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Abstract

A one-dimensional quantum Euler-Poisson system for semiconductors for the elec-
tron density and the electrostatic potential in bounded intervals is considered. The
existence and uniqueness of strong solutions with positive electron density is shown
for quite general (possibly non-convex or non-monotone) pressure-density functions
under a “subsonic” condition, i.e. assuming sufficiently small current densities. The
proof is based on a reformulation of the dispersive third-order equation for the
electron density as a nonlinear elliptic fourth-order equation using an exponential

transformation of variables.

AMS 2000 Mathematics Subject Classification. 35J40, 35J60, 76Y05.

1 Introduction

In 1927, Madelung gave a fluiddynamical description of quantum systems governed by

the Schrodinger equation for the wave function 1 :
£2
i) = —EAw — ¢ inR*x (0,7),
w('a 0) = wO in Rd:

where T > 0, d > 1, ¢ > 0 is the scaled Planck constant, and ¢ = ¢(z,t) is some
(given) potential. Separating the amplitude and phase of ) = || exp(iS/e), the particle

*Current address: Institut fiir Mathematik, Universitiat Wien, Boltzmanngasse 9, 1090 Wien, Austria.
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density p = |[¥|? and the particle current density j = pV S for irrotational flows satisfy
the so-called Madelung equations [26]

0 +d1v<—) pV ——V( ):0 in R* x (0,7), 1.2
1J p ¢—p 75 (0,7) (1.2)

where the i-th component of the convective term div(j ® j/p) equals
d
Z 0 (Jijk
oy,
k=1

The equations (1.1)-(1.2) can be interpreted as the pressureless Euler equations including

the quantum Bohm potential
2 A \/—
2
They have been used for the modeling of superfluids like Helium IT [23, 25].

Recently, Madelung-type equations have been derived for the modeling of quantum
semiconductor devices, like resonant tunneling diodes, starting from the Wigner-Boltz-
mann equation [11] or from a mixed-state Schrédinger-Poisson system [14, 15]. There are
several advantages of the fluiddynamical description of quantum semiconductors. First,
kinetic equations, like the Wigner equation, or Schrodinger systems are computationally
very expensive, whereas for Euler-type equations efficient numerical algorithms are avail-
able [10, 30]. Second, the macroscopic description allows for a coupling of classical and
quantum models. Indeed, setting the Planck constant € in (1.2) equal to zero, we obtain
the classical pressureless equations, so in both pictures, the same (macroscopic) variables
can be used. Finally, as semiconductor devices are modeled in bounded domains, it is
easier to find physically relevant boundary conditions for the macroscopic variables than
for the Wigner function or for the wave function.

The Madelung-type equations derived by Gardner [11] and Gasser et al. [14] also
include a pressure term and a momentum relaxation term taking into account interactions
of the electrons in the semiconductor crystal, and are self-consistently coupled to the

Poisson equation for the electrostatic potential ¢:

B + divj = 0, (1.3)

3tj+dlv< Q;”) +Vplp) — pV — Z—va (%ﬁ) :—%, (1.4)

NAp =p—C(x) in Q x (0,7), (1.5)
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where 2 C R¢ is a bounded domain, 7 > 0 is the (scaled) momentum relaxation time con-
stant, A > 0 the (scaled) Debye length, and C(z) is the doping concentration modeling the
semiconductor device under consideration [18, 20, 28]. The pressure is assumed to depend

only on the particle density and, like in classical fluid dynamics, often the expression

T
p(p) = ;p”, p >0, (1.6)

with the temperature constant 7" > 0 is employed [11, 19]. Isothermal fluids correspond
to v = 1, isentropic fluids to v > 1. Notice that the particle temperature is T'(p) = Tp" L.

The equations (1.3)-(1.5) are referred to as the quantum Euler-Poisson system or as
the quantum hydrodynamic model.

In this paper we study the stationary system (1.3)-(1.5) in one space dimension with
A=1

jo = const., (1.7)

jg g2 (\/ﬁ)ww N Jo
(; +p(p)>$—p¢m—5p< 7 )w = = (1.8)
¢z = p—Clz) mQ=(0,1)  (1.9)

subject to the boundary conditions

p(0) = p1, p(1) =p2, pe(0) = pu(1) =0, (1.10)
¢(0) =0, ¢(1) =, (1.11)

where pi, po > 0 and &y € R. In this formulation, the electron current density is a given
constant. From the equations, the applied voltage U can be computed by U = ¢(1) —¢(0).

As the momentum equation (1.8) is of third order, the mathematical analysis of the
above system of equations is quite difficult. In fact, without the third-order quantum
term, the above equations represent the Euler-Poisson system of gas dynamics for which
only partial existence results (in several space dimensions) are available (see, e.g., [5, 9]
for several space dimensions and [6] for one space dimension).

Therefore, we can only expect partial results for the hydrodynamic equations including
the third-order quantum term which makes the problem even more difficult. In the fol-
lowing, we describe some mathematical techniques which have been successfully applied
to the system (1.7)-(1.9) to prove the existence (and uniqueness) of solutions.

In the literature, there exist essentially two ideas in dealing with the nonlinear third-
order equation (see also [14]). One idea consists in reducing the momentum equation (1.8)
to a second-order equation. The second idea is to differentiate (1.8) once and to obtain a

fourth-order equation.
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The first idea has been used in [8, 7, 19, 31]. The existence of solutions to (1.7)-(1.9)
has been shown for sufficiently small j, > 0, using nonlinear boundary conditions for
/P, or Dirichlet data for the velocity potential. The pressure function is assumed to be
a monotone function of the density.

The second idea has been employed in [16] in order to prove the existence of solutions
to (1.7)-(1.9), again for sufficiently small jo > 0. In that work, the boundary conditions
(1.10)-(1.11) have been used, but the pressure has been assumed to be linear: p(p) = p.
The main idea in [16] was to write the density in exponential form: n = e* and to derive
uniform H'! bounds for u which, by Sobolev embedding, yields L>® bounds for u and hence
a positive lower bound for n = e*.

The main aim of this paper is to generalize the results of [16] to general pressure
functions. Compared to the results in [8], we use different boundary conditions and more
general pressure functions. Moreover, the technique of proof is different. Compared to
[16], we allow for more general pressure functions, in particular also non-convez or non-
monotone pressure-density relations.

We mention some related results on the stationary quantum Euler-Poisson system.
The semi-classical limit € — 0 in the case of thermal equilibrium j; = 0 and in the case
Jo > 0 has been studied in [12, 29] and [16], respectively (also see [13]). For results on
the limit problem ¢ = 0 (Euler-Poisson system) we refer to the review paper [24]. The
local existence of strong solutions to the transient quantum Euler-Poisson model has been
shown in [21]. The global existence of “small” solutions to the transient model and its
asymptotic behavior for large times will be studied in our forthcoming work [22] based on
the results of this paper for the steady state.

In all cited papers, the existence of (strong) steady-state solutions to the quantum
hydrodynamic equations is shown for sufficiently small current densities j, > 0. In fact,
in the case of the nonlinear boundary conditions assumed in [8], the non-existence of
weak solutions to the quantum Euler-Poisson system for sufficiently large jo > 0 has been
proved. We also need the smallness condition on |jy| to prove the existence of solutions
to (1.7)-(1.11).

In order to explain our main results in detail, we rewrite the equation for the elec-
tron density (1.8) as a nonlinear elliptic fourth-order equation and write the density in
exponential form. Writing

70("2) = St

4
dividing (1.8) by p > 0, differentiating with respect to z and using (1.7) and (1.9) to
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remove the electrostatic potential from the equation, we obtain

(p’(p)pm i, )w _(p—Clx)) - %(pl(p(ln D)az)e)e = — (7_(’);6

p P P

It is convenient to introduce the new variable u = In p. Then the above equation can be

written as
e 1, 1w 9 9y u _Jo,
Z(um + iu‘”>m —(('(e") — joe ™ )ug)s +€* —C(x) = ?(e )z- (1.12)
The boundary conditions (1.10) transform to
w(0) =uy, u(l)=1ug, uy(0)=1u,(l)=0, (1.13)

where u; = In py, uy = In ps.

The electrostatic potential can be computed from the formulae

o(z) = B + / Gz, y)(e" — C(y))dy, (1.14)

where the Green’s function G(z,y) is defined by

The advantage of the above formulation is that bounded solutions u € L*(0, 1) define
positive densities p = e and in this case, both formulations (1.8)—(1.9) and (1.12)-
(1.14) are equivalent. Notice that for third-order or fourth-order equations, no maximum
principle is available such that other methods for proving the positivity of the variables
have to be devised. Here we use the exponential transformation of variables combined
with Sobolev embeddings as in |8, 16].

Assume that

£,7,p1,p2 >0, ®, 50 €R, C € L*0,1). (1.15)

Then our main results are as follows:

1. Suppose that the pressure function is given by (1.6) for v > 0. Then there exist
constants Jy, 1 > 0 such that if [jo| < Jy and |y — 1| < 74, there exists a unique
strong solution u,¢ € H*(0,1) to (1.12)-(1.14). Since u € L*°(0,1), we have p =
e’ > 0in (0,1), and p,¢ € H*(0,1) is a solution of (1.7)-(1.11). The constant j;

can be given explicitly (see section 2).
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2. Suppose that p € C3(0, 00), that there exists a function A € H?(0,1) such that
A>0in (0,1), A@0)=p1, A1) =ps, A;(0)=A4,(1)=0
and that there is a set E' C [0, 1] such that

p'(A) - ]—32 =0 wek (1.16)
A2 | >0, zel01)\E.

Then if |jo| is small enough, there exists a unique strong solution u, ¢ € H*(0,1) to
(1.12)-(1.14).

Notice that we allow for non-conver pressure functions (1.6) with v < 1 and for
non-monotone pressures satisfying (1.16). This means that the left part of (1.2) may
be not hyperbolic. The assumption (1.16) implies that the interval under consideration
may consist of subsonic, transonic and supersonic regions in the classical sense [3]. To
guarantee the well-posedness of strong solutions, we assume a “subsonic” condition.

Finally, we notice that our estimates allow to perform the semi-classical limit € — 0 in
(1.12)-(1.14) by employing the same techniques as in [16] (also see [7] and Remark 3.4).

The paper is organized as follows. In section 2 our first main result is formulated and
proved. The second main result is shown in section 3.

Notation. The Lebesgue space of square integrable functions with the norm || - ||
is denoted by L?(0,1), and H*(0,1) or simply H* denotes the usual Sobolev space of
functions f satisfying 0. f € L%(0,1), 0 < i < k, with the norm || - ||s. In particular,

1+ flo = 1-1I-

2 Pressure functions satisfying (1.6)

In this section, we consider the steady-state solutions to the BVP (1.7)—(1.11) when the

pressure-density relation satisfies the y-law (1.6).

Theorem 2.1 Assume that (1.6) and (1.15) hold. Let k € (0,1). Then there exist two
constants vo > 0 and K (k) > 0 such that if

1
l70] < e_K(”)/f\/Tel"YllK(N) + 552 and |y — 1] < 7o, (2.1)

then there exists a solution u € H* to the BVP (1.12)—(1.13) satisfying

1 1
el + T 0 1 L2 < 1, (22)
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ju(z)| < K(x), (2.3)

where Ky is defined by (2.21) and (v, K(k)) is the unique solution to (2.22).
Furthermore, there are Jy, €9, 1 > 0 such that if |jo| < Jo and |y — 1| < v, the

solution u is unique for any € € (0, &g).

Proof: Step 1. A-priori estimates. Assume that v € H? is a weak solution of the
boundary-value problem (BVP) (1.12)-(1.13) satisfying a-priorily that

—K(k) <u< K(k). (2.4)
Following [1] we introduce a function up € C?([0, 1]) satisfying
UD(O) = Uy, UD(].) = Uy, ’LLD,m(O) = uD,w(]-) = 0, (25)

with piecewise linear second order derivative

4
e z €10,5),
U:D,;m(.’L') = uz(ﬁau) (/,1, - .’L’), HAS [%7 ﬂ]a (26)
0’ S (,U/,% ’
and up zo(2) = —Up gz(1—2) for z € (3,1], where ¢ = |u;—us| and p € (0, 3). Elementary

computations show that

1/2 1
/ lupae(2)|dz + //2(1 — )|t ae () d = % 2.7)

/|qu |dx—ﬁ (2.8)
/ ()l = ¢, 2.9)

2
)2 C (23N+ 1) _1,
(2)[2dz < =¢2, 2.10
[ lunatoian = SEEE) < O (2.10)
Use u —up € H as an admissible test function in the weak formulation of (1.12) to
obtain
1, [ 1
152/0 (U + 2ugﬁ)(u — Up)gdx

1
+/ (Tl =D — j2e=2)y, (u — up)qde
0

—1—/01(6" —e"?)(u — up)dx — /01(61”’ —C)(u —up)dz
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T

-
__J / e~ (4 — up)ada, (2.11)
0
By Cauchy’s inequality, (2.4) and (2.11), it follows for 5 € (0,1)
1 ' 1, (!
152 (1 — g) /0 u?,dr + §€2/0 U2 dT
1
+/ [(1 - g) Te =UE®) _ (1 4 p)52e2K (8 )] uidx
"
+ / (" —e"?)(u —up)dx
0

1 1
S 8 / |uD ww‘ dr + 88 / U zUD wwd$+ .70 € K(n)‘U’D,w|2dx
0

4n Jo
+ ! T K(x /
2n

e
_ L e "(u—up)dz, (2.12)
T Jo

A% “ _ C)(u = up)dx

Using the boundary condition (1.13), and applying (2.5) and (2.7)-(2.8), we have as the
proof of Lemma 2.1 in [16]:

1 €2 2
/ Uugedr = 0, / \Up g Pdr < 2—
0

1

gg/uwmm<inw (2.13)
0

where we have used the Poincaré inequality and chosen p = min(1/2,7/2¢). From (2.5)
and (2.10) follows

ﬁ 1 |uD o%dx < C—j2 2K (") < C—Q Te~ 1K ®) 4 182 (2.14)
an Jo 8n”° ~ 8 2
and
1 2
L 21K ) / o 2z < T2 71K, (2.15)
2n 0 4n
Since

1
lu—upll < S/(u = up)all,

we have by Cauchy’s inequality

/Ol(e“D —C)(u —up)dz

1
< (e 4 22 1w uoal

co
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1 1,7
+ o (Terl’““) + 5&) llev? —C||?
1 2 1
Sg <T671K(“) + 562) ||ug])* + % (Te”l'K(”) + §€2>
1 1,\7"
s (Te—l'r—llK(n) N _52> em —c||2 (2.16)
2n 2

Using (2.1) and (2.9), the last term in (2.12) can be estimated as

j 1
— L[ e (u—up),dz
T Jo
Jo| K '
<LK [ (us| + up oo
T 0
n 1k 4 L2 2 1 g’f\/ 1K) 4 Lo
<2 |(Te - - —— + 2 [Te UKk 4 —g2, 2.17
_4<e +25 ||UH+777'2+7' e +25 (2.17)

Setting n = (1 — k)/[2(1 + k)] in (2.13)—(2.17) and substituting 7 into (2.12), we have,

estimating as in [16],

L, 2 -1k (k) | L o 2 2 (1 + k)

1€ | tasl|” + (Te i )+§5 ||ual| Sachla (2.18)
where K is given by

Ky =1+ Te-h~1K®) 4 %52 + P =K ) 4 111K ), (2.19)

and a. a generic positive constant which only depends on ¢, T, and 7. From (2.18) follows

1 1
el 4 Temmt0 1 L2 < 1, 2:20)
where )
Ko = ac; K (2.21)
—K
Now, consider the equation for (v, K(x))
1+k&
K(k) - L K> (K (k),7) — lua| =0, (2:22)

where
KoK (k),y) =1+ T Leh=1K®) | 3v=1K(k) 4 7=2,27—1K(k)

It has a solution

1+k
(7, K(x)) = (1, Jua| + acﬁ\/Q +T 1 +T2).
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By the implicit function theorem, there exists a 7o > 0 such that for |y — 1| < 7, the
equation (2.22) has a solution (7, K(k)).
Therefore, in view of (2.19)—(2.22), we obtain

u(@)| < ur] + [Jugl|

14k [1+Te UK 4 12 4 Te2v—1K(s) 4 T—1elh—1IK(x)
Te—Ir—1K(x) + %52

= K(x). (2.23)

Step 2. FEmistence. We apply the Leray-Schauder fixed point theorem to prove the
existence of strong solutions. Let v € X := C%!([0,1]). Consider the linear BVP

Z

1 1
152 (uu + é)wi) — (Te(”’_l)”"ugc — \joe*x uw)

T

U_l ~
+A <e u+1 —C) = AL (evx),,

v T
u(0) = Aug, u(l) = Aug, ux(0) = ugx(1) =0,
where vxg = mim{ K (k), max{—K(x),v}} and A € [0,1]. Define the bilinear form

ev —

” L uv,/)) dx,

1

1

1) = [ (G tartnn + T, 4 2
0

for u, 1) € H? and the functional

1 :
F(y) = /0 <—%52)\inww + Ajoe Kby + AC — 1)) — A‘yT—Oe”K¢w> de.
Since X — Wh* q(.,.) is continuous and coercive in H?, and F is linear and continuous
in H?, the Lax-Milgram theorem yields the existence of a solution v € H2. This means
that the map & : X x [0,1] — X, (v, A) — u is well defined. Moreover, it is not difficult
to see that S is continuous and compact. Since S(v,0) = 0 for all v € H?, and by similar
estimates as in Step 1 with e* replaced by e, we can verify that it holds for all A € [0, 1],

lullx < e, (2.24)
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where ¢; > 0 is a constant independent of u and A. Then the existence of u € H? follows
from the Leray-Schauder fixed point theorem. It is not difficult to prove that indeed
u € H* (see [16] for details).

Step 8. Uniqueness. Let u,v € H? be two weak solutions of the BVP (1.12)-(1.13),
which satisfy (2.20). Using v — v € HZ as an admissible test function in the weak

formulation derived for u — v, we obtain
1, [ 1, [
—g? / (u — )2, dr + —52/ (g + vg)(u — v) 5 (u — v) gpdz
4 Jo 8 Jo
1
+ Te”_l)“/ (u —v)2dz
0
1
=— / (T =D — 7YYy, (u — v),dx
1
/ -2 —2u s —Qv)(u o v)mdx
0

/0 (e" —e")(u—v)dx — Jo (e —e ") (u—v)dz

_|_

N —

T Jo
< / Tel 1K) (0 _ o1-10)2 2y
0

1 2 1 ]- -4 /1 —2 —2v\2
+- —v)2,dz + v _ e )2
86 A (u U) T 282]0 . (6 (& ) i

1 1
1
— ¢ K@) / (u —v)’dz + §Te_|7_1|K(“) / (u —v)idw
0 0

1
|'y 1| K (k) -u v 2d
+ 57 7-2T /(; (6 € ) z,

which implies

1, [ 1, [
—82/ (u— )2 dr+ -¢ / (ug + vg)(u — v)z(u — V) zedz
8 Jo 8 Jo

1 1
+ §Te|71|K/ (u—v)2dzx
0

1 1
< (2 ]61 4K (k) 4 JoT (|7_1|+2)K+T(7_1)2637—1K(n)|%|%00)/ (u—v)de
0

1
— ¢ K®) / (u — v)*dz. (2.25)
0
From (1.13) and (2.20), we have by Hélder’s inequality

|2 (2)] <v/2||tag]] - [[ua|



Ansgar Jiingel and Hailiang Li 12

1 _
<50t | + 67|

0 1 -
Smax e 1 1 KOa
€ PTa2e 2~ 1UK(k)

where |+
K() == ac—ﬁ\/ Kl.
1—k
Choose o3 —1K(K) S e 5 I—1K(k)
T2e 217~ k T2e 217~ k
0= - and 0<e<gy=: c:
K, K?
to obtain
0 1
-2 1 1
£ 7 9T ze 2"—1K(K)
and

~ 1 1 1
u(2)] < DRy < Lrbe sk, (2.26)
€ €
From this estimate and Cauchy’s inequality follows that the left-hand side of (2.25) is
bounded from below by

1, [ 1, [
—¢? / (u — )2 dr + —82/ (g + ) (u — v) (U — V) gpdz
8 Jo 8 Jo

1 1
+ 5/ Te n=1UEE (y — v)2da
0

1 ! 1 '
> —52/ (u —v)%,dx + ~Te "7HE® / (u — v)2dz.
16" J, 1 ;

On the other hand, by the implicit function theorem, there is a 7; < 7o such that for
|y — 1] < 71 it holds
Iy — 12— tHDE®) < Lr-2. (2.27)
— 8 3l
which implies

2

6—2T2(7 —1)22 UK ®R) < o KiR), (2.28)

e

Thus, there exists .Jy such that if

j& < J? =:min {em% (Ter'K(“) + %EQ) , geegK("), ETT e<71+3)K("‘)} ,
(2.29)
then the first integral on the right-hand side of (2.25) is bounded, in view of (2.26) and
(2.28), by

1 72 1
_2j§e4K(n) + =72_Oe(|7—1|—|—2)K(/~a) + T(,Y _ 1)263|7—1|K(n)|vz|%00 _ e—K(n / (U _ U)Zdl'
2e 74T 0
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U oyakie) | Jo (h—142)k(e) | 22 2 UKk —Kw)) [ 2
§<2—82j0€ —i—ﬁe"’ +€—2T(fy—1)e7 —e O(U—v)da:

1 1
< - Ze_K(“)/ (u —v)3dz. (2.30)
0

Therefore, the weak solution is unique if both (2.27) and (2.29) holds. The proof of

Theorem 2.1 is complete. 0

As in [16], we can conclude from Theorem 2.1 the following result.

Theorem 2.2 Assume that (1.6) and (1.15) hold. Then there exist two constants 7o > 0
and K (k) >0 (k € (0,1)) such that if

1
ljol < e_K(“)f@\/Te_W_l'K("“) + 562 and |y —1] <, (2.31)
then there is a solution (p,p) € H* x H? to the BVP (1.7)-(1.11) such that
p>p=e Km0 (2.32)

where (v, K(k)) solves the equation (2.22). Moreover, if |jo|, €, and |y — 1| are small

enough, the solution is unique.

3 Pressure functions satisfying (1.16)

In this section, we consider the BVP (1.12)-(1.13) (and (1.7)—(1.11)) with pressure func-
tions satisfying the condition (1.16).
Set up :=1In.A. Then e*» = A. We have the following theorem.

Theorem 3.1 Assume that (1.15) and (1.16) holds and that p € C*(0,00). For x € (0,1)

assume that it holds

min A(z)? (1/{52 +p'(A(x))> > je. (3.1)

z€[0,1] 4
Then the BVP (1.12)—(1.13) has a unique solution u € H* provided that ||A'||; +||A—C||

1s sufficiently small. Moreover, it holds

Al — UDH2 + AOHwa||2 + 54“(“:6:6:6’ umm)||2

9
+ /I\E <p'(A2) — %) (u — up)2dr < K., (3.2)
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where
A = Ien[(i)q]fl(:v), do = |[A'llL +[[A=C]], (3.3)
1
Ay = min (—&52 +p'(A) — j§A2) >0, (3.4)
zef0,1] \ 4

and K. > 0 is a constant depending on A, T and jy.

Remark 3.2 (1) We call the main assumption (3.1) a “subsonic” condition for the quan-
tum Euler-Poisson system. When ¢ = 0, the assumption (3.1) is exactly the subsonic
condition for the classical hydrodynamic model [4].

(2) One can verify that the assumption (3.1) can be replaced by

1
11%2 + meas(E) néiél(p'(/l) —jeA %) >0, ke(0,1), (3.5)

in order to obtain the existence and uniqueness of strong solutions. Here, we recall that
the region E C [0, 1] is defined such that it holds p'(A).A? — j2 < 0 in E.

Proof: We prove Theorem 3.1 by the same steps as Theorem 2.1.
Step 1. The a-priori estimates. Let u € H* be a solution of the BVP (1.12)-(1.13)
satisfying
up — 01 <u<up+ 6y, (3.6)

where §; > 0 is chosen such that

%.A* <e et < et < efletP < ZA*, (3.7)
ma (5 ()4 + 255475, < g(l +6) Ao, (3.8)
T (S )+ e < GO0 A (39)
where A* = maxzcp,1] A(x), A = mingep1).A(z), and 0§ = i—: (then k = %)-

Assume that 6y = || A — C|| + ||(Aqg, Azg)|| is so small that it holds
|uD,zE|oo + |uD,zz|oo < 0, (310)

where | - |, denotes the L* norm.
Taking (u—up) € HZ as an admissible test function in the weak formulation of (1.12),
we have, by Cauchy’s inequality and (3.7), that

1 1 1 .
Z (1 — 50 — §|UD,ww|oo> 82/(; Uimdl'
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1
+/ (p'(e*) — jae " ug(u — up) dz + A/ (u — up)ide
0
<L [a-cpars Lo /1| 2ds = 22 [ vy = up)pda (3.11)
_A* ; T 80 uD,l‘l‘ T - ; e u Uup)ge s .

where we have used the facts that

1 1 1
/ U Ugpdr = 0, / uldr < / ul d. (3.12)
0 0 0

The last term in (3.11) can be estimated as

jo [ j g [
_0 e (u—up)dx = 0 g=up g=(u—up) + 2 e “up zdx
7 Jo T oo T Jo
o [
= 2 [ (e — e ")updx
T Jo
< K0, (3.13)

where here and in the following K. > 0 is a generic constant depending on A, 7 and jj.
By Taylor’s expansion and Cauchy’s inequality, the second term on the left-hand side
of (3.11) can be estimated as

/ 1( (") = ey — up)eda

/ A2 (A)A2 = 32) (02 = g o) da

+ /0 (p"(A) A+ 255A7) (u — up)ug(u — up),de
v / ()M + ()6 — AR ) = up)al — up)ds
/ A2 (A)A2 = ) (02 — ugup,a)da

——maX (|(p"(A)| A+ 255A )(51/0 uldr

8 z€[0,1]
9 oYY | o2y " 2 _92 2/1 2
— max e’)le” + e¥)eY + 4722 § Umd.f
16 1n 16 A, <y<In 25 A (1" (e”)] [p"(e)e’| + djge™™) 41 ;

- KC(SOJ

where y = u + 61 (u — up) for some 6; € (0,1). This implies, using (3.7)—(3.9) and (3.12),

/0 (p'(e*) — joe *)ug(u — up).dx
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1 1
2/ A2 (p'(A) A% — 52) (v — upupq)ds — %(1 + H)AO/ u? dx
0 0
— K.d,. (3.14)

Furthermore, it follows from (1.16)
1
| @) = A =~ wup)do
0

>(1+ 0) min(p (A) A2 — j2).A- / Wz + (1 0) / WA A

Tz€EE

1
— g Joax |(7'(A) — jo A7) |qu| dz
>(1+0) min (p/(A)A2 — j2) A~ / W2 do + (1 - 6) / (P (A)A — 2V A *dz

z€[0,1] I\NE
1
1+“K 5o, (3.15)

where we have used .
/ uldr < / u? dz.
E 0
The estimates (3.15) and (3.14) yield
1
| (e = e sl = up)ada
0
1
>(1+40) m[ln]( p'(A)A? - 52)A” / u? dx — 1+9)A0/ u? dx
0
1+&
1-— ! 20 ) 2ds — — K, 0. 1
o 9)/1\E <p(A) A2>uzdw ! (3.16)

Substituting (3.13) and (3.16) into (3.11) and using (3.10), we have

Ao|lugs|[* + Aullu — up||* + / (P (A)A” = j§) A (u — up); (3.17)
I\E

where we recall that A, and Ay are given by (3.3) and (3.4), respectively.

Now, we turn to higher order estimates. Let u € H* be a solution to the BVP (1.12).
Multiply this equation with £?u,,.,, and integrate over (0, 1) to obtain

1 1
et / [uiwww — (UgUgae + uiw)umm]dx
0

1 1
:52/ ((p'(€") — j2e*™ ug) pUzzpedT — 52/ (" — e"?)Ugpppdr
0 0
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1 .l
—¢? / (A — C)ugpgedr — 210 / e " UpllpprrdT. (3.18)
0 0

T

Due to (1.13), there are yi, ys, y3, y4 € (0,1) such that

uw(yl) = U':c:c(yQ) = uww(y3) - uwww(y4) = Oa

and 1 1 1 1
uZ, () + / ul, dx < / u?,, dr, / u?, dr < / u?,, . dz. (3.19)
0 0 0 0

Thus, it follows from (3.17), (3.19) and Holder’s inequality

1
2
0

1+«k L
< Kcéo/ Uy ppr AT (3.20)
1—-k 0

Then, we obtain from (3.18), in view of (3.7), (3.17), (3.20), (3.19), and Cauchy’s inequal-
ity, that

< K do, (3.21)
1-k
provided that dy is small enough. By (3.19) and (3.21), we have
1
1
e* / (U2 g + UrpgaldT < 0 ha ::Kcéo. (3.22)
o _

The combination of (3.17) and (3.22) finally leads to

-A*Hu - uD||2 + A0||Umm||2 + 54||(umwa uzmzm)||2

1
[ @A = A e < 1
I\E 1

K 5. (3.23)

—K

Step 2. Existence It is not difficult to prove that there exists a solution u € H* to the
BVP (1.12)(1.13). The argument is similar to that used in section 2 based on the Leray-
Schauder fixed point theorem. The function space is X := C%!([0, 1]). The corresponding
linear BVP is

1 1 9 _
ZEQ(uM + §Av§)m — ((p'(e")uy — Njge 2K v,),
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e’ —1 Jo, -
1—-0C) =A=(e "%),,
a1 €) =A R (e )

u(0) = Aug, u(l) = Aug, u,(0) = u,(1) =0,

+A(

where A € [0,1], v € X and vx = mim{d; In A*, max{—d; In A,,v}} with ¢; chosen such
that (3.7)—(3.9) hold. The bilinear form and functional are defined respectively by

a(u, ) = /0 1 G?umvzﬁp’( U Vg + A ¢ u¢>
and
F(y) = /01 ( — %62)\1)51/&35 — Njge K ugthy + A(C — 1) — )\j?oe_”wa) dx
where vg. We omit the details.

Step 3. Uniqueness. Let u, v € H* be two solutions to the BVP (1.12)-(1.13)
satisfying (3.23). Using u—v € HZ as an admissible test function in the weak formulation

derived for u — v, we have

1, [ 1, [
—62/ (u— )2, dr + <& / (Ug + vg)(u — v) g (U — V) gpdz
4 Jo 8 Jo

1
+ / (('(e") = goe™™")us — (p’(e”) — 30T )or) (u = v)zdz
0
1
=— / (" —e")(u—v)dx + j?o (67" —e Y)z(u—v)dz. (3.24)
0 0
The last term in (3.24) can be estimated as

1

0 (e —e?)p(u—v)dz
T Jo

=2 [ e et e el

1+/{K )2
— — 2
<4/ 1—/{A050 / u — v)°dz, (3.25)

where we have used

1+ kK,
1-— &A_O 0
derived from (3.23), and K, > 0 is a generic constant depending on A, 7, and j,. From
(3.7), (3.24), and (3.25) follows

| (U, 02) oo (3.26)

1, (! 1, [
—82/ (u—v)2 dx+ =¢ / (g + V) (U — v) (U — V) gpdz
4 Jo 8 Jo
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+ / (@) = Be™)us — (F(€") — G2 ™)0s) (u — v)ade
3 1+kx K, ! )
_(ZA*_ 1_K;A_050>/0(u_v)dx

1 ' 0
S——A*/(u—v)d:v
2 0

provided that J, is small enough.
By (3.7), (3.26), Holder’s inequality and

1 1
/ (u —v)2dz < / (u —v)2, dx,
0 0

2/Ol(u—v) dw—i-;c? /Ol(ux-i'vx)(u_v)m(“_”)mdx

1+ kK, !
2 - e - 2
(1 T r 4, 80 ) /0 (u—v);,d.

we have

1
Z&
1
“1°

19

(3.27)

(3.28)

(3.29)

By (1.16), (3.7) and (3.28), the third term on the left-hand side of (3.27) can be

estimated as follows, using an approach similar to (3.14):
(Al«ﬂ@*)—jﬁrmﬁu-@xa)—jﬁf%ﬁ&)@V—Uhdx
= [ W)~ it ) - vt
+f 1<p'(eU> () — R+ e — )i
> min(p/(A)A? — G3)A” / 2z [ AL = A )
b [ 0 = B = (A 4 3847 = o)
o [ (") =) = e 4 e )l
> min(p (A) A — j2)A- / w— o) dz + / A = A = )

ek
1+ Kk K, 9
l—mA_O(SO/[u_U (u—w);,]dz

> min( (A) A2 — j2) A~ / (u—v)2, + / AL = A=)

zelE
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1 . 1+k K, .
- g.A*/O (u—wv)’dz — 4/ = fiA_o(so/o (u — )2 dx, (3.30)

provided that J, is small enough.
Substituting (3.29) and (3.30) into (3.27) leads to

. 1 o _ 212 /1 2
Jnin, ( 11 TP (A) = i (u—v)z.da
1 1+k K, ! 1 !
+ (ZSQ(l —K)— T /@A_Oéo ) /0 (u — )2 dz + EA*/O (u — v)*dx
<0, (3.31)

which implies that v = v in (0, 1) if dy is so small that

1, 14+ kK,
—e*(1—K) — 4/ —=4
45( K) 1—/{A00>0

and if the condition

1
min {—msZ +p'(A) — ng—Z} >0 (3.32)
z€fo,1] | 4
holds. The proof of Theorem 3.1 is completed. O

The existence and uniqueness of stationary solutions of (1.7)—(1.11) follows immedi-

ately from Theorem 3.1:

Theorem 3.3 Assume that (1.15) and (1.16) hold and that p € C3(0,00). For k € (0,1),
assume that it holds

min_ A(z)? (1/%2 +p'(.A(:Jc))) > je. (3.33)

z€[0,1] 4

Then, the BVP (1.7)~(1.11) has a unique solution (py, o) € H* x H? such that

A*”pO - A||2 + A0||p0ww||2 + €4||(p0:c:c:w pOcccccccc)H2 + ||¢0$||% S KC(SOJ (334)

provided that ||A'||1 + ||A — C|| is sufficiently small. The constant Ay is defined in (3.4)

and K, > 0 is a constant depending on jo, T and A.

Remark 3.4 The estimates of Theorem 2.1 and Theorem 3.1 show that one can pass to
the limit € — 0 in the quantum Euler-Poisson system (similarly as in [16]) to obtain a
solution to the classical Euler-Poisson system:

Bip + jp =0, (3.35)
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2+ (L +00)) = o= (M2) =L (3.30)

Mo = p —C(2) in [0,1] x (0,7), (3.37)

The solution of this system (together with appropriate boundary conditions) is classical
because the condition (2.1) or (3.1) reduces to the classical subsonic condition for (3.35)—
(3.37). For the mathematical analysis on the Euler-Poisson system, we refer to [2, 17, 24]

and references therein.

The following theorem is important for the stability analysis of stationary solutions
obtained by Theorem 3.3 (see [22] for details).

Theorem 3.5 Let (po, jo, do) the unique strong solution given by Theorem 3.3. Let wy =
V/Po- Then (wo, jo, do) is the unique solution of the following BVP

jzu = Oa (338)

Y .
(# + p(w?), = Wi, + %asz (%)x — % (3.39)
¢zw = ’UJ2 - C(.’L‘), (340)

Moreover, it holds

lwo — VAP + [lwoall3 + lldos 1T < Codo, (3.43)

where Cy > 0 is a constant depending on A, jo, T and €.
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