) = 1.



The parameters for this two-mode QNM are
(f220, @220), (f330,@330), and the relative amplitude pa-
rameter 4. However, GR provides a relation between
(fermns Qemn) and the mass and spin of a perturbed black
hole. From Egs. or, specifically for the two-mode case
here, Egs. and it follows that (f330,@330) are re-
lated to (fo20, @220) so that there are only three indepen-
dent parameters. In this sense, GR constrains the oth-
erwise 5-dimensional parameter space to a 3-dimensional
one, namely, { fa20, @220, A} (or, equivalently, {j, M, A}).

For a given MM and for A € [0,1] we build a train-
ing space for the (2,2,0) mode using the metric ap-
proach as described in Section [38]. Next, using
the fitting formulae given by Eq. (4)), the values of mass
and spin for each template are determined. Then, using
Eq. (9], the corresponding values of (f330, @330) are com-
puted and paired to the starting (foso, @220). This proce-
dure is repeated for each template in the (2,2, 0) catalog
and subsequently populates the (f3309,@330) plane with
templates that are “inherited” from the (2,2,0) training
space. The relative amplitude parameter A is sampled
with n 4 equally spaced points. In this section and in
Table [I for the (3,3,0) mode column, MM refers to the
minimal match of the (2,2,0) starting catalog.

1. Results

In all of our numerical simulations we have found that,
for any fixed training space representation error €2, the
number of reduced basis waveforms is independent of n 4
for n4 > 2. This is not too surprising, given the linearity
of the two-mode waveform ; see also the discussion
in Section [VB] A related observation is that, as shown
in Fig. ] the greedy algorithm essentially selects either
the (2,2,0) mode (A = 0) or the (3,3,0) one (A=1) as
opposed to combinations of them. As a result, the dis-
tribution of parameter points selected by the algorithm
closely resembles the union of a subset of points for two
individual, one-mode reduced bases. This is illustrated
in Figure [5] which should be compared to Figure [2] for a
one-mode (2,2,0) reduced basis.

The number of constrained, two-mode RB waveforms
Ngp for different values of MM is shown in Table[[T)in the
column labeled “2-mode, GR.” Notice that these values
are only marginally larger than those corresponding to a
one-mode (3,3,0) basis in Table [I| To understand why,
notice from Fig. 4| that the (3,3,0) mode, corresponding
toA=1in , is chosen much more frequently than the
(2,2,0) mode. In turn, the greedy algorithm’s preference
for A =1 can be understood by the fact that: i) for any
maximum value of @ in the starting (2,2, 0) catalog the
corresponding value for the (3,3,0) mode for the same
black hole spin parameter j is larger (see Egs. (4) and
(5)), and ii) as we have already discussed in Section
the greedy algorithm for a single-mode RB mostly selects
points with the largest value of @ in the catalog (see
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FIG. 4: Values for the relative amplitude parameter A in the
two-mode constrained waveforms [Eq. (I9)] selected by the
greedy algorithm for each reduced basis waveform (indexed on
the horizontal axis). Here there are n4 = 1,000 samples for
A € [0,1] but essentially either the (2,2,0) mode (A = 0) or
the (3,3,0) mode (A = 1) are selected, with a higher density
of points associated with the latter due to its larger maximum
quality factor for any given black hole spin parameter value.
About 3% of the selected amplitudes are equal to zero (not
just nearly so). All of the remaining points selected are either
equal to 1 (about 79%) or between A = 0.93 and 1 (about
18%).
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FIG. 5: The metric-based training space (points) for the same
constrained, two-mode catalog of Fig. [4] and the subset of
parameter values selected by the greedy algorithm (bars) for
a training space representation error of €2 = 107!2. Red:
(2,2,0) mode. Blue: (3,3,0) mode. The distribution of points
closely resembles a subset of the two one-mode greedy points
due to the linearity of the problem and to the “decoupling”
of selected amplitude points (see Fig. [4).

Table [[T] also shows the approximate number of tem-
plates Nyetric for constrained two-modes using the metric
placement method in the column labeled “2-mode, GR.”
The compression ratio with respect to the metric number
of templates for MM = 0.99 is C. ~ 24 and dramatically
increases as MM increases. The number of RB waveforms
asymptotically approaches about 1,000, which suggests



1— MM 2-mode, GR 2-mode
Nietric NrB Nietric NrB
0.03 | 3.5x10® | 737 [3.4x10°| 1,198
1072 | 1.8x10* | 751 |5.3x107| 1,237
1073 | 5.8x10° | 958 |1.9 x 10'°| 1,495
107% | 1.8 x 107 | 1,007 |5.3 x 10'2| 1,567
1075 | 5.8x10% | 1,018 |1.9 x 10'5| 1,590

TABLE II: Number of reduced basis waveforms (Ngp) needed
to represent 2-mode training spaces with (¢, m,n) = (2,2,0)
and (3, 3,0) for different minimal matches MM. The training
space representation error is €2 = 10712, The “2-mode, GR”
and “2-mode” cases are discussed in Sections [VA] and [VB]
respectively. The number of metric-based templates in those
two cases scales with MM as Nmetric X (1 — MM)fd/Q, with
d = 3 and d = 5, respectively [12]. For the “2-mode, GR”
entries, MM refers to the minimal match associated with the
training space for the (2,2, 0) mode, which is used to generate
the points in the (f330, @330) plane as described in the text.
For the “2-mode” case the training space representation error
of 10712 corresponds to each mode separately and the cor-
responding total error is bounded from above by 4 x 1072,
as discussed in Section [VB] We are grateful to V. Cardoso
for his help in generating the values of Nmetric in the second
column for the constrained, 2-mode case.

that a two-mode search with the RB approach may be
easily feasible.

Next, we show that the accuracy of 2-mode reduced
bases and the associated compression ratios are much
better, like in the 1-mode case of Section [[V.C] than ini-
tially indicated in Table [} which are already very good.

2.  Reduced Basis representation accuracy of arbitrary
two-mode waveforms

In analogy with the 1-mode case, we have found that
two-mode, constrained reduced bases built from rela-
tively coarse training spaces turn out to represent any
waveform with extremely high accuracy. Since the de-
tails follow those of Section [[V.C|our description here is
more succinct.

In order to emphasize our finding that for constrained,
two-mode ringdown waveforms the number of basis el-
ements saturates at ny4 = 2 amplitude samples, we de-
scribe waveform representation error results for a reduced
basis built with exactly n4 = 2. That is, from here on
the training space and, as a consequence, the resulting
reduced basis only includes A = 0 and A = 1 relative
amplitudes in the waveforms.

We have uniformly sampled the constrained, 2-mode
parameter space (fazg, @220,.A) With fagy and Qagp in
the same range used to build the reduced basis, Eq. ,
and with A € [0,1]. The corresponding values of
f330 and Q330 were computed as described earlier using

1.00e-16 2.50e-13 5.00e-13 7.50e-13 1.00e-12

Representation error for random two-mode waveforms

FIG. 6: Waveform representation errors, as defined by
Eq., of constrained, two-mode waveforms for a random
sample of (fa20, Q220,.4) triples. The training space used to
build the reduced basis is relatively coarse yet the waveform
representation error is found to be, in all cases, smaller than
9.8 x 10710, See Sectionfor more details.

the constraint from General Relativity that they corre-
spond to the same black hole mass and spin as those
of (fa20,@220). The resulting waveforms were then pro-
jected onto the reduced basis built with a training space
of MM = 0.99 as described above and the waveform rep-
resentation error for each sample was computed. We
have executed many Monte Carlo simulations, with the
largest one having 10° random triples ( faog, @220,.4). In
all cases the maximum waveform representation error was
found to be below 9.8 x 1071°, which is remarkably close
to our strict numerical upper bound found for the one
mode case described in Section [[V C| namely, 9 x 1010,
As an example, Fig. shows a histogram of the wave-
form representation error for a Monte Carlo simulation
with 107 points. In this case, the average error is about
7.35 x 10713, which is less than the training space rep-
resentation error of €2 = 107'2, and the most frequent
value is ~ 2.4 x 10713,

Fig. [6] shows the distribution of the waveform repre-
sentation error as a function of the sample values for
(f220, Q220,.A). As with the 1-mode case, the largest er-
rors occur for larger Q229 values and are mostly indepen-
dent of foog and the relative amplitude.



B. Unconstrained multi-mode Reduced Basis

As mentioned in Section [} searches for multi-mode
ringdown gravitational waves have been proposed as a
consistency test of GR and, more specifically, the no-
hair theorem. The basic idea is not to enforce the con-
straint that the ringdown frequencies of the different
modes should correspond to the same black hole mass
and spin, as in the previous subsection , but to
check it a posteriori, by assuming the standard relation-
ship in Eq. between QNM frequencies and black hole
mass and spin for each mode.

The dimension of the parameter space for p uncon-
strained fundamental modes [39] is (3p — 1): 2p for
(fimn, Qumn) and (p — 1) for the relative amplitudes of
the normalized waveform. Already for p = 2 this results
in a very large bank of roughly 106 — 107 templates when
using the metric approach for MM = 0.97 — 0.99 (see
Table [I).

One could build a “full” reduced basis from a (3p —1)-
dimensional training space. However, the linearity of the
problem and the results of Section [VA] suggest a much
simpler approach. Since ringdown waveforms are a linear
superposition of single modes [in the following the index
I generically labels the (¢, m,n) triple],

p
h=>Y Arhr, (20)
I=1

then a “simple” RB representation for could be given
by building a reduced basis for each I-th mode separately
from the I-th training space 7; = {[j”}f—zl and to define
the representation of the multi-mode wave to be the sum
of the individual projections

p
PNhﬁ = ZAIPNIhI,ﬁ' (21)
I=1

Here Py, denotes the standard orthogonal projection
onto the reduced basis for the single I-th mode built
from a training space catalog associated with 7;. De-
noting by €2 the training space representation error for
the I-th mode,

€7 == max

Qe ||ﬁ1,g1 - PNzﬁI,EI sz (22>

then the total training space representation error for
is bounded by

p p
2 o 2 E 2 2 :
6simplc = glea%( ”ﬁﬁ - PN@E” S €7 + €re€g,
- I=1 I,J=1
I#J

where the full training space 7 is the product of the
individual training spaces @%_, T7. If all the errors are
chosen to be comparable (i.e, e; ~ €) then the bound is
simply

€2 < pPe?. (23)

simple ~5

In most cases of practical interest for gravitational wave
searches, including advanced and third generation earth-
based detectors such as the Einstein telescope, p < 4
[9]. If €2 = 107'2, as in all of our cases, then the total
training space representation error would still be very
small, of order €2 <O (10_11). In fact, one could

simple ~

include up to p = 10° modes and still have a maximum
total error egimplc < 0.01, which is comparable in terms of
waveform representation accuracy to a minimal match of
about 0.99. This feature is another advantage of having
RB representations with very high accuracy, even if the
latter exceeds the accuracy of the detector itself or of
the physical modeling. Such representations leave room
for simplifications while preserving high accuracy in the
overall approach.

The total number N = Y% | N; of RB waveforms
scales linearly with p. If N; ~ N basis elements are
needed to represent each mode then N ~ pN. In con-
trast, the number of metric-based templates is propor-
tional to (1 — MM)~(r=1)/2 [19] and increases dramati-
cally with p for any fixed MM (see, for example, Tables
and .

Furthermore, the representation is valid for all
values and ranges of amplitudes A;. In particular, N is
independent of the range or values of the {A;}. This
last observation, though trivial, helps to understand the
results of Section [VAlfor constrained 2-mode waveforms:
essentially one mode or the other is selected at each step
by the greedy algorithm (see Fig. , the number of RB
waveforms saturates at nyq = 2 samples (A = 0 and
A = 1), and the selected (f, Q) points (Fig. [5]) resemble
a subset of those picked by the two 1-mode reduced bases.

Already for the p = 2 case and template banks with
minimal matches as low as MM = 0.97 and 0.99, this sim-
ple RB approach for unconstrained multi-mode QNMs
implies a compression ratio of around three and four
orders of magnitude relative to the respective training
spaces. In addition, as discussed in Sections [V C| and
[VA] the resulting bases actually represent the whole
space of waveforms with an accuracy comparable to the
training space representation error, resulting in effec-
tively much larger, if not formally infinite, compression
ratios. The number of unconstrained 2-mode [(2,2,0)
and (3,3,0)] metric-based templates for different values
of MM and the number of RB waveforms needed to rep-
resent them with this simple approach are given in Table

[T

VI. FINAL REMARKS

We have shown that the RB approach provides very
compact and high-accuracy representations of multi-
mode ringdown gravitational waves. For example, the
number of RB waveforms needed to represent any two-
mode General Relativity quasinormal mode with a rep-
resentation error of 107!2 is smaller than the number
of metric-based templates for a one-mode catalog with



a minimal match of MM ~ 0.99. The comparison with
the number of two-mode, metric-based templates for a
catalog with MM ~ 0.97 — 0.99 designed to test the con-
sistency of GR and the no-hair theorem is even more
striking: the number of RB waveforms needed to repre-
sent the continuum is 3-4 orders of magnitude smaller
than the number of metric-placed templates for minimal
matches of 0.97-0.99.

We have demonstrated the robustness of the RB
method by observing essentially identical training space
representation errors regardless of the seed value. In the
case of one-mode ringdown waveforms, we showed how
the greedy algorithm preferentially selects waveforms
with the largest quality factors to construct the basis.
The number of RB waveforms for the (¢,m,n) = (2,2,0)
one-mode case needed to represent the continuum asymp-
totes to about 600 for advanced ground-based gravita-
tional wave detectors. We observed that the compres-
sion ratio remains constant as a function of the maxi-
mum quality factor. Through detailed numerical stud-
ies we demonstrated that any waveform that falls within
the one- and two-mode training space’s ranges in cen-
tral frequency and quality factor (and, in the case of 2-
modes, for an arbitrary relative amplitude) can be recov-
ered with an error no larger than ~ 9 x 1071, Thus,
we can construct high accuracy reduced basis represen-
tations of these ringdown waveforms very easily off-line.
We expect this result to extend to RB representations
of spinning binary inspirals and other multi-dimensional
systems that depend smoothly on their parameters.

In the case of constrained two-mode ringdown wave-
forms, we find that the RB method, in additional to its
exponential convergence, benefits from the linearity of
the QNMs. The number of RB waveforms is independent
of the number of relative amplitude parameter samples
ny for ny > 2 for any fixed training space representa-
tion error. The greedy algorithm essentially only selects,
for example, the (2,2,0) mode or the (3,3,0) mode. The
number of RB waveforms for the constrained two-mode
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case to represent the continuum asymptotes to about
1,000 for advanced ground-based detectors. Finally, in
the case of unconstrained two-mode ringdown waveforms,
we again exploit the linearity of the problem to propose
the construction of a “simple” RB for each mode sepa-
rately. Then the representation of the multi-mode wave
is simply the sum of the individual projections. In ad-
dition, the number of RB waveforms scales linearly with
the number of modes indicating a very large reduction in
the computational cost of multi-mode ringdown searches.

The results of this paper open up the possibility of
practical and realistic searches of multi-mode ringdown
gravitational waves thereby allowing one to test the no-
hair theorem, to significantly reduce the event loss rate
of these kinds of signals, to improve parameter estima-
tion, and to possibly infer progenitors from the relative
amplitudes of the different QNMs. Results are available
from the authors upon request.
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