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Abstract

An adaptive finite element method is developed for a class of free or moving bound-
ary problems modeling island dynamics in epitaxial growth. Such problems consist of an
adatom (adsorbed atom) diffusion equation on terraces of different height; boundary con-
ditions on terrace boundaries including the kinetic asymmetry in the adatom attachment
and detachment; and the normal velocity law for the motion of such boundaries deter-
mined by a two-sided flux, together with the one-dimensional “surface” diffusion. The
problem is solved using two independent meshes: a two-dimensional mesh for the adatom
diffusion and a one-dimensional mesh for the boundary evolution. The diffusion equa-
tion is discretized by the first-order implicit scheme in time and the linear finite element
method in space. A technique of extension is used to avoid the complexity in the spatial
discretization near boundaries. All the elements are marked, and the marking is updated
in each time step, to trace the terrace height. The evolution of the terrace boundaries
includes both the mean curvature flow and the surface diffusion. Its governing equation is
solved by a semi-implicit front-tracking method using parametric finite elements. Simple
adaptive techniques are employed in solving the adatom diffusion as well as the bound-
ary motion problem. Numerical tests on pure geometrical motion, mass balance, and the
stability of a growing circular island demonstrate that the method is stable, efficient, and
accurate enough to simulate the growing of epitaxial islands over a sufficiently long time
period.
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1 Introduction

We develop an adaptive finite element method for a class of free or moving boundary
problems that model the island dynamics in epitaxial growth of thin films.

Epitaxial growth is a modern technology of growing single crystals that inherit atomic
structures from substrates. It produces almost defect-free, high quality materials that have
a wide range of device applications. Microscopic processes in epitaxial growth include the
deposition of atoms or molecules, atom adsorption and desorption, adatom (adsorbed
atom) diffusion, adatom island nucleation, the attachment and detachment of adatoms to
and from island boundaries or terrace steps, and island coalescence [4, 17, 27, 38].

There are various kinds of models for epitaxial growth of thin films that are dis-
tinguished by different scales in time and space. Among them, continuum models can
describe film surface morphology, predict long time growth laws in terms of scaling, and
determine thermodynamic variables. One class of continuum models are the Burton-
Cabrera-Frank (BCF) type island dynamics models, cf. [6] and [7, 9, 15, 22, 27]. Such a
model is essentially a free or moving boundary problem that consists of a diffusion equa-
tion for the adatom density on islands or terraces, boundary conditions for the moving
terrace boundaries, and a velocity law for the motion of such boundaries. This moving
boundary problem has the following distinguished features: First, terraces have different
heights. Thus, the description of the growth is continuous in the lateral directions but
discrete in the growth direction; Second, the adatom flux to the terrace boundary is two
sided, from both upper and lower terraces; And third, the normal velocity of the mov-
ing terrace or island boundaries is determined by the attachment-detachment kinetics and
can include one-dimensional “surface” diffusion of edge-adatoms—atoms that are diffusing
along terrace boundaries.

We consider the attachment-detachment kinetics in the boundary condition for terrace
boundaries that includes the Ehrlich-Schwoebel effect. In a typical step-flow or layer-by-
layer epitaxial growth of thin films, adatoms diffuse on a terrace and likely hit a terrace
boundary. In order to stick to the boundary from an upper terrace, an adatom must
overcome a higher energy barrier—the Ehrlich-Schwoebel barrier [13, 34, 35], cf. Figure 1.
This asymmetry in attachment and detachment of adatoms to and from terrace bound-
aries has many important consequences: It induces an uphill current which in general
destabilizes nominal surfaces (high symmetry surfaces) [13, 34, 35], but stabilizes vicinal
surfaces (surfaces that are in the vicinity of high symmetry surfaces) with large slope, pre-
venting step bunching [39]; It also leads to the Bales-Zangwill morphological instability
of atomic steps [1, 30]; Finally, it contributes to the kinetic roughening of film surfaces
[20, 28, 39].

Caflisch et al [7] have recently developed a class of island dynamics models based
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Figure 1: The Ehrlich-Schwoebel barrier.

on step edge (terrace boundary) kinetics that involve not only the step edges or terrace
boundaries and the adatom density but also the density of edge-adatoms and the density
of kinks along terrace boundaries. Based on such kinetic models, Caflisch and Li [9] have
derived a set of boundary conditions for the adatom density that includes line tension
and attachment-detachment kinetics, and a normal velocity law that includes the one-
dimensional “surface” diffusion, cf. Figure 2. Various parts of these boundary conditions
and the velocity formula have been recently suggested and partially derived based on
thermodynamics [18, 22, 26, 27, 29]. In this work, we use these boundary conditions and
normal velocity law, modified to include the convection terms in the flux, the Ehrlich-
Schwoebel effect, and the one-dimensional “surface” diffusion.

x

Figure 2: One-dimensional “surface” diffusion.

In developing our finite element method, we naturally divide our underlying problem
into two parts: the adatom diffusion and the boundary evolution:

1. We derive a weak formulation for the time-dependent diffusion equation. In this for-
mulation, the effect of the convection terms in the flux is implicitly included through
the boundary conditions. To avoid the complexity in the spatial discretization near
boundaries, in each time step, we extend the diffusion equation from terraces of same
height to the whole computational domain. The extended equation is discretized
using the linear finite element method. The resulting linear system is symmetric
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positive definite, and is solved by the conjugate gradient method. In order to trace
the terrace height, all the elements are marked, and the marking is updated in each
time step.

2. The geometric motion of the island boundaries includes both the mean curvature
flow and the surface diffusion. It is treated in a variational formulation utilizing
the curvature vector, and discretized by a semi-implicit front-tracking method using
parametric finite elements. This method is adapted with modification from [2, 3, 12].

We remark that the two-dimensional (2d) and the one-dimensional (1d) finite element
meshes are essentially independent from each other. They are only coupled by correspond-
ing right-hand side terms.

To obtain satisfactory computational results, meshes with sufficiently fine resolutions
are needed for both the adatom diffusion equation and the boundary evolution equation.
Thus, it is indispensable to use adaptivity in order for the method to be efficient. We
use simple error indicators within an h-adaptive method to locally increase the spatial
resolution.

We apply our method to the following three test problems, and our numerical results
demonstrate that the method is stable, efficient, and accurate enough to handle the island
growth over a sufficiently long time period:

1. A pure geometrical problem of the evolution of the boundaries that is governed
by either the motion by mean curvature or the motion by surface diffusion or by
the combination of these two. Our numerical results show the expected smoothing
properties of these motion laws;

2. A simplified model in which the coefficients of desorption and kinetic attachment-
detachment are set to be zero, so that islands cannot grow and the mass increases
in time linearly due to a constant deposition flux rate. Our method is found to yield
this mass balance consistently;

3. The stability of a growing circular island. This problem has been analyzed rigorously
in [23]. Our method gives numerical result that agrees with the theory.

Besides these test problems, the method is used to study the influence of the one-
dimensional “surface” diffusion term in the velocity law on the growing of a single island.
At this stage, our method is not capable of handling topological changes of the moving
boundaries in the nucleation and coalescence of adatom islands.

Recently, level-set based finite difference methods have been developed for the sim-
ulation of island dynamics in epitaxial growth [8, 10, 16, 25, 31]. Such a method is
particularly efficient in handling topological changes. However, in treating the surface
diffusion using such a method, fourth-order derivatives of a level-set function extended
from the boundaries must be discretized by a finite difference scheme on a fixed Cartesian
grid [11, 21, 24, 36]. Such discretization can be complicated and less accurate. While
our method cannot handle topological changes at the current stage, it has the advantage
of exploiting the variational structure of the model to reduce the order of derivatives in
discretization. This is evident, for instance, in the treatment of the surface diffusion term.
Moreover, our method can be relatively easily extended to solve additional systems of
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equations such as the elasticity problem that can be important in determining the dy-
namics of heterogeneous epitaxial growth—the growth of material systems in which thin
films and substrates have different lattice structures.

In Section 2, we describe the problem. In Section 3, we describe our methods of
discretization for both the adatom diffusion equation and the boundary evolution equation.
In Section 4, we describe implementational details such as the adaptivity, element marking,
and numerical integration. In Section 5, we present our numerical results. Finally, in
Section 6, we draw conclusions.

2 Problem description

Consider the dynamics of adatom islands in an epitaxially growing thin film. An island
or terrace is a portion of crystal layer that is one atomic layer higher than the immediate
neighboring part of the film surface. Mathematically, we denote by Ω ⊂ R

2 the projected
domain of the film surface in a two-dimensional Cartesian coordinate system, and assume
that Ω is independent of time t. We denote also by Ω0 = Ω0(t) ⊂ R

2 the projected
domain of the substrate or the exposed film surface with the smallest layer thickness, and
by Ωi = Ωi(t) ⊂ R

2, i = 1, . . . , N , that of the islands or terraces of height i relative to
Ω0 at time t, respectively. Thus, N + 1 is the total number of layers that are exposed on
the film surface. Note that, since the height of neighboring terraces differs only by one
atomic layer, we conclude that

Ωi(t) ∩ Ωj(t) = ∅ if and only if |i− j| ≥ 2.

We denote further the corresponding island boundaries by

Γi(t) = Ωi(t) ∩ Ωi−1(t), i = 1, . . . , N,

see Figure 3. We have that

Ω =
N
⋃

i=0

Ωi(t).

Denote by ρi = ρi(x, t) the adatom density on terrace Ωi(t) (i = 0, . . . N) at time t.
The adatom diffusion on a terrace is described by the diffusion equation for the adatom
density [6, 9, 15, 22, 27]

∂tρi −D∆ρi = F − τ−1ρi in Ωi(t), i = 0, . . . , N, (2.1)

where D > 0 is the diffusion constant, F is the deposition flux rate which shall be assumed
to be a positive constant, and τ−1 > 0 is the constant desorption rate.

We assume that the adatom density satisfies the following kinetic boundary conditions
on the island boundary Γi(t) for i = 1, . . . , N [1, 6, 9, 15, 22, 26, 27]:

q+i := −D∇ρi · ~ni − viρi = k+(ρi − ρ∗(1 + µκi)), (2.2)

q−i := D∇ρi−1 · ~ni + viρi−1= k−(ρi−1 − ρ∗(1 + µκi)), (2.3)
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Figure 3: Schematic description of terraces Ωi = Ωi(t) and boundaries Γi = Γi(t).

where: q+i and q−i are (normal) fluxes from the upper terrace Ωi(t) and the lower terrace
Ωi−1(t), respectively, to the boundary Γi(t); ~ni and κi are the unit normal pointing from
the upper to lower terrace and the curvature of the boundary Γi(t), respectively; vi is the
normal velocity of the island Γi(t) with the convention that vi > 0 if the movement of Γi(t)
is in the direction of ~ni; k+ and k− are the kinetic attachment rates from the upper and
lower terrace to the boundary Γi(t), respectively; and ρ∗ and µ are two positive constants.
In general we have 0 < k+ ≤ k− by our notation, where the strict inequality k+ < k−
models the Ehrlich-Scwhoebel effect. The constant ρ∗ can be either a thermodynamic
equilibrium value or a kinetic steady state value, and the constant µ can be proportional
to the stiffness of the boundary Γi(t) or can come from a transition energy barrier, see
[1, 6, 7, 9, 26, 27].

We note that the convection terms ρivi and ρi−1vi in the fluxes q+i and q−i defined in
(2.2) and (2.3), respectively, are often neglected in literature due to the smallness of the
normal velocity. However, in some growth cases, these convection terms can be important
to the growth stability [14, 19]. In principle, they are necessary to obtain the conservation
of mass in a region that includes a portion of the boundaries. Moreover, these terms
can be incorporated naturally into a variational formulation of the diffusion problem, cf.
Section 3.1.

For the motion of the moving boundaries, we assume the following law for the normal
velocity vi of the island boundary Γi(t) [9, 18, 22, 26, 27, 29]:

vi = q+i + q−i + ν∂ssκi, (2.4)

where ν is a positive constant and ∂ss denotes the second-order tangential derivative along
the boundaries. The term ∂ssκi represents the one-dimensional “surface” diffusion. The
coefficient ν is related to the line tension and edge diffusion [9]. For ν = 0, the formula
reduces to

vi = q+i + q−i . (2.5)

In this case, the diffusion along terrace boundaries is not taken into account.
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We assume a flux-free boundary condition for the adatom density on the boundary of
the film domain:

∂ρ0

∂n
= 0 at ∂Ω for all t > 0, (2.6)

where the normal derivative corresponds to the unit exterior normal ~n to the boundary ∂Ω.
We also assume that the initial islands Ωi(0) (i = 0, . . . , N) along with their corresponding
boundaries Γi(0) (i = 1, . . . , N) are given. Moreover, we assume that initial adatom
density is given by

ρi(x, 0) = ρ̄i(x) ∀x ∈ Ωi(0), i = 0, . . . , N (2.7)

for some given function ρ̄i.
Finally, we assume no topological changes, i.e., islands neither nucleate nor coalesce,

in the regime of island dynamics under consideration.

3 Variational formulation and finite element dis-

cretization

We derive a weak formulation for the time-dependent diffusion equation and use the first
order implicit scheme to discretize the time derivative. In each time step:

1. We update the discrete boundaries by solving a geometric partial differential equation
(PDE) based on the adatom densities and the discrete boundaries from the previous
time step;

2. We solve the diffusion equation to update the adatom densities using the adatom
densities and the computed discrete boundaries from the previous time step.

In Section 3.1, we describe the weak formulation for the time-dependent diffusion equation
and the finite element discretization for the diffusion equation in each time step. In
Section 3.2, we present our algorithm for the geometric PDE of the boundary evolution.

3.1 Adatom diffusion

Fix i ∈ {0, 1, . . . , N}. Assume that ρi is smooth in Ωi = Ωi(t). Multiplying both sides
of the diffusion equation in (2.1) by a smooth, time-independent, test function φ, and
integrating by parts, we get

∫

Ωi

∂tρiφ+

∫

Ωi

D∇ρi · ∇φ−
∫

Γi

D∇ρi · ~niφ+

∫

Γi+1

D∇ρi · ~ni+1φ

=

∫

Ωi

Fφ−
∫

Ωi

τ−1ρiφ. (3.1)

Here and below, obvious modifications should be made for i = 0 and i = N . Notice that
for a moving smooth domain ω(t) and a smooth function ξ(x, t) for x ∈ ω(t),

d

dt

∫

ω(t)
ξ =

∫

ω(t)
∂tξ +

∫

∂ω(t)
ξu,
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where u is the normal velocity of the moving boundary ∂ω(t). Applying this formula to
the corresponding term in (3.1) and using the boundary conditions (2.2) and (2.3), we
obtain

d

dt

∫

Ωi(t)
ρiφ+

∫

Ωi(t)
D∇ρi · ∇φ+

∫

Ωi(t)
τ−1ρiφ+

∫

Γi(t)
k+(ρi − ρ∗(1 + µκi))φ

+

∫

Γi+1

k−(ρi − ρ∗(1 + µκi+1))φ =

∫

Ωi(t)
Fφ.

Let 4t > 0 be a small time step. Then,

d

dt

∫

Ωi(t)
ρiφ ≈

1

4t

[

∫

Ωi(t)
ρi(x, t)φ(x)−

∫

Ωi(t−4t)
ρi(x, t−4t)φ(x)

]

.

Now, split the time interval by discrete time instants 0 = t0 < t1 < . . . and define the
time steps 4tm := tm+1− tm (m = 0, 1, . . .). Using the approximations Ωm

i ≈ Ωi(tm) and
Γm

i ≈ Γi(tm), we have the following formulation of the time discretization problem.

Problem 3.1 Set ρ0
i = ρ̄i (i = 0, . . . , N). For m = 0, 1, . . ., find adatom densities

ρm+1
i ∈ H1(Ωm+1

i ) such that

1

4tm

[

∫

Ωm+1
i

ρm+1
i φ−

∫

Ωm
i

ρm
i φ

]

+

∫

Ωm+1
i

D∇ρm+1
i · ∇φ+

∫

Ωm+1
i

τ−1ρm+1
i φ

+

∫

Γm+1
i

k+(ρm+1
i − ρ∗(1 + µκm+1

i ))φ+

∫

Γm+1
i+1

k−(ρm+1
i − ρ∗(1 + µκm+1

i+1 ))φ

=

∫

Ωm+1
i

Fφ ∀φ ∈ H1(Ωm+1
i ), i = 0, . . . , N,

where κm+1
i and κm+1

i+1 denote the curvature of Γm+1
i and Γm+1

i+1 , respectively.
At each time step, we need to solve an elliptic problem with curved boundaries. To

avoid the complexity in the spatial discretization near such curved boundaries, we use an
extension method. Let ρm

i (m ≥ 0) be the trivial extension of ρi to the whole domain Ω,
i.e.,

ρm
i (x) = ρi(x) for x ∈ Ωm

i and ρm
i (x) = 0 for x ∈ Ω\Ωm

i .

Furthermore, define for each m ≥ 0 and 0 ≤ i ≤ N

Di,m =

{

D in Ωm
i

0 in Ω\Ωm
i

, Fi,m =

{

F in Ωm
i

0 in Ω\Ωm
i

, τ−1
i,m =

{

τ−1 in Ωm
i

0 in Ω\Ωm
i

.

Extend also the initial densities ρ̄i, still denoted by ρ̄i, by ρ̄i = 0 in Ω \ Ωi(0). Now,
replace D, τ−1, F , and Ωm

i in Problem 3.1 by Di,m+1, τ
−1
i,m+1, Fi,m+1, and Ω, and solve

the corresponding problem on the whole domain for all test function φ defined on Ω:
∫

Ω

ρm+1
i − ρm

i

4tm
φ+

∫

Ω
Di,m+1∇ρm+1

i · ∇φ+

∫

Ω
τ−1
i,m+1ρ

m+1
i φ

+

∫

Γm+1
i

k+(ρm+1
i − ρ∗(1 + µκi))φ+

∫

Γm+1
i+1

k−(ρm+1
i − ρ∗(1 + µκi+1))φ (3.2)

=

∫

Ω
Fi,m+1φ ∀φ ∈ H1(Ω), i = 0, . . . , N.
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To discretize in space, let T m
h be an admissible shape-regular triangulation of Ω at

time instant tm [5, II.5]. Notice that we do not assume that the triangulation is uniform,
allowing thus for highly graded local mesh refinement. We will use the finite element space
of globally continuous, piecewise linear elements

V
m
h =

{

vh ∈ C0(Ω) : vh|T ∈ P1 ∀T ∈ T m
h

}

,

where P1 denotes the set of all polynomials of total degree ≤ 1.
Denote by Pm : C0(Ω) → V

m
h the usual Lagrange interpolation operator. With this

setting, the space discretization of Problem 3.1 based on our method of extension can be
summarized as follows:

Problem 3.2 Let ρ0
i,h = P0ρ̄i (i = 0, . . . , N). For m = 0, 1, . . ., determine the discrete

adatom densities ρm+1
i,h ∈ V

m+1
h for i = 0, . . . , N by

∫

Ω

ρm+1
i,h − ρm

i,h

4tm
φh +

∫

Ω
Di,m+1∇ρm+1

i,h · ∇φh +

∫

Γm+1

i,h

k+(ρm+1
i,h − ρ∗(1 + µκm+1

i,h ))φh

+

∫

Γm+1

i+1,h

k−(ρm+1
i,h − ρ∗(1 + µκm+1

i+1,h))φh +

∫

Ω
τ−1
i,m+1ρ

m+1
i,h φh =

∫

Ω
Fi,m+1φh ∀φh ∈ V

m+1
h

with κm+1
i,h and κm+1

i+1,h the discrete curvatures of Γm+1
i,h and Γm+1

i+1,h, respectively, defined in
Problem 3.5 below.

In the rest of this subsection, we fix a time step m and drop the subscript and super-
script m + 1, when no confusion arises. Let (φk)

L
k=1 be the standard nodal basis of the

finite element space Vh, where L is the dimension of Vh. Expand ρm+1
i,h as

ρm+1
i,h =

L
∑

k=1

rkφk,

for some Ri = (r1, . . . , rL)t ∈ R
L, where the superscript t denotes the transpose matrix.

Define the following mass and stiffness matrices and load vectors:

M = (Mkl), Mkl = (φk, φl) ; M i = (Mi,kl), Mi,kl =
(

τ−1
i φk, φl

)

;

M
Γi = (MΓi

kl ), MΓi

kl = 〈φk, φl〉Γi
; Ai = (Ai,kl), Ai,kl = (Di∇φk,∇φl) ;

F i = (Fi,l), Fi,l = (Fi, φl) ; F
Γi = (FΓi

l ), FΓi

l = 〈ρ∗(1 + µκi,h), φl〉Γi
;

where the index ranges are 1 ≤ k, l ≤ L and 〈·, ·〉Γi
stands for the L2 inner product over

the current interface Γi = Γi,h and (·, ·) stands for the L2 inner product over the domain
Ω. The following algorithm is the matrix form of Problem 3.2.

Algorithm 3.1 For m = 0, 1, . . . , find Rm+1
i ∈ R

L such that

1

4tm
MRm+1

i + AiR
m+1
i + M iR

m+1
i + k+M

ΓiRm+1
i + k−M

Γi+1Rm+1
i

= F i + k+F
Γi + k−F

Γi+1 +
1

4tm
MRm

i , i = 0, . . . , N.
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We introduce the following quantities defined on the nodes on the boundaries Γi,h:

γi := k+(ρi − ρ∗) + k−(ρi−1 − ρ∗) = k+(ρi,h|Γi,h
− ρ∗) + k−(ρi−1,h|Γi,h

− ρ∗). (3.3)

These quantities will enter in the subproblem of moving boundaries.

Remark 3.1 (Number of subproblems) In actual computations, the number of dif-
fusion equations to be solved can be reduced from the number of layers N + 1 to at most
2. Indeed, since odd-labeled (or even-labeled) terraces are non-contiguous, it is enough to
work with a single function ρodd for all odd i’s and a single function ρeven for all even i’s.

3.2 Boundary evolution

Adding the two boundary conditions (2.2) and (2.3) at Γi(t), we get

q+i + q−i = k+(ρi − ρ∗(1 + µκi)) + k−(ρi−1 − ρ∗(1 + µκi)). (3.4)

This, together with the velocity formula (2.4), leads to the geometric PDE

vi = k+(ρi − ρ∗) + k−(ρi−1 − ρ∗)− (k+ + k−)ρ∗µκi + ν∂ssκi. (3.5)

This equation can be interpreted as an equation for surface diffusion with lower order
terms if ν > 0, or for the mean curvature flow with a forcing term if ν = 0. For solving
such a highly nonlinear 4th order (ν > 0) or 2nd order (ν = 0) equation, we adapt with
modification a variational formulation introduced for surface diffusion by Bänsch et al
[3], cf. also [12]. By introducing the position vector ~xi, the curvature vector ~κi, and the
velocity vector ~vi, a system of equations for ~κi, κi, vi, and ~vi can be derived from (3.5).
By the geometric expression ~κi = −∂ss~xi, the velocity law (3.5), and the relations between
the vector valued and scalar quantities κi = ~κi · ~ni and ~vi = vi~ni, we obtain

~κi = −∂ss~xi, (3.6)

κi = ~κi · ~ni, (3.7)

vi = γi − βκi + α∂ssκi, (3.8)

~vi = vi~ni. (3.9)

Here, in addition to γi introduced in (3.3), we use the coefficients

α = ν ≥ 0 and β = (k+ + k−)µρ∗ ≥ 0.

Consider the discrete time instant tm and time step4tm := tm+1−tm as in Section 3.1.
We represent the next boundary Γm+1

i in terms of the current boundary Γm
i by updating

the position vectors
~xi ← ~xi +4tm~vi. (3.10)

In the time discretization, all the geometric quantities such as ~ni and κi, and the differ-
entiation ∂ss are evaluated on the current boundary Γm

i . In contrast to the geometric
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quantities, the unknowns ~κi, κi, vi, and ~vi are treated implicitly. In particular, in view of
(3.10), we define

~κm+1
i := −∂ss(~x

m
i +4tm~vm+1

i ). (3.11)

To derive a weak formulation, we proceed similarly as in [12]: multiply (3.7), (3.8),
(3.9), and (3.11) by test functions ~ψ ∈ ~H1(Γi) and ψ ∈ H1(Γi), and use integration by
parts for the second order operator ∂ss. For simplicity, we have hereafter dropped the
superscript m + 1 for the unknowns ~κm+1

i , etc. Furthermore, using the notation 〈·, ·〉
for the L2 inner product over the current interfaces Γm

i , we arrive at the following set of
semi-implicit equations:

Problem 3.3 For m = 1, 2, . . . find ~κi ∈ ~H1(Γm
i ), κi ∈ H1(Γm

i ), vi ∈ H1(Γm
i ), and

~vi ∈ ~H1(Γm
i ) such that

〈~κi, ~ψ〉 − 4tm〈∂s~vi, ∂s
~ψ〉 = 〈∂s~x

m
i , ∂s

~ψ〉 ∀~ψ ∈ ~H1(Γm
i ),

〈κi, ψ〉 − 〈~κi · ~ni, ψ〉 = 0 ∀ψ ∈ H1(Γm
i ),

〈vi, ψ〉+ α〈∂sκi, ∂sψ〉+ β〈κi, ψ〉 = 〈γi, ψ〉 ∀ψ ∈ H1(Γm
i ),

〈~vi, ~ψ〉 − 〈vi~ni, ~ψ〉 = 0 ∀~ψ ∈ ~H1(Γm
i ).

Note that in the above formulation, the adatom densities on the upper and lower
terraces ρi and ρi−1, respectively, are needed only for computing γi which is defined in
(3.3).

To discretize in space, we consider a polygonal curve Γm
i,h approximating Γi at time tm.

The polygonal segments are thought of as finite elements. Making a customary abuse of
terminology, we identify these segments with the corresponding finite element partition.
We denote by ~ni,h the unit normal to Γm

i,h pointing to the lower terrace. It is discontinuous

across inter-element boundaries. Denote by W
m
h ⊆ H1(Γm

i,h) the finite element space of
globally continuous, piecewise linear functions with corresponding nodal basis functions
(ψk)

K
k=1, where K is the number of degrees of freedom. By ~Wm

h ⊆ ~H1(Γm
i,h) we denote

the finite element space of vector valued functions with nodal basis functions ( ~ψq
k)

q=1,2
k=1,...,K ,

where ~ψq
k = ψk~eq with ψk the scalar basis function defined above and (~e1, ~e2) the standard

basis in R
2.

Upon expanding the functions ~κi, κi, vi, ~vi in terms of the basis functions and testing
against all discrete test functions, a discretization of Problem 3.3 is now at hand.

Problem 3.4 Find ~κi,h = ~κm
i,h ∈ ~Wm

h , κi,h = κm
i,h ∈ W

m
h , vi,h = vm

i,h ∈ W
m
h , and ~vi,h =

~vm
i,h ∈ ~Wm

h such that

〈~κi,h, ~ψh〉 − 4tm〈∂s~vi,h, ∂s
~ψh〉 = 〈∂s~x

m
i , ∂s

~ψh〉 ∀~ψh ∈ ~Wm
h ,

〈κi,h, ψh〉 − 〈~κi,h · ~ni,h, ψh〉 = 0 ∀ψh ∈W
m
h ,

〈vi,h, ψh〉+ α〈∂sκi,h, ∂sψh〉+ β〈κi,h, ψh〉 = 〈γi, ψh〉 ∀ψh ∈W
m
h ,

〈~vi,h, ~ψh〉 − 〈vi,h~ni,h, ~ψh〉 = 0 ∀~ψh ∈ ~Wm
h .
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This discrete scheme is now translated into a matrix-vector system by using the nodal
bases (ψk) and (~ψq

k) to obtain the mass, stiffness, and normal matrices, and the load vector

M = (Mkl), Mkl = 〈ψk, ψl〉; ~M = ( ~Mkl), ~Mkl = (M qr
kl ) = (δqrMkl);

A = (Akl), Akl = 〈∂sψk, ∂sψl〉; ~A = ( ~Akl), ~Akl = (Aqr
kl ) = (δqrAkl);

G = (Gk), Gk = 〈γi, ψk〉; ~N = ( ~Nkl), ~Nkl = (N q
kl) = (〈ψk, ψln

q
i,h〉);

where the index ranges are 1 ≤ k, l ≤ K and 1 ≤ q, r ≤ 2, δqr = ~eq · ~er is the Kronecker
symbol, and nq

i,h = ~ni,h · ~eq is the q-th spatial component of the normal.
An alternative way of looking at the system is given by ordering the coefficient vector

(xq
k)

q=1,2
k=1,...,K corresponding to an element ~xh ∈ ~Wm

h as a column vector ~X = (Xt
1, X

t
2)

t,
where Xq are the (column) vectors of coefficients corresponding to spatial components of
~X. With this description, we can write

~A =

(

A 0
0 A

)

, ~M =

(

M 0
0 M

)

, ~N =

(

N1

N2

)

, (3.12)

where all the entries are square matrices in R
K×K , with the spatial components N q =

(N q
kl) of the normal matrix being some kind of “weighted” mass matrices. The linear

system takes now the following matrix form.

Algorithm 3.2 Find ~Ki, ~Vi ∈ R
2×K , Ki, Vi ∈ R

K such that










~M 0 0 − ~N
0 M − ~N t

0

−4tm ~A 0 ~M 0
0 αA + βM 0 M



















~Vi

Ki

~Ki

Vi









=









0
0

~A ~X m
i

G









With this arrangement, a Schur complement equation for ~Ki, Vi reads

S

(

~Ki

Vi

)

=

(

~A ~X m
i

G

)

,

where

S =

(

~M 0
0 M

)

−
(

−4tm ~A 0
0 αA + βM

)(

~M 0
0 M

)−1
(

0 − ~N
− ~N t

0

)

=

(

~M −4tm ~A ~M
−1 ~N

αAM
−1 ~N

t
+ β ~N

t
M

)

.

The above formulation in turn gives rise to the final Schur complement equation for the
single unknown Vi:

(

4tm
(

αAM
−1 ~N

t
+ β ~N

t
)

~M
−1 ~A ~M

−1 ~N + M

)

Vi

= G−
(

αAM
−1 ~N

t
+ β ~N

t
)

~M
−1 ~A ~X m

i . (3.13)
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In the case of ν = 0 (i.e., α = 0), the equation for Vi reduces to

(

4tmβ ~N
t ~M

−1 ~A ~M
−1 ~N + M

)

Vi = G− β ~N t ~M
−1 ~A ~X m

i . (3.14)

The linear systems in both cases, (3.13) and (3.14), are uniquely solvable. We show
this for (3.13), the result for (3.14) follows as a special case. Introducing the symmetric
non-negative matrix

L = ~N
t ~M

−1 ~A ~M
−1 ~N =

2
∑

q=1

N qM
−1

AM
−1

N q.

The matrix in the left hand side of (3.13), which we denote by T , can be written as

T = 4tm
(

αAM
−1 + βI

)

L + M .

It is enough to show that T is invertible. To this end, we show that if for some V ∈ R
K

we have TV = 0 then V must be 0. Assuming TV = 0 it ensues that W tTV = 0, for any
W ∈ R

K . In particular, for W = M
−1

LV we obtain

0 = 4tmαV t
LM

−1
AM

−1
LV +4tmβV t

LM
−1

LV + V t
LV ≥ 0, (3.15)

by symmetry and non-negativity of the involved matrices. It follows that V tLV = 0.
Again by the symmetry and non-negativity of L we conclude that LV = 0. This implies
that MV = TV which we assumed to be zero. Since M is invertible, it follows that
V = 0. Therefore T is invertible.

Once Vi is obtained by solving (3.13) or (3.14), the unknown ~Vi is easily computed by
solving

~M ~Vi = ~NVi, (3.16)

~M being invertible, and then ~Xi is updated through

~Xi ← ~Xi +4tm~Vi. (3.17)

The curvature, which is needed as data in the adatom diffusion problem, is now com-
puted for accuracy reasons on the new interface Γm+1

i,h instead of the old interface Γm
i,h.

To this end, we use the same formulation as above but with all the geometric quantities
defined for Γm+1

i,h replacing Γm
i,h. We obtain the following problem formulation:

Problem 3.5 Find ~κi,h = ~κm+1
i,h ∈ ~Wm+1

h and κi,h = κm+1
i,h ∈W

m+1
h with

〈~κi,h, ~ψh〉 = 〈∂s~x
m+1
i , ∂s

~ψh〉 ∀~ψh ∈ ~Wm+1
h ,

〈κi,h, ψh〉 − 〈~κi,h · ~ni,h, ψh〉 = 0 ∀ψh ∈W
m+1
h .

Again, the system can be written equivalently in matrix form, where the matrices are now
defined in terms of the basis functions on Γm+1

i,h :
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Algorithm 3.3 Find ~Ki and Ki such that
(

M − ~N t

0 ~M

)

(

Ki

~Ki

)

=

(

0
~A ~Xm+1

i

)

.

This leads to
Ki = −M

−1 ~N ~M
−1 ~A ~Xm+1

i . (3.18)

In summary, the subproblem of boundary evolution consists of solving N decoupled
problems for each interface Γi,h, i = 1, . . . , N , according to Algorithms 3.2 and 3.3. For
the adatom diffusion problem the new interfaces Γm+1

i,h and the curvatures κm+1
i,h will enter.

4 Implementation

We implement our numerical method using ALBERT, an adaptive finite element software
for scientific computation [33]. The program for the two dimensional adatom diffusion
and that for the one dimensional boundary evolution are coupled via a TCP/IP port. All
matrices are assembled using the standard assembling tools of ALBERT as well as the
methods described below.

4.1 Adaptivity for adatom diffusion

To obtain satisfactory computational results, a mesh with a sufficiently fine resolution near
the island boundaries is needed. Noting that a uniform refinement would be prohibitive
from the computational point of view, we are naturally led to adopt local mesh refinement.
Since the island boundaries are moving, it is indispensable to use some adaptive strategy
for local mesh refinement and coarsening. At every time step, the 2d finite element mesh
from the previous time step is locally refined and/or coarsened. Every element in the mesh
is marked for being refined, coarsened, or left unchanged. The actual mesh modification
is then performed within the programming environment ALBERT [33] that uses the so
called bisection method to locally modify meshes.

The criterion for refinement is purely geometric: the 2d mesh is refined near the
boundaries Γm

i,h until the mesh size for both the 1d and 2d meshes are locally of the same
order. More precisely, the 2d mesh is refined until no 1d element is fully contained in any
2d element. This criterion can be easily satisfied by traversing Γm

i,h and refining all visited
elements of the 2d mesh T m

Ω with the element size larger than the 1d mesh size. Elements
may be further refined to satisfy the assumptions (A) and (B) in Section 4.3.

We define ρh(x, t) as the overall adatom density by

ρh(x, t) = ρi,h(x, t) for x ∈ Ωi(t), i = 0, . . . , N.

Here and below in this section, when no confusion arises, we use Ωi = Ωi(t) to denote
both the original domain and its finite element approximation determined by Γi,h(t). We
use an L2-like error indicator for local mesh coarsening. For every element T , we define

ηT (ρh) :=

(

∑

e∈∂T

∫

e
h3

∣

∣

∣

∣

[

∂ρh

∂ne

]∣

∣

∣

∣

2
)1/2

,
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where
[

∂ρh

∂ne

]

denotes the jump of the normal derivative of ρh across an edge e ⊂ ∂T . This

can be used to define an indicator for the error ‖ρ− ρh‖ on the whole domain

η(ρh) :=





∑

T∈T m
Ω

η2
T (ρh)





1/2

.

The criterion for coarsening is based on an equidistribution strategy, which attempts to
enforce ηT (ρh) = ηT ′(ρh) for all T, T ′ ∈ T m

Ω . If this condition were enforced, at least
approximately, then we would have

η(ρh) ≈ N1/2
m ηT (ρh),

where Nm is the number of triangular finite elements in T m
Ω . We thus mark an element

T ∈ Tm
Ω for coarsening, if

ηT (ρh) ≤ θη(ρh)

N
1/2
m

,

with some θ ∈ (0, 1). Notice that these estimators are used only for the coarsening
criterion. Notice also that we do not refine the time step adaptively.

4.2 Adaptivity for boundary evolution

A simple adaptive strategy is used for the boundary evolution. The 1d finite element mesh
for the initial boundaries consists of elements that have almost a uniform element size.
This size is kept approximately constant during the time evolution. Nodes are inserted in
or removed from the mesh in each time step according to the criterion that the distance
between neighboring nodes is almost a constant. Such an adaptive method is efficient and
accurate as long as the boundary curvature is not too large.

4.3 Element marking

In the weak formulation (3.2) for the adatom diffusion, the extended diffusion constant Di,
the extended deposition flux rate Fi, and the extended desorption rate τ−1

i are piecewise
constant functions. Here, we drop the time-step index m. They are discontinuous across
the boundaries Γi,h and Γi+1,h. Thus, to track the value of such piecewise constant
functions, we need to mark each element to track the information whether this element
lies entirely in Ωi or it is crossed by a boundary Γi,h. In addition, such element marking
can keep track of the heights of terraces Ωi(t) (0 ≤ i ≤ N).

To proceed, we use the orientation of the boundaries Γi,h to generate the marking of
the initial 2d finite element triangulation, cf. Figure 4 (left), where all the inner elements
belong to the upper terrace and all the outer elements belong to the lower terrace, cf.
Figure 4 (right). This information is tracked through the simulation. Using a marker
mark(T ), we mark every element T by

mark(T ) =

{

i if T ⊆ Ωi

i+ 1/2 if int(T ) ∩ Γi+1,h 6= ∅
,

where int(T ) denotes the interior of T . We assume:
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(A) for every element T , there is at most one i such that int(T ) ∩ Γi,h 6= ∅;
(B) for every terrace Ωi, there is at least one element T such that T ⊆ Ωi;

(C) any element with mark i+1/2 is adjacent to exactly one element with mark i or one
element with mark i+ 1.

By assumptions (A) and (B), the marking of all elements is well-defined for sufficiently
fine meshes. Assumption (C) can always be satisfied by moving the intersection point of
the 1d and 2d mesh, if it lies on a 2d node or two subsequent intersection points lie on
the same 2d edge. The moving is only done virtually. Note that assumption (C) implies
that each element marked by i+ 1/2 has either one inner or one outer neighbor, marked
by i+ 1 or i, respectively, cf. Figure 4 (right).
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Figure 4: Marking of elements T in a triangulation Th near a boundary Γi+1,h.

In each time step, the marking changes according to the evolution of the moving
boundaries Γi,h. During refinement, the marking is passed form parent elements to child
elements. The marking of elements obtained by coarsening is reset to −1. It is calculated
in the next time step again using the marking of the neighboring elements. With this
strategy, the information of the terrace height can be tracked. The piecewise constants
Di, Fi and τ−1

i are now well defined due to the marking of the elements. In addition, for
elements marked by i+ 1/2, the orientation of Γi+1,h indicates which part of the element
belongs to Ωi and which part to Ωi+1.

Marking algorithm. Start with the initial triangulation T 0
Ω and the initial boundary

Γ0
i+1,h. Set m = 0.

1. for T ∈ T m
Ω

set mark(T ) = −1

2. for int(T ) ∩ Γm
i+1,h 6= ∅

set mark(T ) = i+ 1/2
set mark(outer neighbor of T ) = i

or

set mark(inner neighbor of T ) = i+ 1

3. while ∃ T s.t. mark(T ) = −1
for T ∈ T m

Ω
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if mark(T ) = −1 and mark(neighbor of T ) 6= −1
set mark(T ) = mark(neighbor of T )

4. perform time step, adapt mesh, set m = m+ 1

5. for T ∈ T m
Ω

if mark(T ) = i+ 1/2
reset mark(T ) = −1

6. go to 2

With this algorithm, each element in the initial mesh is marked. However, in each
time step, marks change only for elements T with int(T ) ∩ Γm

i,h 6= ∅, and elements T

whose marks are reset to −1 due to coarsening or int(T ) ∩ Γm−1
i,h 6= ∅. To illustrate our

method of marking, we show in Figure 5 a refined 2d mesh, a 1d mesh of a boundary, and
the marking of the elements, for which different colors or grey scales represent different
markers. The element marking can be viewed as a discrete height function for the growing
film.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

 

 

Figure 5: A refined 2d mesh, a 1d mesh of a boundary, and element marking.

4.4 Numerical integration

The assembly of the finite element system for Problem 3.2 involves several nonstandard
integrals. One class of such integrals are those involving coefficients such as Di, Fi, and
τ−1
i that are discontinuous within one element. Here, again, we drop the indexm. Another

class of such integrals are the boundary integrals that appear in the diffusion equation,
coupling the adatom density and the moving boundary.

Let us first treat the integrals involving discontinuous coefficients. We need to evaluate
the integrals

∫

T
Di∇φk · ∇φl,

∫

T
Di−1∇φk · ∇φl,

∫

T
Fiφl,

∫

T
Fi−1φl,

∫

T
τ−1
i φl,

∫

T
τ−1
i−1φl

17



over an element T with int(T ) ∩ Γi,h 6= ∅. These integrals are of the form
∫

φλ with φ a
smooth function and λ a discontinuous function,

λ =

{

λi−1 in T ∩ Ωi−1

λi in T ∩ Ωi

with some λi−1, λi ∈ R, cf. Figure 6. We use the following integral approximation due to
[37], cf. Figure 6:

∫

T
λφ ≈

∫

4(DBE)
λiφ+

∫

�(ADEC)
λi−1φ

=

∫

4(DBE)
λiφ+

∫

T
λi−1φ−

∫

4(DBE)
λi−1φ.

Note that this formula avoids the explicit integration over quadrilaterals and requires only
integration over triangles, and can be thus performed in a nearly standard way.
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Figure 6: Element T , boundary Γi,h, and definition of λ, Di, Fi, and τ−1
i .

The line integration over a boundary Γi,h in the adatom diffusion problem is treated
by subdividing the boundary into polygons, see Figure 7. A polygon is defined by the
intersection points of Γi,h and boundaries of the element T , and points of Γi,h where the
parameterization changes. The integration can then be performed in a standard way by
calculating integrals of piecewise linear functions. See [32] for further details.

4.5 Algorithm

Combining Algorithm 3.1 for the adatom diffusion and Algorithms 3.2 and 3.3 for the
boundary evolution, as well as the routines described in Sections 4.1–4.4, we arrive at the
following algorithm:

Algorithm 4.1 Let ρ0
i,h, Γ0

i,h and Ω0
i be given. Mark all elements according to their

positions related to Ω0
i . Define Di, Fi and τ−1

i . Set m = 0.
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1. compute boundaries Γm+1
i,h and curvatures κm+1

i,h

(a) compute vm+1
i,h , ~vm+1

i,h , and Γm+1
i,h

(b) refine and coarse Γm+1
i,h

(c) compute κm+1
i,h on Γm+1

i,h

2. compute adatom densities ρm+1
i,h

(a) refine and coarse T m
h

(b) update marking of elements and definition of Di, Fi and τ−1
i

(c) compute ρm+1
i,h

(d) compute γi = γi(ρ
m+1
i,h , ρm+1

i−1,h)

3. set m := m+ 1, go to 1

5 Numerical results

We first present numerical results on the geometric motion of curves in Section 5.1 and on
mass balance and conservation of area in Section 5.2. We then, in Section 5.3, investigate
numerically the growth of a single circular island, and compare the numerical results with
the known analytical solutions. Finally, in Section 5.4, we apply our numerical algorithm
to simulate the growth of a non-circular island, and compare the numerical results for the
case with and without surface diffusion.

Unless otherwise stated, we use the following data in all the numerical simulations:

• Parameters: D = 105, F = 1, ρ∗ = 10−5, k+ = k− = 105, µ = 1, ν = 10;

• Domain: Ω is a circular domain with radius 3;

• Number of elements of the initial 1d finite element mesh: 128;

• Time step: 10−6 with surface diffusion, 10−4 without surface diffusion.
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5.1 Geometric motion of curves

Our first test example is a purely geometric motion of curves governed by Problem 3.3
in Section 3.2, decoupled from the adatom diffusion. Choosing the parameters α, β and
γi in a suitable way the algorithm is used to describe the following geometric evolution
equations:

Case 1: mean curvature flow: α = 0, β = 1 and γi = 0;

Case 2: surface diffusion: α = 1, β = 0 and γi = 0;

Case 3: surface diffusion and mean curvature flow: α = 1, β = 1 and γi = 0.

Rectangle. Starting with a rectangle as initial curve, we see that all three geometric
motions will smooth the curve to a circle. Figure 8 shows 8 snapshots of the evolution for
each of the three cases. As expected, surface diffusion is area preserving, and mean curva-
ture flow is curve shortening, thus area shrinking. In Case 3, surface diffusion dominates
the smoothing due to its much faster time scale.

Perturbed circle. A further test on the evolution of a perturbed circle is captured in
Figure 9. The perturbation is a superposition of sines:

δ(θ) = 0.05 sin(3 θ) + 0.1 sin(12 θ),

where θ is the azimuthal angle. As expected, in all three cases, perturbations are smoothed
out and high frequencies are damped faster than low frequencies. But the time-scales for
mean curvature flow and surface diffusion are quite different. In Case 1 (mean curvature
flow), the time elapsed until the high frequencies are completely damped is 2.0 × 10−2,
whereas the time for the decay of the low frequency waves is 0.2. In Case 2 (surface
diffusion), the high frequency waves are damped already after 5.0×10−4, whereas a circle
appears at 5.0× 10−2. The difference of the time-scales for the damping of high and low
frequencies is about 10 for mean curvature and 100 for surface diffusion. This is related
to the 4th order operator of surface diffusion. Due to these different time scales, surface
diffusion dominates the smoothing in Case 3. This is why there is no qualitative difference
between Case 2 and Case 3 (despite the shrinking of the area).

5.2 Area conservation and mass balance

We now test our numerical method for the area conservation and mass balance. To this
end, we exclude the desorption and set the attachment rates to be zero: k+ = k− = 0.
Thus, the fluxes q+

i and q−i to the island boundaries are zero. Consequently, the area of
the island should not increase. In fact, in this case we have for any i with 0 ≤ i ≤ N ,

d

d t
|Ωi(t)| =

d

dt

∫

Ωi(t)
1 =

∫

Γi(t)
vi −

∫

Γi+1(t)
vi+1

=

∫

Γi(t)
ν∂ssκi −

∫

Γi+1(t)
ν∂ssκi+1 = 0, (5.1)
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Case 1: mean curvature flow    

t = 0.0 t = 1.0× 10−3 t = 2.0× 10−3 t = 1.0× 10−2
    

t = 2.0× 10−2 t = 1.0× 10−1 t = 2.0× 10−1 t = 5.0× 10−1

Case 2: surface diffusion    

t = 0.0 t = 5.0× 10−5 t = 1.0× 10−4 t = 5.0× 10−4
    

t = 1.0× 10−3 t = 5.0× 10−3 t = 1.0× 10−2 t = 5.0× 10−2

Case 3: mean curvature and surface diffusion    

t = 0.0 t = 5.0× 10−5 t = 1.0× 10−4 t = 5.0× 10−4
    

t = 1.0× 10−3 t = 5.0× 10−3 t = 1.0× 10−2 t = 2.0× 10−1

Figure 8: Geometric motion of a rectangle.
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Case 1: mean curvature flow    

t = 0.0 t = 1.0× 10−3 t = 2.0× 10−3 t = 1.0× 10−2
    

t = 2.0× 10−2 t = 1.0× 10−1 t = 2.0× 10−1 t = 5.0× 10−1

Case 2: surface diffusion

t = 0.0 t = 5.0× 10−5 t = 1.0× 10−4 t = 5.0× 10−4

t = 1.0× 10−3 t = 5.0× 10−3 t = 1.0× 10−2 t = 5.0× 10−2

Case 3: mean curvature and surface diffusion    

t = 0.0 t = 5.0× 10−5 t = 1.0× 10−4 t = 5.0× 10−4
    

t = 1.0× 10−3 t = 5.0× 10−3 t = 1.0× 10−2 t = 2.0× 10−1

Figure 9: Geometric motion of a perturbed circle.
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where obvious modifications are needed for the case i = 0 and i = N . This shows that
the area of all islands of the same height i should be a constant. Moreover, the mass of
the islands of height i should increase linearly due to the deposition of material with a
constant flux rate F . Indeed, observing that q+

i = q−i = 0 for all i = 0, . . . , N , and using
(2.2)–(2.4) and (5.1), we obtain

d

dt

∫

Ωi(t)
ρi(t) =

∫

Ωi

∂ρi

∂t
+

∫

Γi

viρi −
∫

Γi+1

vi+1ρi

=

∫

Ωi

(D∆ρi + F ) +

∫

Γi

viρi −
∫

Γi+1

vi+1ρi

= F |Ωi|+
∫

Γi

D∇ρi · ~ni −
∫

Γi+1

D∇ρi · ~ni+1 +

∫

Γi

viρi −
∫

Γi+1

vi+1ρi

= F |Ωi| = F |Ωi(0)|.

Therefore, the mass on the islands of height i is

∫

Ωi(t)
ρi(t) = F |Ωi(0)|t+

∫

Ωi(0)
ρi(0). (5.2)

Furthermore, due to the no-flux boundary condition on ∂Ω, the mass in the whole system
increases linearly

∫

Ω
ρ(t) = F |Ω|t+

∫

Ω
ρ(0). (5.3)

Under the assumptions made in this section, we numerically compute the area and
mass at different times for a single, growing island (N = 1). We consider two different
initial configurations Ω1(0): (a) a circular island of radius 1 and (b) a perturbed circular
island of radius 1 with perturbation

δ(θ) = 0.05 sin(3 θ) + 0.1 sin(12 θ).

Area conservation. Figure 10 shows the simulation of the evolution of the perturbed
island boundary at various times and the computed area at these times. The area is con-
served to a very satisfactory extent: during the time period in which the island smoothes
to a circular island, the area change is less than 0.1%. In the case of a circular island the
area is exactly conserved.

Mass balance. Using the previously derived formulas (5.2) and (5.3), we expect the
mass corresponding to the circular island to be

∫

Ω1(t)
ρi(t) ≈ 3.1415 t+ 0.0000314,

and the mass in the whole system to be

∫

Ω
ρ(t) ≈ 28.2735 t+ 0.0002827.
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area = 3.1567

 
 

area = 3.1593

 

 

area = 3.1593

t = 0.0 t = 5.0× 10−5 t = 3.0× 10−3

Figure 10: Conservation of the island area in the case k+ = k− = 0.

Figure 11 shows the computed mass for both cases: the circle and the perturbed circle,
where the functions f and g are the least-squares fits of the data to affine functions. The
fitted parameters for the growth rate of mass in both cases are in good agreement with
the analytical results.
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Figure 11: Mass increase: circular island (left) and perturbed circular island (right).

5.3 Growth of a single circular island

We now apply our numerical method to the case of a single, growing circular island
and compare the computational results with the analytic solution of a quasi-stationary
approximation. For the purpose of testing, we assume that there is no desorption.

Consider a single, circular island Ω1(t) of radius R(t) at time t that is growing on
a terrace which is a concentric circular region with radius RΩ. In the quasi-stationary
approximation of the adatom diffusion, the time dependence in the diffusion equation is
dropped. This approximation is valid if F/D � 1. In [23], an analytic solution is derived
under this assumption. With a set of parameters satisfying F/D � 1, we expect our
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simulation of the time dependent diffusion equation to be in good agreement with the
analytic solution of the quasi-stationary diffusion equation.

Using polar coordinates (r, θ) with the origin at the center of the circular island, the
radially symmetric solution of the quasi-stationary diffusion equation is given by [23]

ρ0(r, t) =
F

4D

(

R(t)2 − r2
)

+
FR2

Ω

2D
ln

(

r

R(t)

)

+ ρ∗
(

1 +
µ

R(t)

)

+
F

2k−

(

R2
Ω

R(t)
−R(t)

)

,

ρ1(r, t) =
F

4D

(

R(t)2 − r2
)

+ ρ∗
(

1 +
µ

R(t)

)

+
FR(t)

2k+
.

Since the curvature κ1 = 1/R(t) of the circular boundary Γ1(t) is spatially constant, we
have ∂ssκ1 = 0. Moreover, since the velocity of the circular boundary Γ1(t) is given by
v1 = R′(t), we obtain by a simple calculation that R′(t) = FR2

Ω/(2R(t)), i.e., (R(t)2)′ =
FR2

Ω. Thus, we obtain the dynamic law

R(t)2 = FR2
Ωt+R(0)2 (5.4)

for the evolution of the circular boundary Γ1(t). Furthermore, at the island boundary
Γ1(t), we have

ρ1(t)− ρ0(t) =
F

2
R(t)

(

1

k+
+

1

k−
− 1

k−

R2
Ω

R(t)2

)

. (5.5)

Thus, the adatom density ρ is discontinuous at Γ1(t).
In Figure 12, we show the adaptively refined 2d mesh, the computed 1d boundary Γ1,h,

and the computed adatom density ρh at various times. Due to the particular geometry,
the surface diffusion has no influence on the evolution of the circular island. The island
is growing and the adatom density increases on the island. Figure 13 shows the profile of
the adatom density at the same time instants as in Figure 12, where again the function f
is the least-squares fit of the data to an affine function. It also shows the growth rate of
the island area.

According to (5.4), one expects a growth rate of area F |Ω| = 28.2735 as in Section
5.2. Our simulations are in good agreement with this value, see Figure 13 (right). In
Figure 14, the numerical and analytical solutions are compared by depicting the numerical
and analytical functions of adatom density along the x1-axis for the same time instants
as in Figure 12. The computational solution for both cases, with and without surface
diffusion, are in good agreement with the analytical solution. Furthermore, a simple
calculation using (5.5) with the parameters in the simulation shows that the initially
negative jump ρ1(t)− ρ0(t) of the adatom density increases to positive values in the final
stage, passing through zero when R(t) = RΩ/

√
2 at which the terraces have the same

area. Thus, also in this case, the behavior of the computed solution is again in agreement
with the analytical solution, as it can be seen in Figure 13 (left) and Figure 14.

5.4 Smoothing properties

Finally, we apply the numerical method to show the influence of one-dimensional “surface”
diffusion on the smoothing of island boundaries. We study a single growing island evolving
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Figure 12: 2d mesh, 1d boundary, and adatom density.
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Figure 13: Adatom density profile (left) and area growth rate (right).
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Figure 14: Adatom density profile on a cross section: t = 0.02, 0.1, 0.3, 0.5.
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from an initially perturbed circular island. The perturbation is again a superposition of
sines:

δ(θ) = 0.05 sin(3 θ) + 0.1 sin(12 θ).

We compare results for two different values of ν: ν = 0.1 and ν = 0. From the analysis in
[23], we expect the high frequencies to be rapidly damped, whereas the amplitude of the
low frequency waves should decay slowly, as in the pure geometrical case in Section 5.1.
Furthermore, in the case with surface diffusion, the damping of the high frequencies should
be much faster.

Our numerical results, shown in Figure 15 and Figure 16, display the adaptively refined
2d mesh, the computed 1d boundary Γi,h, and the computed adatom density ρh at various
time instants for the case with and without surface diffusion, respectively.
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Figure 15: 2d mesh, 1d boundary and adatom density: with surface diffusion.

Comparing the two simulations, we see that the influence of surface diffusion is quite
similar to that in the pure geometric setting of Section 5.1. The decay of the high frequency
perturbation is accelerated approximately by a factor of 10. Note that we have chosen
the surface diffusion coefficient smaller than in Section 5.1 (ν = 0.1 instead of ν = 1.0).

As shown in Figure 17, where both the functions f are the least-squares fits of the data
to the affine functions, the growth rate of the islands in the simulation is approximately
constant, in agreement with the expected value.
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Figure 16: 2d mesh, 1d boundary and adatom density: without surface diffusion.
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Figure 17: Area growth rate: with (left) and without (right) surface diffusion.
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6 Conclusions

In this work, we have developed an adaptive finite element method for the simulation
of island dynamics in epitaxial growth of thin films. Our model is a free or moving
boundary type problem that consists of the diffusion equation for the adatom density
and the boundary evolution equation that determines the normal velocity of the moving
boundaries. We focus on two physical mechanisms: the attachment-detachment kinetics
that is modeled by a two-sided (from upper and lower terraces) Robin type boundary
condition for the adatom density on moving boundaries; and the one-dimensional “surface”
diffusion that is modeled by the one-dimensional “surface” Laplacian of curvature.

To treat the numerical difficulties that arise from modeling the two physical mech-
anisms, we have developed a technique of extension for the adatom diffusion and para-
metric, finite element, front-tracking method for the boundary evolution. We have also
implemented adaptivity, element marking, and numerical integration on “irregular” ele-
ments.

Upon testing on different problems, we find that our method is stable, efficient, and
fairly accurate. This method can be used for simulating island dynamics, in the absence
of island nucleation and coalescence, for a relatively long period of time.
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