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Abstract

We consider the vorticity-stream formulation of axisymmetric incompressible flows
and its equivalence with the primitive formulation. It is shown that, to characterize
the regularity of a divergence free axisymmetric vector field in terms of the swirling
components, an extra set of pole condition is necessary to give a full description of the
regularity. In addition, smooth solutions up to the axis of rotation gives rise to smooth
solutions of primitive formulation in the case of Navier-Stokes equations, but not the
Euler equations. We also establish proper weak formulations and show its equivalence

to Leray’s solutions.

1 Introduction

Axisymmetric flow is an important subject in fluid dynamics and has become standard
textbook material as a starting point of theoretical study for complicated flow patterns. By
means of Stoke’s stream function ¢ [1], an axisymmetric divergence free vector field can be

efficiently represented by two scalar components:

u = aT¢e$ — %er + uey (1.1)
r r

Taking the swirling component of the Navier-Stokes equation

du+ (Vxu)xu+Vp=—-vVxVxu
(1.2)
V-u=0

and the swirling component of the curl of (1.2), one can eliminate the pressure term to get
two scalar convection diffusion equations:
Oy + upOpu + upOpu + *2u = v.L,

(1.3)
Ohw + U Opw + U Opw — W = %Gz(ug) +vLw

(ry)

—, and

The system is closed by the vorticity-stream function relation w = — 2, u, =
u, = —9,3. Here 1 = ¢ and Lu = 0%u+ &% 4+ P2y — 4.
This representation (1.3) has several advantages over the primitive formulation (1.2). It

needs only two dependent variables ¢ and w defined on (z,r) € (R x R"), and it is free



from Lagrangian multipliers and is automatically divergence free. These advantages are
particularly favorable in numerical computations.

A natural question is whether (1.3) is actually equivalent to the primitive formulation
(1.2), and in which solution classes are they equivalent? In this paper, we have systematically
investigated this issue for both classical and weak solutions. We start in section 2 with the
characterization of smoothness of axisymmetric divergence free vector fields. It is shown

that, an additional pole condition of the form
du(r,07) =0, &P(x,07)=0 forj even (1.4)

is essential to characterize the smoothness of the vector field (1.1) in classical spaces (see
Lemma 2 for details). The construction of Sobolev spaces and the counter part of (1.4) are
established in 2.2. We then apply this pole condition to derive regularity and equivalence
results in various solution spaces in section 3. Firstly, we show in section 3.1 that there
exists C*(R x RT) solutions of the Euler equation with a genuine singularity on the axis
of rotation. In addition, this pole singularity will persist in time. In contrast, we show in
section 3.2 that if the solution to (1.3) is in C*(R x R¥), then the pole condition (1.4) is
automatically satisfied. Next, we consider weak formulation of (1.3) and study its relation
with the Leray’s weak solution in section 3.3. We end this paper by showing that, when
appropriately formulated, the weak solutions to (1.3) are exactly the axisymmetric weak

solutions obtained via Leray’s construction [11].

2 Function Spaces for Axisymmetric Solenoidal Vector
Fields

2.1 Classical Spaces and the Pole Condition

In this section, we establish basic regularity results for axisymmetric vector fields. We will
show that the swirling component of a smooth axisymmetric vector field has vanishing even
order derivatives in the radial direction at the axis of rotation. This is done in Lemma 2 by
a symmetry argument.

Throughout this paper, we will be using the cylindrical coordinate system

r=ux, y=rcosh, z=rsind. (2.1)



where the z-axis is the axis of rotation. A vector field w is said to be axisymmetric if
Opu, = Ogu, = Ogug = 0. Here and throughout this paper, the subscripts of u are used to
denote components rather than partial derivatives.

The three basic differential operators in cylindrical coordinate system are given by

Vu = (0,u)e, + (Oyu)e, + (%%u)ee (2.2)
V-u= % (0z(ruy) + Or(ru,) + Ogug) (2.3)

1| € e Teo
Vxu=-|0, 0 0 (2.4)
r

Uy Up TUQ

Here e, e, and ey are the unit vectors in the x, » and 6 directions respectively.

Lemma 1 Let u = uze, + u,e, + ugeg € C*(R3 R3), k > 0, then for any fized 0 € [0,7),
U (-, 0),u,(+, -, 0), ug(-, -, 0) € C*(R x RT). Moreover,

Dy (2,07,0) = (=1 uy (2, 07,0 + 7), 0<j<k, (2.5)
D, (z,0%,0) = (=1)7 0 u,(z,07,0 + ), 0<j<k, (2.6)
D ug(z,07,0) = (1) 10 ug(z,0", 0 + 7), 0<j<k. (2.7)

Proof: Let u = u,(z,7,0)e, + u.(z,7,0)e, + ug(x,r,0)ey. Note that e, is smooth vector
field while e, and ey are discontinuous at the axis of rotation. More specifically, on the cross

section z = 0, y > 0, we have
e.(r,y,z2=0)=-e,(x,r=|y|,0 =0), e.(r,—y,z=0)=e,(z,r=|yl,0 =7) (2.8)

e, (r,y,2=0)=e,(x,r=|yl,0 =0), ey(z,—y,z=0)=—e,(z,r=yl,0 =m) (2.9)
ez($7y7 z = 0) = 69(.’13',7" = |y’79 = 0)7 62($, Y,z = 0) = —69(1’,7’ = ’y‘ae = 7T) (210)

Consequently
up(2,y,2 = 0) = ug(x,r =yl,0 =0),  w(x,—y,2=0)=ux(z,r=[y[,0 =m) (2.11)

uy(z,y,2=0) =u.(z,r =|y[,0 =0), uy(z, -y, 2 =0) = —u,(z,r =|y|,0 =) (2.12)



uy(z,y,2 =0) =ug(z,r =|y|,0 = 0), uy(z,—y,z2=0) = —up(z,r = |yl,0 =) (2.13)

Taking the limit y — 07, it follows that (2.5-2.7) holds with # = 0. The above argument
can be easily modified to prove for any other 6 € [0, 27). O

If v is axisymmetric, we immediately have the following direct consequence

Corollary 1 Letu € C*(R3, R3) be an azisymmetric vector field, u = u,(x,r)e,+u,(z,r)e.+

ug(z,7)eg. Then ug,u,,ug € C*(R x RY) and
Xy, (2,0%) =0, 1<20+1<k, (2.14)
0¥, (2,07) = 0™ ug(x,0") = 0, 0<2m<Ek, (2.15)
Denote by C* the axisymmetric divergence free subspace of C* vector fields:

Definition 1 :
CH(R? R®) = {u € C*(R*, R®), Opu, = Opu, = Opup =0, V -u =0} (2.16)
We have the following representation and regularity result for C*:

Lemma 2 (a) For any uw € C*(R3, R?), k > 0, there exists a unique (u,v) such that

u=ueyg+V X (Yeg) = . e, — Oe, + uey, r >0, (2.17)

with
u(z,r) € C*(R x RY), 0*u(x,07) =0 for 0 <20 <k, (2.18)

and
Y(z,r) € C*(Rx RY), 0*(2,07) =0 for 0 <2m <k + 1. (2.19)

(b) If (u,v) satisfies (2.18), (2.19) and w is given by (2.17) forr > 0, then w € C*(R3, R®)

with a removable singularity at r = 0.

Proof:
Part (a): Since u is axisymmetric, we can write w = u,(z, r)e, + u,.(x,r)e, + ug(z,7)eq

for r > 0. Rename uy by u, (2.18) follows from Corollary 1.



Next we derive the representation (2.17). Since w is divergence free, (2.3) gives
Ox(rug) + 0r(ru,) =0,

we know from standard argument that there exists a potential ¢(z,r), known as Stokes’

stream function, such that
a:r;¢ = —TUp, ar¢ = TUg (220)

On the cross section z = 0, y > 0, we have

uy(x,r) =u(z,y=r,2=0), u(x,r)=uy(z,y=r,2=0), ug(z,r)=u,(z,y=r,2=0)

(2.21)
From (2.20) and (2.21), it is clear that ¢(z,7) € C*(R x R*) N C*'(R x R*). Since
0,0(x,07) = 0, we may, without loss of generality, assume that ¢(z,07) = 0. This also

determines ¢ uniquely. Next we define

bz, r) = W;’ N (2.22)

It is easy to see that ¢(z,r) € C*1(R x RY), ¢(x,0%) = 8,¢(z,0%) = 0 and (2.17) follows
for r > 0.
Moreover, lim, g+ 81)(z, ) = lim, .+ 872% It follows from straight forward calcula-

tion with I'Hospital’s rule and (2.20) that

&ep(z,0F) = jfjaglux(x,oﬂ, (2.23)

therefore 1 (x,r) € C*1(R x RT). In addition, (2.19) follows from (2.14) and (2.23).

Part (b): Conversely, we now show the regularity of u = ueg + V x (1pey) when (u, 1))
satisfies (2.18) and (2.19). Since w is axisymmetric, it suffices to check the continuity of the
derivatives of w on a cross section, say 6 =0, or 2 =0, y > 0.

It is clear from (2.17) and (2.21) that u,(x,y,0), uy(x,y,0) and u,(z,y, 0) have continuous

x derivatives up to order k£ on y > 0. It remains to estimate the y-, 2- and mixed derivatives.

From
0y = cos 00, — sm@ae (2.24)
T
9, = sin 09, + 00:989 (2.25)

we can derive the following



Proposition 1 (i)
O F(x,r,0) = cos’0 OIF (x,r,0) + sin G(z,r,0) (2.26)
where G consists of the derivatives of F.
(i)
) (LN (]
m = - = 2.2
(1 (0.7)0050) =t (a) () (2.97)
2m+1 S 2041 1 cmrl
met - (= L 2.9
X (f(x, 1) cos ) yZ:b&mz <T6’T) (r) (2.28)
l+m g
2m 2041 | = J
07" (g(x,r)sin ) Zcz m? ( T) <r> (2.29)

l+m—1
921 (g(z, 1) sin ) ngmz < ) (g) (2.30)

for some constants agm, bem, com and d&m.

Proof: Part (i) follows straightforwardly from (2.24) and the following identity

sin @ 1 sin 6

89) (F1+sin0Gy) = (cos 00, Fy)+sin 0(cos 00,G1 — ;89F1

(cos 80, — (%Gl) (2.31)

For part (ii), equations (2.27-2.30) result from substituting cost) = £, sin =  followed
by straight forward calculations. We omit the details. 0
Now we proceed to show that all the mixed derivatives of orders up to k are also continu-
ous on y > 0. For simplicity of presentation, we consider mixed derivatives performed in the
following order 9070%. We start with 0)920.u, and analyze for ¢ even and odd separately.
When ¢ = 2m + 1, we derive from (2.25) and (2.29) that

Qo2 g (2, y,0)
= 0J02™(sin 0 0,0 us(,7))]9=0.r=y

(2.32)

T

= 0 (S0 come? (L0 (2B ) |y

= 0



Next, when ¢ = 2m, it follows from (2.25), (2.26), (2.30), (2.20) and (2.22) that
= 902" (sin 0 0,0, u, (7)) |g=0,r=y

= (0102 (sin € 9,0Lu,) + sin G) |g—o,r—y
o 4 (2.33)
= 872 27;:0 dg}m(r sin 9>2£ (%&) " (M)b:om:y

r

= domd? (%&")m s (2,7) ] =y

= domd (28,)™ (rdib(2,7)) 1=y

From Lemma 2 and Taylor’s Theorem, we have

V(z,7) = ay(2)r 4+ az(2)r® + - + g1 (2)7*™ 1+ Ropir (¥),

where
al) = 00, 07),
and ( )2
- " om+1 r—s)""
R2m+l<¢> _/0 as Qﬁ(.l',S) (Qm)' dS.

From direct calculation, we have
(O™ (105w, 1)) = (0™ (10 Rama (1)
In addition, for 7 > 1, we can write
Romi1(1) = agms1 (@)™ + - - + agmgzns (2)r?™ 2 4 Ry (¥)
where n is the largest integer such that 2n < j. The remainder term Ry, ;41 satisfies

8£R2m+j+1 (77Z}) (l’, 0+) = Oa 0 S 4 S 2m+]7 63m+j+1R2m+j+1(w)(xa O+) = a72‘771—’—j—"_11ﬁ('/L'7 0+>

(2.34)
Thus, for 7 > 0, we have
/1 m+1 . /1 m+1 . m+j+1 ﬁf&iR i1 (V)
Z (;ar) (ro, (1)) = 0 (;&) (10, Romn 2 (1)) = ; Crom="— 5 55
(2.35)



for some constants C,,.

From (2.34), (2.35) and I"'Hospital’s rule we conclude that

/1 m+1 m+1 Ce o
%(50) o0t - <ZZ ST f ) 0. (236)

Since 1 € C*M(R x RY), it follows from (2.33), (2.36) and (2.32) that 97020%u,(z,y,0) is
continuous and bounded up to y = 0" for j + ¢ +1 < k.

Next we consider the mixed derivatives of u, and .. It suffices to calculate ) 020, (f (x, ) cos 0+
g(x,7)sinf)|p—or—, where f and g are either 0,7 or fu.

When ¢ = 2m, it follows from (2.27) and (2.29) that

NOTMOL(f(x,7) cos b + g(z,7) sin 0)]g—o,—,

= HOZ™(0Lf(x,7)cosf + Dig(x,r)sinb)|o—g,—y

= a0d? (r(20)"(50) |-,
From (2.18-2.19), both —0,%(z,r) and u(z,r) have local expansions of the form
bi(x)r + b3(33')?"3 + -+ bamor (@)1 1t Ryt

Following the same argument above, we can show that both 0)92™9,u, and 092", u., are
continuous and bounded up to y = 0% for j + 2m +4 < k. The calculations for 902" 9%u,
and 9707™ ' 0Lu, are similar. This completes the proof of Part (b). O

In view of Lemma 2, we now introduce the following function spaces:

Definition 2
C¥(Rx RY) ={f(z,r) € C* (Rx RY), 0¥ f(x,0")=0,0<2j <k}

We can recast Lemma 2 as

Lemma 2’ For k > 0,
CH(R®, R®) = {uey + V x (veg) |u € C¥(R x RT), v € C*(R x R*)} (2.37)

In the following sections, we will construct natural Sobolev spaces for axisymmetric

divergence free vector fields, derive the counter part of Lemma 2 in these Sobolev spaces,



and establish various regularity and equivalence results. These results rely heavily on the
expression and pole condition in Lemma 2. We list below a few related Lemmas which will

be used in later sections.

Lemma 3 Let u € C*(R3 R?), k > 0, be represented by u = uey + V x (ey) with u €
C* (R x RY) and ¢ € C¥' (R x RT). Then (Vx)‘u € C¥-“(R3, R?) and

(Vx)? u = (—1)™ ((L™u)es + V x (L™)eg)), if 2m <k,

(V) gy = (~1)™ (L™ ey + (—1)"V x (L ™uw)eq), if 2m+1<k,

where

Moreover

L™y e CF (R x RY), if 2m <k,
Ly e CHI2M(R X RY), if 2m+1<k.

Proof: For any ¢ € C! (R x R"), we have ¢ ey € C! from Lemma 2 (b). With a straight

forward calculation using (2.4), it is easy to verify that for i > 2,
VXV x(pey) =—(ZLop)eyp. (2.38)

On the other hand, it is clear that

V xVx(pey) €C2
and therefore from Lemma 2 (a),

ZL¢eC?(RxRY). (2.39)
The Lemma then follows from (2.38) and (2.39). O
Lemma 4 [fv € C*(R x R*) and v(x,0%) =0, then

lim jo/ ™! (@) = v(z,07), 1<j<k (2.40)

r—0t

10



Proof:
Since v € C*(R x RY), we have

v(z,7) = ay(z)r + ag(z)r® + - + a1 ()" + Rp(v) (2.41)
from Taylor’s Theorem. Here
1
al) = 0Ll 07),
B T N (’f’ _ S)k 1
Ri(v) = i ¥v(zx, s) = ds
and
IR, (v)(2,07) =0, 0<l<k—1,  OFR(v)(x,07) = dFv(x,0M). (2.42)
From (2.41), it follows that
LW ak l— IR
oF (T 1)y = b1 ch i —rmk( ) (2.43)

The assertion (2.40) is obvious for j < k. For j = k, from (2.42), (2.43) and I'Hospital’s

rule, we can easily derive

k— 1 7 Lk + Ak +
lim 0} (ch ) )a v(z, 07 = ka v(z, 0M).

This completes the proof of Lemma 4. 0
Lemma 5 Ifv € C?™(R x RT)NC?2(R x RY) then
0P =2 Ly (-,07) = 0 if and only if 0*™v(-,07) =0 (2.44)

Proof: Since
(V2= Ly = (020 + 020 + 0, ),

r2

one has
v

PPy — (RO + 9y + 92N ()),

”
it follows from Lemma 4 that

2m +1

0P Ly(x,07) = 2™y (z,0M)

and the assertion follows. O

11



2.2 Sobolev Spaces

In this section, we will construct a family of Sobolev spaces H¥(R x RT) and show a counter
part for (2.37) in these Sobolev spaces: A weak solenoidal axisymmetric vector field admits
the representation (2.17) with u(x,r) and ¥ (z,r) in H¥. Moreover, both u and v, together
with certain even order derivatives have vanishing traces on r = 0%.

We start with the following identity for general solenoidal vector fields:

Lemma 6 Ifu € C*(R} RN HMR3 R?) and V-u =0, k >0, then

k

el e oy = D 10V %) | 2s e (2.45)
=0

Proof: We prove (2.45) for ¢ even and odd separately.

Since V - u = 0, it follows that V x V x 4 = —V?u. Thus if ¢ is even, we can write
||(VX)2muHL2(R3,R3) = H(VQ)muHLQ(R37R3) (2.46)

When m = 1 and u € C*(R3), we can integrate by parts to get

/Rg|V2u|2:/ Z / a%a?u_/ Z (01, 01,u)°

11=1 11,12=1 i1,i2=1

3

Similarly, when m = 2,

oo = [ <<

3

— Z / (0,-162-28Z-38i4u)2.
R3

11,12,i3,14=1

) / S (@20 o)

i= 11,12,13,54=1

It is therefore easy to see that

3
V2 u 2 = / &1 s &-mu 2
. (V)" ul ihm%ﬂ:l Rg( )

and consequently for u € C*(R3, R?), 2m < k,

3
IOV ulloromy = D 10a - O ) ull oo o) (2.47)

il:"‘ ’7:2,,”:1

12



On the other hand, if ¢ is odd, we first write
(V)" = V x (=(VH))™u = (=1)"V x (VH)"u
then apply the identity
||vv||%2(R3,R3X3) = [|V x v||%2(R3,R3) + V- U||2L2(R3)
to get
1V x)*™ ]| 2o sy = [V x (V)™ p2(ms msy = [[(V2)™ V]| 12 (s s (2.48)

and from (2.47),

3 3 3
(V)" VulZogs sy = DNV 0oy = D> Y. /Rg(az‘l < Oy Ogug)?

i,j=1 t,j=141, iam=1

3

= Z H (al o 87:2m+1)u|’%2(R3,R3)'

11, yiom41=1

(2.49)
It follows from (2.46), (2.47), (2.48) and (2.49) that
k 3 k
el s msy =D D 10 Bl amemey = D (V) | (s oy
0=0 i1, ig=1 =0
This completes the proof of Lemma 6. 0]

In Lemma 7 below, we will derive an equivalent representation of the Sobolev norms
for axisymmetric solenoidal vector fields. We first introduce the following weighted Sobolev
space for axisymmetric solenoidal vector fields. Let a,b € C° (R X F), we define the

weighted L? inner product and norm

(a,b) = /OO /000 a(x,r)b(z,r) rdzxdr, lall2 = (a, a), (2.50)
and for a,b € C! (R X F), we define the weighted H! inner product and norm

0.8] = (00, 0,0) +{0,0.05) + (2. 0) ol = [a,a (2.51)

and we define

lall = llallg + laly. (2.52)

13



When a € C! (Rx R*) and b € C! (R x RY) N C? (R x RT), we also have the following

identity from integration by parts:
(a, Lb) = —[a,b].

If u=uey+V x (ey), with u € C° (R x RT) and v € C} (R x RT), it is easy to see
that
[ll72 (s sy = llulls + 113 (2.53)
Higher order Sobolev norms can be defined similarly in terms of v and :
Definition 3 Fora € C*(R x RT) and u = uey + V x (Yeg) € C*(R? R?), we define

> 1L allf + 2" all, 2m < k
=0

[y

”@H?qgm(RxRﬂ

=0
m—1 m
wl3mpre sy =01+ D 1L5%llF + Y I1LDIT + 1L ull§,  2m <k
=0 (=1

lalZimir sy = 1OF 4  1Lulf + 3 (L5042, 2m 41 < &

=0 /=1

When k = 0, we denote ||al|z(rxrr) = llallmg(rxr+) and |lullczrxrere) = [ wlmgrxrs ro)
by convention.

In view of Lemma 2, Lemma 3, Lemma 6 and (2.53), we have proved the following

Lemma 7 Ifu € CF(R3 R3), k>0, then

||u||Hk(R3,R3) = ||ul HE(RX R+ ,R3)

We can now define the Sobolev spaces for axisymmetric solenoidal vector fields following

standard procedure. Denote by C the space of compactly supported functions, we define
Definition 4
L*(R x R") := Completion of C°(R x R¥) N Cy(R x R*) with respect to | - ||o
HY(R x R*) := Completion of C*(R x RT) N Cy(R x RF) with respect to | - |,
HEY(R x RT) := Completion of C¥(R x RT) N Co(R x R¥) with respect to || - || ur(rxr+)

HE(R x RT, R?) := Completion of C¥(R®, R*) N Co(R*, R®) with respect to || - ||3x(rxr+ r3)

14



With the spaces introduced above, it is easy to see that a necessary and sufficient condi-
tion for a € H¥(R x RY), k> 1, is

ZL'ac H (RxRY), forall 0<20<k-1; ZL™acL2(RxR"), forall 2<2m<k.

As a consequence, we have the following characterization for the divergence free Sobolev

spaces H¥(R x R, R3):
Lemma 8 The following statements are equivalent:
1. uw e H¥(R x RT, R?)
2. uw € HYR3 R3), V-u=0 and u is axisymmetric.

3 u = ueg + V x (Yeg) with u € H*(R x RY), v € HY (R x R*) and, if k > 1,
£ € HY(R x R").

When the above statements hold, we have

||U||Hk(R3,R3) = ||lul HE(RxRt,R3)- (2.54)

Lemma 8 follows from Lemma 3, Lemma 7 and standard density argument. We omit the
details.
Finally, the counterpart of (2.18) and (2.19) for w € H*(Rx RT, R?) is given the following

trace Lemma and Corollary:
Lemma 9 Ifv e H! (R x R"), then the trace of v on r = 0 vanishes.

Proof: For any v € C! (R X F) N Cy (R X F), we have

2
/\U(JJ,O)P do = —2// vOv dx dr < // (v_2 - (8TU)2> rdzdr < ||vl|}
R Rx R+ RxR+ \T

Since v(x,0) = 0 for v € C? (R X F), the Lemma follows from standard density argument.

OJ Using the same density argument, we have the following

Corollary 2 (i) If v € H¥ (R x R*), then ‘0™, 20 +n < k — 1, have zero trace on
r=0.

15



(ii) If v e HE (R x RT), then the trace of 0*v on r = 0 vanish for all 0 <20 <k — 1.

Example 1:

Take u = uey with u = r?e™". Note that u = O(r?) near the axis. Similar functions
can be found in literature as initial data in numerical search for finite time singularities.
Although u € C*®°(R x R*) and w may appear to be a smooth vector field, it is easy to
verify that Zu(z,0%) # 0. Thus from Lemma 2, Lemma 8 and Lemma 9, w is neither in

C?*(R?, R®) nor in H*(R?, R?).

3 Axisymmetric Navier-Stokes Equations and Equiva-
lence Results

The axisymmetric Navier-Stokes equation (1.3) can be formally derived from (1.2). From
Lemma 2, a smooth solution of (1.2) gives rise to a smooth solution of (1.3). However, it is
not clear whether smooth solutions of (1.3) also give rise to smooth solutions of (1.2). For

example, take v = 0 in (1.3) and consider the Euler equation:

Ot + Uy Optt + U, Opu + Y2 = 0,

T

Ow + ugOpw + u, w — “rw = 19, (u?), (3.1)
w = _ng
It is easy to see that
u =ueqy, ul(t,z,r)= f(r), w=1Y=0 (3.2)

gives rise to an ewact stationary solution to (3.1) for any function f(r) € C¥(R x R¥),
including the one given in Example 1. In other words, it is possible to have a solution in the

class L
Y(t;z,r) € C*(0,T;C*(R x RY))
u(t;z,r) € C*(0,T;C*(R x RY)) (3.3)
w(t;z,r) € C*(0,T;C*(R x R*))

with a genuine singularity on r = 0 as described in Example 1. This singularity is invisible
to the C*(R x R*) norm. In addition, it may well persist in time. In section 3.1, we will

show that the persistence of the pole singularity is indeed generic for Euler equation.
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3.1 Propagation and Persistence of Pole Singularity

In Euler (3.1), both u and w transport with the velocity (us,u,) = (0,9 + £, —0,%). The
equation for v is elliptic and one needs to impose one boundary condition for . This is

naturally given by
U(z,0) =0 (3.4)

in view of Lemma 2. Consequently, the r component of the velocity field w,, = —0,% vanishes
on the boundary r» = 0 and turns it into a characteristic boundary. As a result, the value of
both 4 and w on r = 0 are completely determined by the value of initial data on r = 0F
and the dynamics. Neither u nor w should be imposed on r = 0. In the following Theorem,
we will show that the pole singularity will propagate and remain on the boundary r = 0.
Moreover, we will show that the order of singularity will persist in time as illustrated in the

special example mentioned above.

Theorem 1 Let (1, u,w) be a solution to the axisymmetric Euler equation (3.1) in the class

»(t, z,r) C*Y(R x RT)
u(t,z,r) | € C°|[0,T), [ C*R x R*) (3.5)
w(t,z,r) C*Y(R x RT)

with kK > 2 and
u ="V x (eg) + uey

Then for0 <t <T,0< 7 <k,
u(t,-) € CI(R* R®) if and only if u(0,-) € CJ(R*, R?) (3.6)

Proof:
From 3 and (3.5), it suffices to show that, for 0 <t <T,0 < j <k,
O*u(0,-,07) =0, for all 20 < j

92")(0,-,07) =0, for all 2n < j +1
(3.7)

We will prove (3.7) by induction on j using Lemma 10 below. We first prove the case

{ 0% u(t,-,07) =0, for all 20 < j

0*M(t,-,07) =0, forall 2n < j +1 if and only if {

j = 0 in part (i). The induction from j = 2m to j = 2m + 1 and from j = 2m + 1 to

J = 2m + 2 are given in part (ii) and (iii) respectively.
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Lemma 10 (i) If (3.5) holds and
¢ e C’([0,T),Ci(R x RY)), (3.8)
then for 0 <t < T,

u(t,-,-) € CXA(Rx R¥) if and only if u(0,-,-) € CP(R x RY)

(i) If 2m + 1 <k, (3.5) holds and
v e C?([0,7),C2"(Rx RY)), uweC’([0,T),C2™(Rx RY)), (3.9)
then for0 <t < T,

U(t,-,) € C*™2(R x RY)  if and only if (0,-,-) € C*" (R x RY)

(iii) If 2m + 2 < k, (3.5) holds and
Y e C”([0,T),C2"*(Rx RY)), wueC’([0,T),C2"(Rx R")), (3.10)
then for0 <t < T,
u(t,-,-) € C?™2(R x RY)  if and only if u(0,-,-) € C* (R x RY)

Proof:
Part (i): From the boundary condition 3.4 we know that w,(¢t,z,07) = 0. From Lemma
4, we know that lim, o+ % = —0,1p(t, 2,07) and u,(t,z,0") = 2(9,4|,—o+). Therefore the

first equation of (3.1) on r = 0% reads
atu + 2(87“1“7“:0‘*‘)81“ - (arxw’r:O“’)u =0

This is a first order linear hyperbolic equation with continuous coefficients in (¢, z) € (0,7") x

R for u(t,z,0"). Hence, for 0 < ¢t < T,
u(t,-,0%) = 0 if and only if u(0,-,0") =0
Part (ii): From Lemma 5 we see that

we C’([0,T),C2"*(R x RY)), (3.11)
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Let v(t, z) = 0?™w(t,z,0™"), we can derive a linear hyperbolic equation for v(¢, z) by applying
d?™ to the second equation of (3.1):

02 (11,0,0) o
= 3 Chn0L (04 + £) im0t 002wl (3.12)

= T2 (14 1) O Pl 0,02 ]

2m
O (p 0y )| —or = — Y _ C5,,00(0500) | =0+ 0,02 w] o+ (3.13)
=0
2m 1
82m(( =0+ — 205 < ) |T:0+83m7ZW|7«:0+ = £+—10€ 0x8f+12/1|7«:0+83m4w|r:g+
(3.14)
2m
_ 1 m—
82m 3 U 7" o+ = ZC§m8f< > r= 0+0x(83m KU)|7,:()+ = m05m8£+1U|T:0+ax83 Z'UJ|T:0+
(3.15)
In (3.12-3.15), we have used Lemma 4 to get
(Y L
— | |r=o+ = —0+- 1
a7‘ (r) |'f“70Jr €+ 187' ¢|T70+ (3 6)
Next, from (3.9)
O*Pli—or =0, 0*ulp—gr =0, forl<m (3.17)
and from (3.11)
0% Wlpgr =0, forl<m—1 (3.18)

It follows that all the terms on the right hand side of (3.12-3.15) vanish except ¢ = 0 in
(3.12, 3.14) and ¢ = 1 in (3.13). In summary, we have

O (4000 ot = 2Ot )Ou (3.19)
0" (4, 0,0) | r—g+ = =25 (Ot r—o )0 (3.20)
(0. 2)0) v = (Oratlocg 0 (3.21)

afm(%axu)lr:m =0 (3.22)
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Thus we end up with a first order hyperbolic equation with smooth coefficients for v:
O + 2(0,]r=0+)0pv — (2m — 1)(0pr ]y =o+ Jv = 0.
It follows that for 0 <t < T,
0*w(t,-,0%) = 0 if and only if 9*"w(0,-,0%) =0, (3.23)
that is, in view of Lemma 5 and (3.9),
OF" (¢, -,07) = 0 if and only if 9> (0,-,07) =0

for0<t<T.

Part (iii): Let z(¢,z) = 0?™"2u(t,z,0"). Following a similar calculation as in part (ii), we

have
2m—+-2
872’m+2(ux8xu)’7":0+ = Z O§m+28fux‘T:0+8x(83m+2_€u)‘T:0+ = 2(8,@/}|T:0+)0IU (324)
/=0
2m—+2
872=m+2(uraru)|r:0+ = Z C§m+28fur‘T:O*'ax(a?erzigu)‘7“=0+ = _(2m + 2) (az”/}‘r:m—)v
=0
(3.25)
and
" axw 2m—+2 amw o
a; H(TU)\T:M = ; Coma0r - =0+ 077U = (Drathlrgr v (3.26)

We therefore obtain a first order linear hyperbolic equation with smooth coefficients for z:
Oz + 2(0,)|pmot )0z — (2m + 3)(0ppt)| et )2 = 0.
Therefor, we have proved that for 0 <t < T,
0¥ 2y(t,-,07) = 0 if and only if 9>+ ?u(0,-,07) =0

This completes the proof of part (iii) and hence the proof of Theorem 1. ([l
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3.2 Classical Solutions of Axisymmetric Navier-Stokes Equations

Theorem 1 reveals the subtlety of the pole singularity. In the case of Navier-Stokes equation,

Opu + Uy Opu + upOpu + “ru = v.2,
Ow + UupOpw + U, Ow — rw = 20, (u?) + v.Lw (3.27)

—Z,

with v > 0, we have an elliptic-parabolic system on a semi-bounded region {r > 0}. We
expect certain regularizing effect to take place. In the case the swirling velocity w is zero,
there exists a unique global smooth solution [10, 20]. (Result in primitive variable, translate
to vorticity formulation is smooth enough) However, with the swirl velocity, whether or not
initially smooth data develops singularity in finite time is is still a major open problem.A
fundamental regularity result concerning the solution of the Navier-Stokes equation is given
in the pioneering work of Caffarelli, Kohn and Nirenberg [3]: The one dimensional Hausdorff
measure of the singular set is zero. As a consequence, the only possible singularity for
axisymmetric Navier-Stokes flows would be on the axis of rotation. Further results on partial
regularity for axisymmetric flow can be found in [2, 17, 4, 9, 5]. A recent breakthrough
concerning the subtle behavior of the axisymmetric NSE can be found in [8].

Contrast to the case of Euler equation, the equivalence Theorem that we present below
rules out the possibility of persistence of the pole singularity for solutions which are smooth
up to the boundary » = 0. From standard PDE theory, we need to assign boundary values

for (¢, u,w). The zeroth order part of the pole condition (2.18, 2.19) would suffice:
¥(x,0) = u(z,0) = w(z,0) = 0. (3.28)

It is therefore a natural question to ask if a smooth solution of (3.27, 3.28) in the class

Y(t;z,r) € C(0,T; C*H(R x RY))
u(t;z,r) € C*(0,T;C*(R x RY)) (3.29)
w(t;z,r) € C! OTC’k (R x RT))

will give rise to a smooth solution of (3.27) in the class

1/1ta:r C* (0,T; C¥(R x RT))
u(t;z,r) € C*(0,T;C*(R x RY)) (3.30)
w(t;z,r) C(OTC’klRXR+))
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In other words, is the pole condition (2.18,2.19) automatically satisfied if only the zeroth
order part (3.28) is imposed?

The answer to this question is affirmative. We will show in Lemma 2 that (3.30) and
(3.29) are indeed equivalent for solutions of (3.27, 3.28). The proof is based on local Taylor

expansion. We decompose the proof into several Lemmas.

Lemma 11 If2m <k — 2 and

Y € CHY (R x RT)NC?™(R x RY)
u€ CHRx RY)NC?*™(Rx RY) (3.31)
w € CY(Rx RY)NC? (R x RY)

then all the nonlinear terms in (3.27)

. 1
UpOpw, U Opw, u—w, — 0, (u?) (3.32)
r r
and
Uy
U Opt, U Opu, —1u, (3.33)
r

are in C*(R x RY).

Proof: The calculations here are analogues of the proof of Theorem 1. (3.9) holds true
under the first two conditions in (3.31). hence, 2™ of four terms in (3.32) at r = 07 is
given by (3.19-3.22) with v(t, z) = 0*™w(t,z,0"). The third condition in (3.31) implies that
v = 0. Hence, one has

Uy

1
5’3m(um5’xw)|r:0+ = 83m(uTarw)|r:0+ == 8fm(7w)\r:0+ = afm(;ﬁx(u2))|rzo+ =0

Obviously, for j < m, one also has

Uy

. . ) 1
O (U0 peot = 0% (1,0, 0) |yt = O (—w) |0+ = O (=0, (t*))|p—or = 0
r r
using exactly same argument. This implies that
u’f’

1 S
UpOpw,  UpOpw, gl ;8x(u2) € C?™(R x RY). (3.34)

Next, (3.10) holds true under the three conditions in (3.31). Hence, 9*™ of three terms in
(3.33) at r = 07 is given by (3.24-3.26) with v(t,z) = 8?*™u(t,x,07). The second condition
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in (3.31) implies that v = 0. Here we used 9?™ instead of 9*™2 in (3.24-3.26). Hence, one
has

O™ (1Dt [y = O™ (1, 0y1) |y = 8fm(%u)]r:0+ =0

Again, for j < m, one also has
OH (up0pt) =0+ = 0X (U, 0pt1)| =g+ = asz(_Ur u)|p=o+ =0
r

This implies that
U Opu, U Opu, Dy e C?*™(R x R*). (3.35)
r

This completes the proof of Lemma (11).

Theorem 2 If (¢, u,w) is a solution to (3.27, 3.28) in the class (3.29) with k > 3. Then

Y € CHY(R x RT)
u € C*(R x RY) (3.36)
w € CFHYR x RT)

for0<t<T.

Proof: Let j* be the largest integer such that 25* < k—1. We first show that on 0 <t < T,
p(t,x,0%) =0
0% u(t,x,07) =0 (3.37)
0*w(t,z,0%) = 0.

for 0 < /7 < j*.

This is done by induction on ¢. When ¢ = 0, (3.37) is given by the boundary condition
(3.28). Suppose that (3.37) is verified for £ = j with j +1 < j*. We apply 9272|(, 0+) on
both sides of (3.27) and conclude that, in view of Lemma 11,

vO#(V? — H)u(z,0%) =0,
Vo (V2 — SF)w(z,0") = 0,
OV — Lyi(e,0%) = 0
Apply Lemma 5 to 0%, 0%u, 0% w, one has 0% 2 (x,0%) = 0% 2u(x,07) = 0272w (z,07) =
0 thus (3.37) is verified for ¢ = j + 1.
We can continue the induction until (3.37) is verified for £ = j* to get
) € C*Y(R x RT)NCY (R x RY)
ue CHRx RY)NC¥ (R x RY) (3.38)
we€CHY(Rx RHNCY (R x RT)
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To complete the proof, we proceed with k£ odd and even separately.

If k is odd, say k = 2m + 1, then j* = m and (3.38) can be written as
Y€ C*2(Rx RN NC*™(Rx RY), ue€C’™ Y (RxRY), weC*(RxR"). (3.39)

Apply Lemma 5 to 92", one has that 9>™+%¢)(z,0) = 0, therefore ¢ € C?"+2(R x R¥).
Similarly, if & = 2n, then j* = n — 1 and we have from (3.38)

¥ € CURXEDNCT2(RXTT), u e C(RxRB)NCT2(RxEF), we O (RxFF).

Since 2n —2 = k—2, the assumption in Lemma 11 is satisfied. Therefore we can continue
the induction for u to get 9?"u(z,0%) = 0, thus u € C?"(R x RY).

Finally, apply Lemma 5 to 9"~ %, we conclude that 9**1(z,07) = 0 and ¢ € C*"*1(R x
R NC*(R x RY) = C?*"1(R x RT). This completes the proof of Lemma 2. O

The equivalence of (1.2) and (3.27) in terms of regularity of classical solutions is given

by

Theorem 3 (1) Suppose (u, p) is an azisymmetric solution to NSE (1.2) withw € C* (0,T;CF),
p € C°(0,T;C*(R*)) and k > 3. Then there is a solution (¢, u,w) to (3.27) in the

class L
Y(t,x,r) € C*(0,T;C*1(R x RY))
u(t,z,r) € C* (0,T;C¥(R x RY))
w(t,z,r) € C' (0,T;C* (R x R"))

and u = ueg + V X (ey).

(II) Let (¢, u,w) be a solution to (3.27,3.28) in the class

U(t,x,r) € C*(0,T; C*(R x RT))
u(t,z,r) € C*(0,T;C*(R x RY))
w(t,z,r) € C*(0,T;C* (R x RT))

with k > 3. Then
u = uey+ V x (Yeg) € CH0,T;CF)

and there is an azisymmetric scalar function p € C°(0,T;C*1(R3)) such that (u,p)
is a solution to NSE (1.2).
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Proof:
Part (I): Since u € C* (0,T;CF) is a solution to (1.2) with k > 3, it follows that

w=Vxu=wey+V x (uey) € C'(0,T;C™")
is also an axisymmetric solution to the Navier-Stokes equation in vorticity form:
Ow+ VX (wxu)=-rvVxVXw (3.40)

Next, we express each term of (3.40) in the cylindrical coordinate as

8tw = (9twe(9 +V x (8tueg), (341)
1 1
-V xVxw= ((V2 - ﬁ)w) ey +V x ((V2 — ﬁ)ueg> : (3.42)
and
w u 1
VX (wxu)= <J(?,r@/}) - J(;,ru)) ey + V X (T—Qj(ru,m/)) 89) : (3.43)
From (3.41-3.43), we can rewrite (3.40) as
aeg+ V x (beg) =0, (3.44)
where
- ol —J( v L
a-@tw—i-J(T,m/J) J(T,ru> v(V T2)w,
and
1 , 1
b= 0w+ ﬁ‘] (ru,r) —v(V° — ﬁ)u

From (3.44), it follows that a(z,r) = 0 and rb(x,r) is a constant. Since b(x,0") = 0 from
Lemma 11 and Lemma 2, we conclude that b(x,r) = 0 as well. Expanding the Jacobians in
above two equations we get exactly (3.27). This completes the proof of part (I).

Part (II): From Theorem 2, we know that (¢, u,w) satisfies (3.36). Therefore Lemma 2
applies and we have

u =uey+ V x (1eg) € C'(0,T;C)

Next we define w = V x u. From (3.41-3.43), we see that w satisfies the Navier-Stokes

equation in vorticity formulation (3.40). That is

VX (Ou+wxu+rvV xw)=0.

25



Thus there exists a function p : (0,T) — C*~1(R?) such that
du+wxu+vVxw=-Vp (3.45)

In other words, (u,p) satisfies the NSE (1.2). Since u € C*(0,T;C¥), it follows from (3.45)
that Vp € C°(0,T;C*2). In addition, we can further assign p(t) on a reference point (x, ro)
so that p € C°(0,T; C*Y(R?)).

By construction, the left hand side of (3.45) is axisymmetric and therefore so is Vp. In

particular
09(Vp - eg) = 0p (%89]9) =0.
Therefore
p=a(z,r)0+ b(x,r)
Since p is continuous and single-valued, we conclude that a = 0. In other words, p is

axisymmetric. This completes the proof of theorem. 0

3.3 Weak Formulation and Leray Solution

The Navier-Stokes equation in vorticity formulation for axisymmetric flows (3.27) can be

recast as following in terms of Jacobians [14]

u + 5 J (ru,r) = vlu,
we+J(2,r) = J (% ru) =vlw, (3.46)

w==2Z1,

The expression of the nonlinear terms in (3.46) in terms of Jacobians are equivalent to the
usual expression (1.3) for strong solutions. Accompanied with the Jacobians is a set of
permutation identities which leads naturally to an energy and helicity preserving numerical
scheme and played a key role in the convergence proof of the scheme [14, 15].

We propose the following formulation for weak solution:

Find u € L*°(0,T; L?) N L*(0,T; H}), ¢ € L>(0,T; H!) and w € L*(0,T; L?) such that

(Opu, v) + (&, J(ru,m)) + vu,v] =0

[aﬂz), ¢] + <:J_27 J<7n¢> T¢)> - <7»l27 J(Tuv r¢)> + V<w’ gqb) =0 (347>

(w, &) = [, ¢]
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forallv e HY(Rx RT), ¢ € HLNH*(R x R"), and £ € H}(R x RT).

Note that the viscous term in (3.47) is not treated the same way in standard variational
formulation. In addition, only u = 0 and ¥ = 0 are imposed on the boundary » = 0. One can
regard (3.47) as a variational formulation of the fourth order PDE for ¢ where the boundary
condition w = 0 is imposed implicitly. Although we have shown equivalence of NSE in
vorticity-stream formulation and primitive formulation for the classic solutions which are
smooth up to the boundary r = 0. It is still not clear a priori how (3.47) is related to the
weak solutions of (1.2) as constructed in Leray’s seminal work [11]. To answer this question,

we will show in Theorem 4 that (3.47) can be recast in standard 3D notations as:

Find w € L* (0, T; L*(R x R, R*))N L? (0, T; H(R x R*, R3)) such that
(v,0u+wxu) +v(Vxv,Vxu)=0 forallvecH(RxR"R. (3.48)
Now we recall Leray’s definition of weak solution:
Find w € L= (0,T; L*(R3, R®)) N L? (0, T; H*(R3, R?))
(v,0u+wxu)+v(Vxv,Vxu)=0 foralwveCjR, R),V v=0. (3.49)
Upon comparing (3.48) and (3.49), we see that the key point in establishing the equiva-
lence result lies in a proper decomposition of a general divergence free test function into two

parts, one is axisymmetric and the other has mean zero components. This is given by the

following Lemma:
Lemma 12 Let v € CY(R? R?), V-v =0, then there exists a v*¥™ € C}(R? R?) and
Up(x,r,0) = v (z,r), T (z,r,0)=0v2"(x,r), Tg(x,r0)=0v""(x,r), (3.50)

where
1 27

f<x7r) = o f(x,r,@)d@
2 Jo
Proof:
Since v € C(R3, R?), V - v = 0, there exists ¢ = ¢,e, + ¢.e, + dpey € C*(R3, R?), such

that V x ¢ = v. We then define

vV =V x (gpeq) + vy en, )" = 0uby — Orhy.
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It follows that v*¥™ is divergence free and satisfies (3.50). In addition, ¢, (-, -, 0), ¢,(-, -, 0), dg(-, -, 0) €
C%(R x R*) for any fixed 6 in view of Corollary 1. We therefore conclude from Bounded

Convergence Theorem that

1 27I' ) . ¢JU (‘/EJ T? 9) 1 27T . . ¢$ (x7 ,ra 6)
lim —/ 0500 | op(z,7,0) | = 2—/ lim 9,0 Or(x,r,0) |, 0<i+j<2
0 T Jo ¢9(‘IL‘7 T, 0) TJo =0 ¢9(x7 T, 0)
(3.51)
In other words, ¢, ¢, pg € C?(Rx RT). Moreover, (2.14, 2.15) imply that ¢y € C?(Rx RY),
vy"™ € CL(R x R*) therefore v*¥™ € C}. O

We are now ready to show the following equivalence result.

Theorem 4 Let u = uey+V x (vYeg) and w = L. The following three statements are all

equivalent.

(1) (Y,u,w) is a weak solution (3.47).

(ii) w is a azisymmetric weak solution defined by (3.48).
(7i) w is a Leray weak solution as defined in (3.49).

Proof:
We first show that (i) and (ii) are equivalent. Let w be an axisymmetric weak solution

(3.48) and let the test function be given by v = vey + V X (¢ey). Simple calculation gives
<8tu7 'U> = <atu7 U> + [at¢7 (b] (352)

(VX u,V xv)={(w,Zo)+ [u,] (3.53)

(w x u,v) = /R wep x (V x (heg)) - (V x (deg)) — /R wey x (V x (ueg)) - (V x (dep))

4-/}23 veg X (V X (ueg)) - (V X (veg))

In cylinder coordinates, we can write

2 (0(r0)0, (re) = 0,(r)0, (1)) drda

><R+ r

/R3 aeg X (V X (beg)) . (V X (Ceg)) :/R

= (. J(rb,rc))

)
T2
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Hence

(wx ww) = (5, I, 76)) = (3, T ) + (3 Jrwrd)) - (354)

Since v and ¢ are independent, it follows from (3.52), (3.53), (3.54) and (3.48) that
(D, v) + <%, J(ru, 1)) + vfu,v] = 0 (3.55)
0. 6] + (5. T r)) = (. S (ru.rd) + vl £6) = 0 (3.56)

Together weak formulation of relation w = Z:
[,€] = (w, &) forall £ € HY(R x R"). (3.57)

Hence (¢, u,w) is a weak solution to (3.47). The converse is also true by reversing the
calculations above. This proves the equivalence between (i) and (ii).

Since C!(R?, R®) N C.(R?, R?) is a subspace of {v € C3(R?, R*),V - v =0}, and is dense
in HY(R x R*, R?), (iii) implies (ii).

It remains to show that (ii) implies (iii). Let w be an axisymmetric weak solution of
(3.48). From Lemma 12, for any test function v € Cj(R® R*) with V- v = 0, we can
construct v¥¥™ € CL(R?, R*) N Cy(R?, R®) such that

27
/ (v — V™) (z,r,0)dd =0, forall (z,r) € (R x R") (3.58)
0
For any w € L%(R?, R?), one has
2T
/ (v —v™) - w(x,7,0)dd =0, forall (z,r) € (Rx R") (3.59)
0

and

/ V x (v —v"") - w(x,r,0)d) =0, forall (z,r) € (Rx RT) (3.60)
Hence
(v, +w xu)+v(Vxo,Vxu) =@ du+wxu)+v(Vxo?" Vxu) (3.61)

But now v¥™ € CL(R?} R?®) N Co(R* R?) C HL(R x R, R®) is a test function for the
axisymmetric weak solution (3.48), so the right hand side of (3.61) is zero. Therefore u is a

Leray solution. This completes the proof of this Theorem. O
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Corollary 3 (i) For any initial data ug € L*(Rx RT), vy € HY(Rx R*"), there is a global
weak solution (Y, u,w) to (3.47), and u = ueg + V X (ey) is an axisymmetric Leray

solution of the Navier-Stokes equation (1.2).
(i) If in addition,
up € H*(R x R*), 1y € H (R x RY), Ly € H* YR x RY), (3.62)

with k > 1, then there exists a Ty > 0, such that the solution satisfies

u e C®(0,Ty; HE(R x R™)) N L* (0, To; H¥ (R x RT))

w e C°(0,To; HEY(R x RY)) N L? (0, Ty; HF(R x RY)) (3:63)

and it corresponds to the unique strong solution of Navier-Stokes equation (1.2).

(11i) If k >3 in (3.62), then the solution is classical:

u € C®(0,Ty; C*2(R x RT)) N C* (0, Tp; C*3(R x RY))

¥ € C%(0,Tp; C*Y(R x RY)) N C* (0, Tp; C*2(R x RY)) (3.64)

Proof: From an initial data uy € L2(R x R"),¢y € HX(R x R*), one can construct an
axisymmetric vector field uy = ugey + V x (Yoeg) € L*(R3, R3), and then a global weak
solution of (3.49) using Leray’s method with initial data ug. The weak solution is constructed
from a family of approximate solutions obtained via (radially symmetric) mollifiers. See
[11, 16] for details. Since the symmetry with respect to the axis of rotation is preserved
under the action of convolution with the mollifiers, the resulting limit is also axisymmetric.
From Theorem 4, it corresponds to a global weak solution (¢, u,w) of (3.47). This shows
part (i)

If in addition, ug € HF¥(Rx RT), £ € HF1(Rx RT), k > 1 then uy € H*(Rx R*, R?).
Hence by classical theory of Navier-Stokes equation [18], there exists a Ty > 0 depending

only on v and ||ol| k(g3 g3y, and a unique solution (u,p) in (0,7p) to (1.2) with regularity
we H'(0,Ty; H'(R?, R?)) N L? (0, Ty; H*(R?, R?)) | (3.65)
Vp € L? (0,Ty; H* (R, R?)) . (3.66)

From [6, p. 288], (3.65) implies

u € C° (0, To; H*(R?, R?)) (3.67)
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Consequently, any global weak solution of (3.47) coincides with the strong solution (3.65)
in (0,Tp), therefore the strong solution is also axisymmetric. It follows from Lemma 8 that
u € L>(0,To; H¥(R x R*)) N L* (0, To; HF' (R x RT)), w € L= (0,Tp; H¥ (R x R*)) N
L?(0,Tp; HF(R x R*)). This shows part (i).

Since H*(R3, R®) C C°(R3, R®), it follows from (3.67) that, when k > 3,

ue C°(0,Ty; CF (R, R?)) . (3.68)
Since dyu is the Leray projection of vV?u — (V x u) X u, it follows that
du € C°(0,Tp; CE(R*, R?)) . (3.69)

This gives (3.64) and proves (iii). O
From well known regularity results of 3D Euler equation, the counter part of Corollary 3

for the Euler equation can be obtained using a similar argument. We state it without proof.

Corollary 4 For any initial data ug € HF(RxRY), g € HY(RxRT), L1y € HF " Y(RxR"),
k > 3, there exists a unique local-in-time classical solution (¢, u,w) to the Euler equation

(3.1) with

ue C%(0,Tp; C*2(Rx RY)NHE(R x RT)) N C* (0, Tp; C¥3(R x RT) N HFY(R x R"))
Y e C%(0,To; CE YR x RY)NHM YR x RT)) N C (0, Ty; C*2(R x RT) N HF(R x RT))
(3.70)
As remarked earlier, the weak formulation (3.47) is not standard and it only imposes the
boundary condition w = 0 in an implicitly way. In fact, if the solution is regular enough,
then one recovers this boundary condition and the usual weak formulation follows. This

becomes more clear as we recast part (ii) of Corollary 3 as follows

Corollary 5 Let (¢, u,w) be a weak solution of (3.47) and uw =V x (vYey) + uey). If

ue Ly ((0,T);Hy(R x RY, R?))

loc

then
we L}, ((0,T);HR x RY,R?)) .

loc

In particular, the trace of w = £ on r = 0" vanishes almost everywhere on (0,T).
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Remark 1 The standard variational formulation for (1.3) is as follows:

Find u € L*(0,T; L?) N L*(0,T; HY), ¢ € L=(0,T; HY) and w € L*(0,T; HY) such that
(O, 0) + (%, J(ru, 7)) + v[u,v] = 0
0w, o] + (53, T (1), 1)) — (35, I (ru, 7¢)) — v[w, ¢] = 0 (3.71)
(w,&) =[,¢

forallve H(Rx RY), ¢ € H{(Rx RY), and £ € H}(R x RY).

The main difference between (3.47) and (3.71) is the viscous term of the vorticity equa-
tion. The formulation (3.71) is natural for standard C° finite element setting. The reqularity
requirement for (3.71) lies between weak solution (3.47) and the strong solution (3.65). The

well-posedness of (3.71), including uniqueness and local existence of solution for initial data

ug € L2 (R x RT), wy € L2(R x RY) is still unclear.
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