
On the Doi Model for the suspensions of rod-like molecules in

compressible fluids

Hantaek Bae∗ and Konstantina Trivisa†

Key words: Doi model, suspensions of rod-like molecules, fluid-particle interaction model,
compressible Navier-Stokes equations, Fokker-Planck-type equation.

Abstract

Polymeric fluids arise in many practical applications in biotechnology, medicine, chemistry,
industrial processes and atmospheric sciences. In this article, the Doi model for the suspensions
of rod-like molecules in a compressible fluid is investigated. The model under consideration
couples a Fokker-Planck-type equation on the sphere for the orientation distribution of the rods
to the Navier-Stokes equations for compressible fluids, which are now enhanced by additional
stresses reflecting the orientation of the rods on the molecular level. The coupled problem is
5-dimensional (three-dimensions in physical space and two degrees of freedom on the sphere)
and it describes the interaction between the orientation of rod-like polymer molecules on the
microscopic scale and the macroscopic properties of the fluid in which these molecules are
contained. Prescribing arbitrarily the initial density of the fluid, the initial velocity, and the
initial orientation distribution in suitable spaces we establish the global-in-time existence of
a weak solution to our model defined on a bounded domain in the three dimensional space.
The proof relies on the construction of a sequence of approximate problems by introducing
appropriate regularization and the establishment of compactness.
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1 Introduction

The evolution of rod-like molecules in both compressible and incompressible fluids is of great sci-
entific interest with a variety of applications in science and engineering. The present article deals
with the Doi model for the suspensions of rod-like molecules in a dilute regime. The model under
consideration couples a Fokker-Planck-type equation on the sphere for the orientation distribution
of the rods to the Navier-Stokes equations for compressible fluids, which are now enhanced by ad-
ditional stresses reflecting the orientation of the rods on the molecular level. The coupled problem
is 5-dimensional (three-dimensions in physical space and two degrees of freedom on the sphere)
and it describes the interaction between the orientation of rod-like polymer molecules on the mi-
croscopic scale and the macroscopic properties of the fluid in which these molecules are contained.
The macroscopic flow leads to a change of the orientation and, in the case of flexible particles, to a
change in shape of the suspended microstructure. This process, in turn yields the production of a
fluid stress. In this paper, we consider the Doi model for a compressible fluid in a bounded domain.
The derivation of the system under consideration is described below.

A smooth motion of a body in continuum mechanics is described by a family of one-to-one
mappings

X(t, ·) : Ω→ Ω, t ∈ I.

The curve X(t, x) represents the trajectory of a particle occupying at time t a spatial position x
and this curve is completely determined by a velocity field u : I × Ω→ R3 through

∂

∂t
X(t, x) = u(t,X(t, x)), X(0, a) = a.

Then, the conservation of mass can be formulated as follows:

d

dt

∫
X(t,B)

ρ(t, x)dx = 0, B ⊂ Ω,
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where ρ is a nonnegative function that corresponds to the density of the fluid. This equation is
equivalent to

d

dt

∫
B
ρ(t, x)dx+

∫
∂B
ρ(t, x)[u(t, x) · n̂]dS = 0,

where n̂ is the unit outer normal vector on ∂Ω. If ρ is smooth, one can use Green’s theorem to
deduce the following continuity equation:

ρt +∇ · (uρ) = 0. (1.1)

We next obtain equation of motion by applying Newton’s second law of motion as follows:

d

dt

∫
X(t,B)

ρ(t, x)u(t, x)dx =

∫
X(t,B)

ρ(t, x)F (t, x)dx+

∫
∂X(t,B)

t(t, x, n̂)dS.

Then, we have

d

dt

∫
B
ρ(t, x)u(u, x)dx+

∫
∂B

(ρu)(t, x)[u(t, x) · n̂]dS =

∫
B
ρ(t, x)F (t, x)dx+

∫
∂B

t(t, x, n̂)dS. (1.2)

For the simplicity, we take F = 0. The stress principle in continuum mechanics can be addressed
through the fundamental laws of Cauchy: there is a symmetric stress tensor T(t, x) such that

t(t, x, n̂) = T(t, x)n̂.

Therefore, (1.2) becomes

d

dt

∫
B
ρ(t, x)u(u, x)dx+

∫
∂B

(ρu)(t, x)[u(t, x) · n̂]dS =

∫
∂B

T(t, x)n̂dS. (1.3)

By applying Green’s lemma to (1.3), we finally have

(ρu)t +∇ · (ρu⊗ u) = ∇ · T, (∇ · T)i =
3∑
j=1

∂Tij
∂xj

. (1.4)

The stress tensor T of a general fluid obeys Stokes’ law:

T = S− pI3×3,

where p is the pressure and S is the stress tensor. Let us determine S and p in our model. The
pressure p is of the form

p = aργ , γ >
3

2
. (1.5)

S consists of two parts:
S = S1 + S2,

where S1 is the viscous stress tensor generated by the fluid

S1 = µ
(
∇u+ (∇u)t

)
+ λ(∇ · u)I3×3,
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and S2 is the macroscopic symmetric stress tensor derived from the orientation of the rods at the
molecular level. The microscopic insertions at time t and macroscopic place x are described by the
probability f(t, x, τ)dτ. The suspension stress tensor S2 is given by an expansion

S2(x, t) = σ(1)(x, t) + σ(2)(x, t) + σ(3)(x, t),

where

σ(1)(t, x) =

∫
S2

(3τ ⊗ τ − I3×3)f(t, x, τ)dτ,

σ(2)(t, x) = −σ(2)
ij (t, x)I3×3, with σ

(2)
ij (t, x) =

∫
S2

γ
(2)
ij (τ)f(t, x, τ)dτ,

and

σ(3)(t, x) = −σ(3)
ij (t, x)I3×3, with σ

(3)
ij (t, x) =

∫
S2

∫
S2

γ
(3)
ij (τ1, τ2)f(t, x, τ1)f(t, x, τ2)dτ1dτ2.

This, and more general expansions for S2 are encountered in the polymer literature (cf. Doi and
Edwards [8]). We refer the reader to the articles by Constantin et al [5], [6], where a general class
of stress tensors is presented in the context of incompressible fluids.

The structure coefficients in the expansion γ
(2)
ij , γ

(3)
ij are in general smooth, time independent,

x independent, and do not depend on f. Assuming for simplicity that

γ
(2)
ij (τ) = γ

(3)
ij (τ1, τ2) = 1

and denoting

η(t, x) =

∫
S2

f(t, x, τ)dτ

the suspension stress tensor S2 takes the form

S2(x, t) = σ(1)(x, t)− ηI3×3 − η2I3×3. (1.6)

In this setting, f describes the time-dependent orientation distribution that a rod with a center
mass at x has an axis τ in the area element dτ and it is described by a compressible Fokker-Plank
type equation,

ft +∇ · (uf) +∇τ · (Pτ⊥∇uτf)−Dτ∆τf −D∆f = 0, (1.7)

where Pτ⊥(∇xuτ) = ∇xuτ − (τ · ∇xuτ)τ is the projection of ∇uτ on the tangent space of S2 at
τ ∈ S2. With ∇τ and ∆τ we denote the gradient and the Laplace operator on the unit sphere,
while ∇ and ∆ represent the gradient and the Laplacian operator in R3.

The second term ∇·(uf) in (1.7) describes the change of f due to the displacement of the center
of mass of the rods due to macroscopic advection. The term ∇τ · (Pτ⊥∇uτf) is a drift-term on
the sphere, which represents the shear-forces acting on the rods. The term Dτ∆τf represents the
rotational diffusion due to Brownian motion. This effect causes the rods to change their orientation
spontaneously, whereas the term D∆f is the translational diffusion due to Brownian effects.

By integrating (1.7) over S2, we can obtain the equation of η:

ηt +∇ · (uη)−D∆η = 0. (1.8)
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By substituting (1.6) and (1.5) to (1.4), the equation of motion becomes

(ρu)t +∇ · (ρu⊗ u)− µ∆u− λ∇(∇ · u) + a∇ργ +∇η2 = ∇ · σ −∇η. (1.9)

In sum, after normalizing all the constants by 1 for the sake of simplicity, we have the following
system of equations:

ρt +∇ · (ρu) = 0 in (0, T )× Ω, (1.10a)

(ρu)t +∇ · (ρu⊗ u)−∆u−∇(∇ · u) +∇ργ +∇η2 = ∇ · σ −∇η in (0, T )× Ω, (1.10b)

ft +∇ · (uf) +∇τ · (Pτ⊥(∇xuτ)f)−∆τf −∆xf = 0 in (0, T )× Ω× S2, (1.10c)

where Ω is a bounded domain and we impose Dirichlet boundary conditions to u, f , and η:

u = 0, f = 0, and η = 0, on ∂Ω.

In the sequel, we construct a sequence of approximating problems by regularizing the equations by
extending functions to be zero outside Ω. Prescribing arbitrarily the initial fluid density, the initial
velocity, and the initial orientation distribution in suitable spaces, we establish long-time and large
data existence of a weak solution. Since the definition of a weak solution and the main result are
rather complicated, they are stated in Section 2.

Related results on the Doi model for the suspensions of rod-like molecules in incompressible
fluids have been studied by many authors. We refer the reader to Constantin [5, 6, 7], Lions
and Masmoudi [14, 15], Masmoudi [16] and Otto and Tzavaras [19] for results on related models
on the whole space. In [1] the authors treat the Doi model for an incompressible fluid within
a bounded domain in the 3-dimensional space and establish results on the global existence of
solutions. For compressible models, related results have been presented in a series of articles. We
refer the reader to Carrillo et al [2, 3, 4], Goudon et al [11, 11, 12], and Mellet and Vasseur [17, 18],
where asymptotic, analytical and numerical results on related fluid-particle interaction models are
discussed. These articles deal with models coupling the Stokes, Navier Stokes or Euler system
with either the Smolukowski equation or Fokker-Planck equation. What distinguishes the model
presented in this article, besides the general type of the stress tensor under consideration, is the fact
that, unlike other models, the Fokker-Planck-type equation presented here takes into consideration
in addition to the Brownian effects the presence of the shear forces acting on the rods. This new
element yields a new equation for the entropy induced by the probability density function f in the
microscopic level and therefore new apriori estimates. We refer the reader to Appendix 1 for the
derivation of equation of the entropy ψ.

The paper is organized as follows. In Section 2, we introduce the notion of a weak solution of the
system (1.10), and we state the main results; compactness (Proposition 2.3) and existence (Theo-
rem 2.2). In Section 3, we prove various convergence results and we provide a formal proof of the
strong convergence of ρ under better assumptions. This formal convergence argument is recasted
in Section 4, where the strong convergence of ρ is proved by using suitable cut-off functions in the
renormalized equation of ρ. In Section 5, we generate an approximate sequence of weak solutions
in three steps. (i) We first regularize the equation of ρ, which corresponds to the regularization of
ρ ddt + ρu · ∇ in (1.10b). We also regularize u in the equation of f which requires to regularize η
and σ in the right-hand side of (1.10b). Before regularization, we extend equations to zero outside
Ω. (ii) Next we add nonlinear damping terms to the equation of ρ and η to increase integrability
of ρ and η. (iii) We finally truncate ργ and η2 to increase regularity of {ρ, u, η}. By passing to the
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limits in sequences, we can prove Theorem 2.2.

Notations: • Lp(0, T ;X) denotes the Banach set of Bochner measurable functions f from (0, T )

to X endowed with either the norm
( ∫ T

0 ‖g(·, t)‖pXdt
) 1
p

for 1 ≤ p <∞ or sup
t>∞
‖g(·, t)‖X for p =∞.

In particular, f ∈ Lr(0, T ;XY ) denotes
( ∫ T

0

∥∥(‖f(t)‖Yτ
)∥∥p
X
dt
) 1
p

or sup
t>∞

∥∥(‖f(t)‖Yτ
)∥∥
X

for p =∞.

• A . B means there is a constant C such that A ≤ CB.
• X ⊂comp Y means that X is compactly embedded in Y .
• IX is the indicator function which is 1 for x ∈ X and 0 otherwise.
• C(T ) is a function only depending on initial data and T .
• ⇀ and → denote weak limit and strong limit, respectively.

2 Definition of weak solution and main results

2.1 A priori estimate

Before introducing the concept of a weak solution of the system (1.10), let us present the energy
estimate. Multiplying (1.10b) by u and integrating over Ω we get

d

dt

∫
Ω

[ρ|u|2
2

+
ργ

γ − 1
+ η2

]
dx+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dx

= −
∫

Ω
∇u : σdx+

∫
Ω

(∇ · u)ηdx.

(2.1)

Next we introduce an entropy induced by f in the microscopic level. Let

ψ(t, x) =

∫
S2

(f ln f)(t, x, τ)dτ.

Then, ψ satisfies

ψt +∇ · (uψ)−∆ψ + 4

∫
S2

|∇τ
√
f |2dτ + 4

∫
S2

|∇
√
f |2dτ = ∇u : σ − (∇ · u)η. (2.2)

For the derivation of (2.2), we refer the reader to Section 6.1. Integrating (2.2) over Ω, we obtain

d

dt

∫
Ω
ψdx+ 4

∫
Ω

∫
S2

|∇τ
√
f |2dτdx+ 4

∫
Ω

∫
S2

|∇
√
f |2dτdx =

∫
Ω
∇u : σdx−

∫
Ω

(∇ · u)ηdx. (2.3)

By adding (2.3) to (2.1), we have

d

dt

∫
Ω

[ρ|u|2
2

+
ργ

γ − 1
+ η2 + ψ

]
dx+ 4

∫
Ω

∫
S2

|∇τ
√
f |2dτdx+ 4

∫
Ω

∫
S2

|∇
√
f |2dτdx

+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dx = 0.

(2.4)

In particular, η is bounded in L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)), which cannot be obtained derived
from (1.8) in the three dimensions. From (2.4), we can obtain various estimates of {ρ, u, f, η, σ}.
First,

ρ|u|2 ∈ L∞(0, T ;L1(Ω)), ρ ∈ L∞(0, T ;Lγ(Ω)), ∇u ∈ L2(0, T ;L2(Ω)),

ψ ∈ L∞(0, T ;L1(Ω)), η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).
(2.5)
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By expressing ρu as
√
ρ · √ρu, we have

ρu ∈ L∞(0, T ;L
2γ
γ+1 (Ω)). (2.6)

From the entropy dissipation,√
f ∈ L2

(
0, T ;L2(Ω)H1(S2) ∩H1(Ω)L2(S2)

)
⊂ L2

(
0, T ;L2(Ω)L6(S2) ∩ L6(Ω)L2(S2)

)
,

which implies that

f ∈ L1
(
0, T ;L1(Ω)L3(S2) ∩ L3(Ω)L1(S2)

)
⊂ L1(0, T ;L2(Ω× S2)). (2.7)

Since |σ(t, x)| ≤ 3

∫
S2

f(t, x, τ)dτ = 3η(t, x),

σ ∈ L1(0, T ;L3(Ω)) ∩ L∞(0, T ;L2(Ω)). (2.8)

We next estimate the derivative of σ by using the entropy dissipation.

|∇σ(t, x)| ≤ 3

∫
S2

|∇f(t, x, τ)|dτ .
[ ∫

S2

|∇
√
f |2dτ

] 1
2
[ ∫

S2

(
√
f)2dτ

] 1
2

=
[ ∫

S2

|∇
√
f |2dτ

] 1
2
η

1
2 .

Since η
1
2 ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;L6(Ω)),

∇σ ∈ L1(0, T ;L
3
2 (Ω)) ∩ L2(0, T ;L

4
3 (Ω)). (2.9)

2.2 Definition of weak solution, main result

We now define a weak solution of the system (1.10). By a notational abuse, we include η and σ in
the definition of weak solution.

Definition 2.1 We say that {ρ, u, f, η, σ} is a weak solution of the system (1.10) if
(i) (1.10a) holds in the sense of renormalized solutions, i.e.,

b(ρ)t +∇ · (b(ρ)u) + (b
′
(ρ)ρ− b(ρ))∇ · u = 0 (2.10)

for any b ∈ C1 such that |b′(z)z|+ |b(z)| ≤ C for all z ∈ R.
(ii) (1.10b) and (1.10c) hold in the sense of distributions.
(iii) Moreover, {ρ, u, f, η, σ} satisfies the following energy inequality:∫

Ω

[ρ|u|2
2

+
ργ

γ − 1
+ η2 + ψ

]
(t)dx+ 4

∫ t

0

∫
Ω

∫
S2

|∇τ
√
f |2dτdxdt

+ 4

∫ t

0

∫
Ω

∫
S2

|∇
√
f |2dτdxdt+

∫ t

0

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dxdt

≤
∫

Ω

[ρ0|u0|2

2
+

ργ0
γ − 1

+ η2
0 + ψ0

]
dx

(2.11)

7



Remark 1 (1) The central difficulty in showing the existence of a weak solution in the theory of
compressible fluids is typically the dependence of the pressure on nonlinear terms, for instance ργ .
From the a priori estimate, we have ρ ∈ L∞(0, T ;Lγ(Ω)), which is not enough to pass to the limit
to ∇ργ in the sense of distributions. The issue is resolved by showing that ρ satisfies a better
integrability condition by choosing appropriate cut-off functions in the renormalized form (2.10) in
the spirit of Feireisl [9] (see also Lions [13]). Note that in the present context the suspension stress
tensor depends on the density of the particles in a nonlinear way as well. In this case, the regularity
of η, η ∈ L2(0, T ;H1(Ω)) enables us to handle the nonlinearity.

(2) The main additional difficulties in the present context involve the presence of two nonlinear
terms in the equation of f . In fact, letting χ ∈ C∞c (Ω × S2) we obtain from the advection term
∇ · (uf), ∫

Ω

∫
S2

∇ · (u(n)f (n))χdτdx = −
∫

Ω
u

(n)
i

[ ∫
S2

∂xiχf
(n)dτ

]
dx, (2.12)

whereas from the shear term ∇τ · (Pτ⊥(∇xuτ)f), we get∫
Ω

∫
S2

∇τ · (Pτ⊥(∇xu(n)τ)f (n))χdτdx = −
∫

Ω

∂u
(n)
i

∂xj

[ ∫
S2

τjf
(n) ∂χ

∂τi
dτ
]
dx. (2.13)

To pass to the limit in (2.12) and (2.13), we need to show that∫
S2

∂xiχf
(n)dτ,

∫
S2

τjf
(n) ∂χ

∂τi
dτ

converge strongly in L2(0, T ;L2(Ω)). This is proved in Section 3.
(3) In order to pass to the limit to linear terms in the equation of f , we only need f ∈

Lp(0, T ;Lq(Ω×S2)) for some p > 1 and q > 1. Since f ∈ L∞(0, T ;L1(Ω×S2))∩L1(0, T ;L2(Ω×S2)),

we can choose, for example, f ∈ L2(0, T ;L
6
5 (Ω× S2)).

We now state the main result of the paper.

Theorem 2.2 Let γ > 3
2 and Ω be a C1 bounded domain. Assume that a sequence {ρ0, u0, f0, η0}

satisfies

ρ0 ∈ L1 ∩ Lγ(Ω), ρ0u0 = m0 ∈ L
2γ
γ+1 (Ω), f0 ∈ L1(Ω× S2), η0 ∈ L2(Ω),

m2
0

ρ0
∈ L1(Ω) for ρ0 6= 0,

m2
0

ρ0
= 0 for ρ0 = 0,

(2.14)

Then, there exists a weak solution {ρ, u, f, η, σ} of the system (1.10) satisfying (2.14) at t = 0.
Moreover,

ρ ∈ Lp(Ω× (0, T )), p =
5

3
γ − 1. (2.15)

The proof of Theorem 2.2 consists of two parts. First, we prove the compactness of an approxi-
mate sequence {ρn, un, fn, ηn, σn}n≥1 under the assumption γ > 3

2 in Section 3 and 4. We state the
detailed statement in Proposition 2.3 below. Secondly, we construct an approximate sequence of so-
lutions through regularizing equations in Section 5. The reader should contrast the approximating
scheme presented here with the schemes presented in [4], [10] and [13] for different models.
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We begin with the compactness result. Suppose there is a an approximate sequence of solutions
{ρn, un, fn, ηn, σn}n≥1 such that

{ρn} is bounded in L∞(0, T ;L1 ∩ Lγ(Ω)), {ρn|un|2} is bounded in L∞(0, T ;L1(Ω)),

{un} is bounded in L2(0, T ;H1(Ω)),

{fn} is bounded in L2(0, T ;L
6
5 (Ω× S2)),

{ηn} is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

{σn} is bounded in L∞(0, T ;L2(Ω)) ∩ L1(0, T ;L3(Ω)),

{∇σn} is bounded in L1(0, T ;L
3
2 (Ω)) ∩ L2(0, T ;L

4
3 (Ω)).

(2.16)

Then, we can extract a subsequence, using the same notation, {ρn, un, fn, ηn, σn}n≥1 such that

ρn ⇀ ρ in Lγ(Ω× (0, T )) and ρ ∈ L∞(0, T ;L1 ∩ Lγ(Ω)),
√
ρnun ⇀ v in L2(0, T ;L2(Ω)) and v ∈ L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1(Ω)),
√
ρn ⇀

√
ρ in L2γ(Ω× (0, T )),

ρnun ⇀m in L
2γ
γ+1 (Ω× (0, T )) and m ∈ L∞(0, T ;L

2γ
γ+1 (Ω))

ρnuni u
n
j ⇀ eij in the sense of measures and eij is a bounded measure,

fn ⇀ f in L2(0, T ;L
6
5 (Ω× S2)),

ηn ⇀ η in L2(0, T ;H1(Ω)) and η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

σn ⇀ σ in L2(0, T ;L2(Ω)) and σ ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;L3(Ω)),

∇σn ⇀ ∇σ in L2(0, T ;L
4
3 (Ω)) and ∇σ ∈ L1(0, T ;L

3
2 (Ω)) ∩ L2(0, T ;L

4
3 (Ω)).

(2.17)

Proposition 2.3 (Compactness) Let γ > 3
2 and Ω be a C1 bounded domain. Assume that the

energy inequality (2.11) holds for a sequence {ρn, un, fn, ηn, σn}n≥1. Then, limit functions in (2.17)
satisfy the followings.
(i) v =

√
ρu, m = ρu, eij = ρuiuj.

(ii) ηn converges strongly to η in L2(Ω× (0, T )), and σn converges strongly to σ in L2(Ω× (0, T )).
(iii) ρn(ηn)2 converges to ρη2 in the sense of distributions.
(iv) ρ and u solve (1.10a) in the sense of renormalized solutions.
(v) If in addition we assume that ρn0 converges to ρ0 in L1(Ω), then {ρ, u, f, η, σ} is a weak solution
of (1.10) such that

ρn → ρ in L1(Ω× (0, T )) ∩ C([0, T ];Lp(Ω)) for all 1 ≤ p < γ. (2.18)

(vi) Finally, we have the following strong convergence:

ρnu
n → ρu in Lp(0, T ;Lr(Ω)) for all 1 ≤ p <∞, 1 ≤ r < 2γ

γ + 1
,

un → u in Lp(Ω× (0, T )) ∩ {ρ > 0} for all 1 ≤ p < 2,

un → u in L2(Ω× (0, T )) ∩ {ρ ≥ δ} for all δ > 0,

ρnuni u
n
j → ρuiuj in Lp(0, T ;L1(Ω)) for all 1 ≤ p <∞.

(2.19)

We will prove this proposition in Section 3 and 4.
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3 Proof of Proposition 2.3 (i), (ii), (iii), formal proof of (v), and
(vi)

3.1 Proof of Proposition 2.3. (i)

We begin with the proof of Proposition 2.3 (i). To this end, we need the following lemma.

Lemma 3.1 [13] Let gn and hn converge weakly to g and h respectively in Lp1(0, T ;Lp2(Ω)) and
Lq1(0, T ;Lq2(Ω)), where 1 ≤ p1, p2 ≤ ∞, 1

p1
+ 1

q1
= 1

p2
+ 1

q2
= 1. Suppose

d

dt
gn is bounded in L1(0, T ;W−m,1(Ω)) for some m ≥ 0 independent of n,

‖hn − hn(·+ ξ, t)‖Lq1 (0,T ;Lq2 (Ω)) → 0 as |ξ| → 0, uniformly in n.
(3.1)

Then, gnhn converges to gh in the sense of distributions.

We would like to apply Lemma 3.1 to hn = un with q1 = 2 and q2 ∈ [2, 6), and gn = ρn, ρnun,
or gn =

√
ρn.

• First, we need to show that {ρn} is bounded in L2(0, T ;Lp), p > 6
5 . But, this is clear because

ρn ∈ L∞(0, T ;Lγ(Ω)), γ > 3
2 >

6
5 . Next, from the equation of ρ,

(ρn)t = −∇ · (ρnun) is bounded in L∞(0, T ;W
−1, 2γ

γ+1 (Ω)) ⊂ L1(0, T ;W−1,1(Ω)).

Therefore, m = ρu.
• Since un ∈ L2(0, T ;L6(Ω)),

ρnun ∈ L2(0, T ;Lp(Ω)),
1

p
=

1

γ
+

1

6
<

2

3
+

1

6
=

5

6
.

Next, from the equation of motion,

(ρnun)t = −∇ · (ρnun ⊗ un) + ∆un +∇∇ · un −∇(ρn)γ −∇(ηn)2 +∇ · σn −∇ηn

⊂ L∞(0, T ;W−1,1(Ω)) + L2(0, T ;H−1(Ω)) + L∞(0, T ;W−1,1(Ω))

is bounded in L1(0, T ;W−1,1(Ω)).

Here, we use the fact that (ηn)2, σn, and ηn are bounded in L∞(0, T ;L1(Ω)). Therefore, e =
m⊗ u = ρu⊗ u.
•
√
ρn satisfies that

d

dt

√
ρn +∇ · (un

√
ρn) = −1

2
(∇ · un)

√
ρn,

from which d
dt

√
ρn is bounded in L∞(0, T ;W−1,2(Ω)) + L2(0, T ;L

2γ
γ+1 (Ω)) ⊂ L1(0, T ;W−1,1(Ω)).

Since
√
ρn ∈ L∞(0, T ;L2γ(Ω)), 2γ > 6

5 , we conclude as above that v =
√
ρu.

3.2 Proof of Proposition 2.3. (ii)

To show the strong convergence of ηn and σn, we need the following lemma.

Lemma 3.2 [20] Let X, B, and Y be Banach spaces such that X is compactly embedded in B
and B is a subset of Y . Then, for 1 ≤ p < ∞, {v; v ∈ Lp(0, T ;X), vt ∈ L1(0, T ;Y )} is compactly
embedded in Lp(0, T ;B).

10



• Strong convergence of ηn: First,

ηnt = −∇ · (unηn) + ∆ηn ∈ L1(0, T ;W−1,1(Ω)) + L2(0, T ;W−1,2(Ω)) ⊂ L1(0, T ;W−1,1(Ω)).

Since H1(Ω) ⊂comp L2(Ω) ⊂W−1,1(Ω),

ηn → η in L2(0, T ;L2(Ω)). (3.2)

• Strong convergence of σn: First,

σt =

∫
S2

(3τ ⊗ τ − I3×3)ft(t, x, τ)dτ

=

∫
S2

(3τ ⊗ τ − I3×3)
[
−∇ · (uf)−∇τ · (Pτ⊥(∇xuτ)f) + ∆τf + ∆f

]
dτ

= −∇ · (uσ)−
∫
S2

[∇τ · (3τ ⊗ τ − I3×3)] · [(∇uτ)f ]dτ +

∫
S2

[∇τ · (3τ ⊗ τ − I3×3)] · [∇τf ]dτ + ∆σ

. |∇ · (uσ)|+ |∇u|η +

∫
S2

|∇τf |dτ + |∆σ|

∈ L1(0, T ;W−1,1(Ω)) + L1(0, T ;L1(Ω)) + L1(0, T ;L
3
2 (Ω)) + L1(0, T ;W−1, 3

2 (Ω))

⊂ L1(0, T ;W−1,1(Ω)).

From ∇σ ∈ L1(0, T ;L3(Ω))∩L2(0, T ;L
4
3 (Ω)), we have, for example, ∇σ ∈ L

3
2 (0, T ;L

18
11 (Ω)). From

W 1, 18
11 (Ω) ⊂comp L2(Ω) ⊂W−1,1(Ω), we have

σn → σ in L
3
2 (0, T ;L2(Ω)).

Since {σn} is uniformly bounded in L∞(0, T ;L2(Ω)), σn ⇀ σ in Lp(0, T ;L2(Ω)) for all p < ∞.
Therefore,

σn → σ in L2(0, T ;L2(Ω)). (3.3)

• Strong convergence of

∫
S2

∂xiχf
(n)dτ ,

∫
S2

τjf
(n) ∂χ

∂τi
dτ : We note that these two terms are of

the form

∫
S2

ςfndτ , where ς ∈ C∞c (Ω × S2), and

∫
S2

ςfndτ and their time and spatial derivatives

satisfy the same bound of σ. Therefore, these two terms converge strongly in L2(0, T ;L2(Ω)) as
well.

3.3 Proof of Proposition 2.3. (iii)

To show (iii), we need to show (ηn)2 converges strongly in Lp(0, T ;Lq(Ω)) for some p > 1 and q
such that 1

q + 1
γ ≤ 1. Given γ > 3

2 , we take ε > 0 such that 1
γ = 2

3 − ε. Then, for θ = 1− ε,

‖ηn − η‖Lp̄(0,T ;Lq̄(Ω)) ≤ ‖ηn − η‖1−εL2(0,T ;L6−δ(Ω))
‖ηn − η‖εL∞(0,T ;L2(Ω)),

where
1

p̄
=

1− ε
2

,
1

q̄
=

1− ε
6− 2δ

+
ε

2
.
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Since H1(Ω) ⊂comp L6−2δ(Ω) for any δ > 0,

ηn → η in Lp̄(0, T ;Lq̄(Ω)).

Let p = p̄
2 and q = q̄

2 . Then,

(ηn)2 → η2 in Lp(0, T ;Lq(Ω)), (3.4)

where 1
q + 1

γ ≤ 1 by taking δ < 3ε. Therefore, ρn(ηn)2 converges to ρη2 in the sense of distributions.

3.4 Proof of Proposition 2.3 (v): formal proof on the whole spaces

Before proving Proposition 2.3 (iv) and (v), we provide a formal proof of the convergence of ρn on
the whole spaces under a stronger assumption:

{ρn} is bounded in Lγ+1((0, T )×R3) ∩ L∞(0, T ;Ls(R3)), s > 3. (3.5)

For details of the proof, see Section 6.2. From (1.10a),

(ρ log ρ)t +∇ · (uρ log ρ) + (∇ · u)ρ = 0. (3.6)

Next, we take (−∆)−1∇· to (1.10b). Then,

d

dt

[
(−∆)−1∇ · (ρu)

]
+ (−∆)−1∂i∂j(ρuiuj) + 2∇ · u− ργ − η2 = (−∆)−1∇ · (∇ · σ −∇η),

from which we have

2∇ · u = − d

dt

[
(−∆)−1∇ · (ρu)

]
− (−∆)−1∂i∂j(ρuiuj) + ργ + η2 + (−∆)−1∇ · (∇ · σ −∇η). (3.7)

By (3.6) and (3.7),

2
[
(ρ log ρ)t +∇ · (uρ log ρ)

]
+ ργ+1 = −ρ

[
(−∆)−1∇ · (∇ · σ −∇η)

]
− ρη2

+ ρ
d

dt

[
(−∆)−1∇ · (ρu)

]
+∇ · (ρu)(−∆)−1∇ · (ρu) + ρ(−∆)−1∂i∂j(ρuiuj).

(3.8)

Since

ρ
d

dt

[
(−∆)−1∇ · (ρu)

]
=

d

dt

[
ρ(−∆)−1∇ · (ρu)

]
− ρt

[
(−∆)−1∇ · (ρu)

]
=

d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ · ρu

[
(−∆)−1∇ · (ρu)

]
=

d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ ·

[
ρu(−∆)−1∇ · (ρu)

]
− ρu · ∇

[
(−∆)−1∇ · (ρu)

]
,

we rewrite (3.8) as follows.

2
[
(ρ log ρ)t +∇ · (uρ log ρ)

]
+ ργ+1

= −ρη2 − ρ
[
(−∆)−1∇ · (∇ · σ −∇η)

]
+
d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ ·

[
ρu(−∆)−1∇ · (ρu)

]
+ ρ
[
(−∆)−1∂i∂j(ρuiuj)− u · ∇(−∆)−1∇ · (ρu)

]
.

(3.9)
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Suppose that (3.9) also holds for {ρn, un, fn, ηn, σn}n≥1.

2
[
(ρn log ρn)t +∇ · (unρn log ρn)

]
+ (ρn)γ+1

= −ρn(ηn)2 − ρn
[
(−∆)−1∇ · (∇ · σn −∇ηn)

]
+
d

dt

[
ρn(−∆)−1∇ · (ρnun)

]
+∇ ·

[
ρnun(−∆)−1∇ · (ρnun)

]
+ ρn

[
(−∆)−1∂i∂j(ρ

nuni u
n
j )− un · ∇(−∆)−1∇ · (ρnun)

]
.

(3.10)

Let s̄ be a weak limit of ρn log ρn. By taking the limit of (3.10) for n→∞,

2
[
st +∇ · (us)

]
+ ργ+1

= −ρη2 − ρ
[
(−∆)−1∇ · (∇ · σ −∇η)

]
+
d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ ·

[
ρu(−∆)−1∇ · (ρu)

]
+ ρ
[
(−∆)−1∂i∂j(ρuiuj)− u · ∇(−∆)−1∇ · (ρu)

]
,

(3.11)

where we use Proposition 2.3 (iii). Next, we take the limit to (1.10b).

(ρu)t +∇ · (ρu⊗ u)−∆u−∇(∇ · u) +∇ργ +∇η2 = ∇ · σ −∇η, (3.12)

where we use Proposition 2.3 (ii). Let s = ρ log ρ. By following the same calculations above, we
have from which we obtain that

2
[
st +∇ · (us)

]
+ ρργ

= −ρη2 − ρ
[
(−∆)−1∇ · (∇ · σ −∇η)

]
+
d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ ·

[
ρu(−∆)−1∇ · (ρu)

]
+ ρ
[
(−∆)−1∂i∂j(ρuiuj)− u · ∇(−∆)−1∇ · (ρu)

]
.

(3.13)

Comparing (3.11) and (3.13), we have

(s− s)t +∇ · (u(s− s)) +
1

2

[
ργ+1 − ρργ

]
= 0. (3.14)

Since
s ≤ s, ργ+1 ≥ ρργ a.e.,

d

dt

∫
Ω

(s− s)dx ≤ 0, while

∫
Ω

(s0 − s0)dx = 0.

Therefore, s = s almost everywhere, and ρn converges strongly to ρ in C([0, T ];L1(Ω)).

Remark 2 In Section 4, we show the strong convergence of ρn in C([0, T ];L1(Ω)) using (2.10)
with appropriate cut-off functions approximating ρ log ρ.

3.5 Proof of Proposition 2.3 (vi)

We now prove Proposition 2.3 (vi) assuming that we have already resolved Proposition 2.3 (v).
We will prove Proposition 2.3 (iv) and (v) in the next section. Let us begin with the convergence
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of ρnun. First, we show that (ρnun)ε converges to ρnun in L2(0, T ;L1(R3)). Here, we extended
functions to zero outside Ω, and gε = g ? kε and kε is the usual mollifier. Since∣∣∣((ρnun)ε − ρnun

)
(x)
∣∣∣ =

∣∣∣ ∫
Ω

[
ρn(y, t)− ρn(x, t)

]
un(y, t)kε(x− y)dy + ρn(x, t)

[
unε (x, t)− un(x, t)

]∣∣∣,
we have∫

Ω

∣∣((ρnun)ε − ρnun
)
(x)
∣∣dx

≤
[ ∫

Ω
dx

∫
Ω

∣∣ρn(y, t)− ρn(x, t)
∣∣pkε(x− y)

] 1
p
∥∥∥(|un| p

p−1

)
ε

∥∥∥ p−1
p

L1(Ω)
+ ‖ρn‖Lp(Ω)‖unε − un‖

L
p
p−1 (Ω)

≤
[

sup
|z|≤ε
‖ρn(·+ z)− ρn‖Lp(Ω)

]
‖un‖

L
p
p−1 (Ω)

+ ‖ρn‖Lp(Ω)‖unε − un‖
L

p
p−1 (Ω)

.

Now, we choose p > 6
5 such that p

p−1 < 6. Then, ‖unε − un‖
L

p
p−1 (Ω)

converges to 0 as ε goes to 0.

Moreover, (2.18) implies that sup
|z|≤ε
‖ρn(· + z) − ρn‖Lp(Ω) converges to 0 as ε goes to 0. Therefore,

(ρnun)ε converges to ρnun in L2(0, T ;L1(Ω)) as ε goes to 0, uniformly in n. Next, we deduce that
(ρnun)ε converges to (ρu)ε as n goes to ∞. Since (ρnun)ε is smooth in x and d

dt(ρ
nun)ε is bounded

in L2(0, T ;Hm(R3)) for any m ≥ 0, (ρnun)ε converges to (ρu)ε as n goes to ∞ in L1(R3 × (0, T ))

for each ε > 0. Since ρnun is uniformly bounded in L∞(0, T ;L
2γ
γ+1 (Ω)) and

‖ρnun − ρu‖L1(Ω×(0,T )) ≤ ‖ρnun − (ρnun)ε‖L1(Ω×(0,T )) + ‖(ρnun)ε − (ρu)ε‖L1(Ω×(0,T ))

+ ‖(ρu)ε − ρu‖L1(Ω×(0,T )),

ρnun converges to ρu in L1(Ω× (0, T )).
The second statement in (2.19) is immediate consequence of the uniform bound of un in L2(Ω×

(0, T )).
Since

ρn|u− un|2 = ρn|un|2 − 2ρnun · u+ ρn|u|2

converges to 0 in L1(Ω), the third statement is proved.
Finally, three previous results implies ρnuni u

n
j converges to ρuiuj almost everywhere, and ρnuni u

n
j

is uniformly bounded in L∞(0, T ;L1(Ω)) ∩ L1(0, T ;Lp(Ω)), 1
p = 1

γ + 1
3 < 1. Therefore, the last

statement in (2.19) holds.

4 Proof of Proposition 2.3 (iv) and (v)

The strong convergence of {ρ(n)}n≥1 can be proved by introducing a family of cut-off functions
approximating ρ log ρ in the renormalized solution setting. First, we show that ρ satisfies higher
integrability condition.

4.1 Higher integrability of ρ

We first define the inverse of the divergence operator. We denote the solution v of

∇ · v = g in Ω, v = 0 on ∂Ω.
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by v = T g. This operator T = (T 1,T2,T3) is the inverse of the divergence operator such that

T :
{
g ∈ Lp;

∫
Ω
gdx = 0

}
→W 1,p

0 (Ω),

with the following boundedness property:

‖T (g)‖W 1,p(Ω) ≤ C‖g‖Lp(Ω).

If in addition g can be written as g = ∇ · h for a certain h ∈ Lr with h · n̂ = 0 on ∂Ω, then

‖T (g)‖Lr(Ω) ≤ C‖h‖Lr(Ω).

We will use this operator to obtain higher integrability of ρ. By extending (2.10) to zero outside Ω
and regularizing it, we have,

∂tb(ρ)ε +∇ · (b(ρ)εu) +
([
b
′
(ρ)ρ− b(ρ)

]
∇ · u

)
ε

= rε, (4.1)

where b(ρ)ε = b(ρ) ? gε. As proved in [13], we have

rε → 0 in L2(R3 × (0, T )). (4.2)

We are now ready to prove the following result.

Lemma 4.1 Let γ > 3
2 and {ρ, u, f, η, σ} be a weak solution of the system (1.10). Then, there

exists θ > 0, depending only γ, such that

‖ρ‖Lγ+θ(Ω×(0,T )) ≤ C(T ).

Proof: We take a test function of the form

φi = χ(t)Ti

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
,

∮
Ω
b(ρ)εdy =

1

|Ω|

∫
Ω
b(ρ)εdy, χ ∈ D(0, T )

and test it against (1.10b). Then, with the aid of (4.1),∫ T

0

∫
Ω
χργb(ρ)εdxdt

=

∫ T

0

∫
Ω
χργ

[ ∮
Ω
b(ρ)εdy

]
dxdt−

∫ T

0

∫
Ω
χtρu ·T

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt

+

∫ T

0

∫
Ω
χρu ·T

[(
(b
′
(ρ)ρ− b(ρ))∇ · u

)
ε
−
∮

Ω

(
(b
′
(ρ)ρ− b(ρ))∇ · u

)
ε
dy
]
dxdt

−
∫ T

0

∫
Ω
χρu ·T

[
rε −

∮
Ω
rεdy

]
dxdt+

∫ T

0

∫
Ω
χρu ·T

[
∇ ·
(
b(ρ)εu

)]
dxdt

−
∫ T

0

∫
Ω
χρuiuj∂iTj

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt+

∫ T

0

∫
Ω
χ∂iuj∂iTj

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt

+

∫ T

0

∫
Ω
χ∇ · u

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt−

∫ T

0

∫
Ω
χη2

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt

+

∫ T

0

∫
Ω
χσij∂iTj

[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt−

∫ T

0

∫
Ω
χη
[
b(ρ)ε −

∮
Ω
b(ρ)εdy

]
dxdt

= I1 + · · ·+ I11.
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We now estimate I1, · · · , I11. For details, see [10].
• I1 . C(T ).

• I2 . ‖ρu‖
L∞(0,T );L

2γ
γ+1 (Ω)

‖b(ρ)ε‖
L∞(0,T ;L

6γ
5γ−3 (Ω))

≤ C(T )‖b(ρ)ε‖
L∞(0,T ;L

6γ
5γ−3 (Ω))

.

• I3 . ‖ρ‖L∞(0,T ;Lγ(Ω))‖∇u‖2L2(Ω×(0,T ))‖b(ρ)ε‖
L∞(0,T ;L

3γ
2γ−3 (Ω))

≤ C(T )‖b(ρ)ε‖
L∞(0,T ;L

3γ
2γ−3 (Ω))

.

• I4 . ‖ρu‖
L∞(0,T ;L

2γ
γ+1 (Ω))

‖rε‖L2(Ω×(0,T )) ≤ C(T )‖rε‖L2(Ω×(0,T )).

• I5 + I6 . ‖ρ‖L∞(0,T ;Lγ(Ω))‖∇u‖2L2(Ω×(0,T ))‖b(ρ)ε‖
L∞(0,T ;L

3γ
2γ−3 (Ω))

≤ C(T )‖b(ρ)ε‖
L∞(0,T ;L

3γ
2γ−3 (Ω))

.

• I7 + I8 . ‖∇u‖L2(Ω×(0,T ))‖b(ρ)ε‖L2(Ω×(0,T )) ≤ C(T )‖b(ρ)ε‖L2(Ω×(0,T )).

• I9 + I10 + I11 .
(
‖η‖2L2(0,T ;L6(Ω)) + ‖σ‖L1(0,T ;L3(Ω)) + ‖η‖L1(0,T ;L3(Ω))

)
‖b(ρ)ε‖

L∞(0,T ;L
3
2 (Ω))

≤ C(T )‖b(ρ)ε‖
L∞(0,T ;L

3
2 (Ω))

.

In sum,∫ T

0

∫
Ω
χργ(b(ρ))εdxdt ≤ C(T ) + ‖b(ρ)ε‖

L∞(0,T ;L
6γ

5γ−3 (Ω))
+ ‖b(ρ)ε‖

L∞(0,T ;L
3γ

2γ−3 (Ω))

+ ‖b(ρ)ε‖
L∞(0,T ;L

3
2 (Ω))

+ ‖b(ρ)ε‖L2(Ω×(0,T )) + ‖rε‖L2(Ω×(0,T )).
(4.3)

By taking the limit in ε→ 0,∫ T

0

∫
Ω
χργb(ρ)dxdt ≤ C(T ) + ‖b(ρ)‖

L∞(0,T ;L
6γ

5γ−3 (Ω))
+ ‖b(ρ)‖

L∞(0,T ;L
3γ

2γ−3 (Ω))

+ ‖b(ρ)‖
L∞(0,T ;L

3
2 (Ω))

+ ‖b(ρ)‖L2(Ω×(0,T )).
(4.4)

We approximate z 7→ zθ by a sequence of {bn} in (2.10), and approximate χ to the identity function
of (0, T ). Then,∫ T

0

∫
Ω
ργ+θdxdt ≤ C(T ) + ‖ρθ‖

L∞(0,T ;L
6γ

5γ−3 (Ω))
+ ‖ρθ‖

L∞(0,T ;L
3γ

2γ−3 (Ω))

+ ‖ρθ‖
L∞(0,T ;L

3
2 (Ω))

+ ‖ρθ‖L2(Ω×(0,T )).

(4.5)

We note that 3
2 ,

6γ
5γ−3 <

3γ
2γ−3 . The relation between 3γ

2γ−3 and 2 depends on the range of γ: 3γ
2γ−3 > 2

for γ < 6, 3γ
2γ−3 ≤ 2 for γ ≥ 6. In either cases, we take θ such that

3γ

2γ − 3
θ ≤ γ. (4.6)

Then, ∫ T

0

∫
Ω
ργ+θdxdt ≤ C(T ) (4.7)

which completes the proof. �
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Remark 3 From (4.6), the best possible θ is 2
3γ − 1, and higher integrability of ρ can be obtained

by choosing appropriate cut-off functions in (2.10) in the spirit of Feireisl [10]. If γ ≥ 9
5 , then

γ + θ ≥ 2. In [13], Lions used this idea in order to show higher integrability of ρ by multiplying
(3.7) by ρθ.

4.2 Limit of the effective viscous flux

We now study the limit of the so called the effective viscous flux, ργ−2∇·u. In the formal proof, we
take (−∆)−1∇ to (1.10b) and multiply by ρ. In this section, we instead take χ(t)φ(x)∆−1∇Tk(ρn)
as test functions to (2.10) to obtain a better convergence result on the effective viscous flux. Here,
the cut-off function Tk is defined as

Tk(z) = kT (
z

k
), (4.8)

where T ∈ C∞(R) satisfies

T (z) = z for |z| ≤ 1, T (z) = 2 for z ≥ 3, T is concave on [0,∞),

and T (−z) = −T (z). From (2.10),

∂tTk(ρ
n) +∇ · (Tk(ρn)un) +

(
T
′
k(ρ

n)ρn − Tk(ρn)
)
∇ · un = 0 (4.9)

holds in the sense of the distributions. Passing to the limit in (4.9), we have

∂tTk(ρ) +∇ · (Tk(ρ)u) + (T
′
k(ρ)ρ− Tk(ρ))∇ · u = 0 (4.10)

in the sense of distributions.
To take the limit to the effective viscous flux, we need the following lemma. For the proof, we

refer the reader to Feireisl [10].

Lemma 4.2 Suppose
vn ⇀ v in Lp(Ω), wn ⇀ w in Lq(Ω),

with 1
p + 1

q = 1
r < 1. Then,

vnRij(wn)− wnRij(vn) ⇀ vRij(w)− wRij(v) in Lr(Ω),

where Rij = ∂i∂j∆
−1.

Lemma 4.3 Under the condition in Proposition 2.3, we have

lim
n→∞

∫ T

0

∫
Ω
χφ
[
(ρn)γ − 2∇ · un

]
Tk(ρ

n)dxdt =

∫ T

0

∫
Ω
χφ
[
ργ − 2∇ · u

]
Tk(ρ)dxdt

for χ ∈ D(0, T ) and φ ∈ D(Ω).
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Proof: We take χ(t)φ(x)∆−1∇Tk(ρn) as test functions to (1.10b). Then,∫ T

0

∫
Ω
χφ
[
(ρn)γ − 2∇ · un

]
Tk(ρ

n)dxdt

=

∫ T

0

∫
Ω
χ
[
∇ · un − (ρn)γ

]
∇φ ·∆−1∇Tk(ρn)dxdt

+

∫ T

0

∫
Ω
χ
[
∇φ · ∇un ·∆−1∇Tk(ρn)− uni ∂jφ∂j∆−1∂iTk(ρ

n)
]
dxdt

+

∫ T

0

∫
Ω
χun · ∇φTk(ρn)dxdt−

∫ T

0

∫
Ω
χρnuni u

n
j ∂jφ∆−1∂iTk(ρ

n)dxdt

−
∫ T

0

∫
Ω
φρnun ·

[
χt∆

−1∇Tk(ρn) + χ∆−1∇
[(
Tk(ρ

n)− T ′k(ρn)ρn
)
∇ · un

]]
dxdt

−
∫ T

0

∫
Ω
χφuni

[
Tk(ρ

n)Rij(ρ
nunj )− ρnunjRijTk(ρn)

]
dxdt

−
∫ T

0

∫
Ω
χ(ηn)2∇φ ·∆−1∇Tk(ρn)dxdt−

∫ T

0

∫
Ω
χφ(ηn)2Tk(ρ

n)dxdt

+

∫ T

0

∫
Ω
χσij∂iφ∆−1∂jTk(ρ

n)dxdt+

∫ T

0

∫
Ω
χφσij∂i∆

−1∂jTk(ρ
n)dxdt

−
∫ T

0

∫
Ω
χη∇φ ·∆−1∇Tk(ρn)dxdt−

∫ T

0

∫
Ω
χφηTk(ρ

n)dxdt

(4.11)

We now take the limit of (4.11) for n→∞.∫ T

0

∫
Ω
χφ
[
ργ − 2∇ · u

]
Tk(ρ)dxdt

=

∫ T

0

∫
Ω
χ
[
∇ · u− ργ

]
∇φ ·∆−1∇Tk(ρ)dxdt

+

∫ T

0

∫
Ω
χ
[
∇φ · ∇u ·∆−1∇Tk(ρ)− ui∂jφ∂j∆−1∂iTk(ρ)

]
dxdt

+

∫ T

0

∫
Ω
χu · ∇φTk(ρ)dxdt−

∫ T

0

∫
Ω
χρuiuj∂jφ∆−1∂iTk(ρ)dxdt

−
∫ T

0

∫
Ω
φρu ·

[
χt∆

−1∇Tk(ρ) + χ∆−1∇
(
Tk(ρ)− T ′k(ρ)ρ

)
∇ · u

]
dxdt

−
∫ T

0

∫
Ω
χφui

[
Tk(ρ)Rij(ρuj)− ρnujRijTk(ρ)

]
dxdt.

−
∫ T

0

∫
Ω
χη2∇φ ·∆−1∇Tk(ρ)dxdt−

∫ T

0

∫
Ω
χφη2Tk(ρ)dxdt

+

∫ T

0

∫
Ω
χσij∂iφ∆−1∂jTk(ρ)dxdt+

∫ T

0

∫
Ω
χφσij∂i∆

−1∂jTk(ρ)dxdt

−
∫ T

0

∫
Ω
χη∇φ ·∆−1∇Tk(ρ)dxdt−

∫ T

0

∫
Ω
χφηTk(ρ)dxdt,

(4.12)
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where we use lemma 4.2 to show

lim
n→∞

∫ T

0

∫
Ω
χφuni

[
Tk(ρ

n)Rij(ρ
nunj )− ρnunjRijTk(ρn)

]
dxdt

=

∫ T

0

∫
Ω
χφui

[
Tk(ρ)Ri,j(ρuj)− ρnujRi,jTk(ρ)

]
dxdt.

(4.13)

We now take χφ∆−1∇Tk(ρ) as test functions to

(ρu)t +∇ · (ρu⊗ u)−∆u−∇(∇ · u) +∇ργ +∇η2 = ∇ · σ −∇η

and do the same calculation using (4.10). Then,∫ T

0

∫
Ω
χφ
[
ργ − 2∇ · u

]
Tk(ρ)dxdt

=

∫ T

0

∫
Ω
χ
[
∇ · u− ργ

]
∇φ ·∆−1∇Tk(ρ)dxdt

+

∫ T

0

∫
Ω
χ
[
∇φ · ∇u ·∆−1∇Tk(ρ)− ui∂jφ∂j∆−1∂iTk(ρ)

]
dxdt

+

∫ T

0

∫
Ω
χu · ∇φTk(ρ)dxdt−

∫ T

0

∫
Ω
χρuiuj∂jφ∆−1∂iTk(ρ)dxdt

−
∫ T

0

∫
Ω
φρu ·

[
χt∆

−1∇Tk(ρ) + χ∆−1∇
(
Tk(ρ)− T ′k(ρ)ρ

)
∇ · u

]
dxdt

−
∫ T

0

∫
Ω
χφui

[
Tk(ρ)Rij(ρuj)− ρnujRijTk(ρ)

]
dxdt

−
∫ T

0

∫
Ω
χη2∇φ ·∆−1∇Tk(ρ)dxdt−

∫ T

0

∫
Ω
χφη2Tk(ρ)dxdt

+

∫ T

0

∫
Ω
χσij∂iφ∆−1∂jTk(ρ)dxdt+

∫ T

0

∫
Ω
χφσij∂i∆

−1∂jTk(ρ)dxdt

−
∫ T

0

∫
Ω
χη∇φ ·∆−1∇Tk(ρ)dxdt−

∫ T

0

∫
Ω
χφηTk(ρ)dxdt.

(4.14)

Therefore, by comparing (4.12) and (4.14), we complete the proof. �

Corollary 4.4 Let ρ be a weak limit of the sequence {ρn}. Then,

lim sup
n→∞

∥∥Tk(ρn)− Tk(ρ)
∥∥
Lγ+1(Ω×(0,T ))

≤ C(T ). (4.15)

Proof: As z 7→ zγ is convex, Tk is concave, and

(zγ − yγ)(Tk(z)− Tk(y)) ≥ |Tk(z)− Tk(y)|γ+1,
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we have

lim sup
n→∞

∫ T

0

∫
Ω
|Tk(ρn)− Tk(ρ)|γ+1dxdt

≤ lim
n→∞

∫ T

0

∫
Ω

((ρn)γ − ργ)(Tk(ρ
n)Tk(ρ))dxdt

≤ lim
n→∞

∫ T

0

∫
Ω

((ρn)γ − ργ)(Tk(ρ
n)− Tk(ρ))dxdt+

∫ T

0

∫
Ω

(ργ − ργ)(Tk(ρ)− Tk(ρ))dxdt

= lim
n→∞

∫ T

0

∫
Ω

(ρn)γTk(ρ
n)− ργTk(ρ)dxdt

(4.16)

By lemma 4.3, the last term in (4.16) can be estimated as follows.

lim
n→∞

∫ T

0

∫
Ω

(ρn)γTk(ρ
n)− ργTk(ρ)dxdt

= lim
n→∞

∫ T

0

∫
Ω

(∇ · un)Tk(ρ
n)− (∇ · u)Tk(ρ)dxdt

= lim
n→∞

∫ T

0

∫
Ω

[
Tk(ρ

n)− Tk(ρ) + Tk(ρ)− Tk(ρ)
]
(∇ · un)dxdx

≤ 2 sup
n
‖∇ · un‖L2(Ω×(0,T )) lim sup

n→∞
‖Tk(ρn)− Tk(ρ)‖L2(Ω×(0,T )).

(4.17)

Since γ + 1 > 2, (4.16) and (4.17) implies (4.15). �

4.3 Proof of Proposition 2.3. (iv)

To show that ρ and u solve (1.10a) in the sense of renormalized solutions, we regularize (4.10) to
get

∂t

[
Tk(ρ)

]
ε

+∇ ·
[(
Tk(ρ)u

)
ε

]
+
[
(T
′
k(ρ)ρ− Tk(ρ))∇ · u

]
ε

= rε, (4.18)

where rε → 0 in L2(R3 × (0, T )). We multiply (4.18) by b
′
[(
Tk(ρ)

)
ε

]
and take ε→ 0. Then,

∂tb
(
Tk(ρ)

)
+∇ ·

[
b
(
Tk(ρ)

)
u
]

+
[
b
′
(
Tk(ρ)

)
Tk(ρ)− b

(
Tk(ρ)

)]
(∇ · u)

= b
′
(
Tk(ρ)

)(
Tk(ρ)− T ′k(ρ)ρ

)
∇ · u

(4.19)

in the sense of distributions. By the interpolation,

‖Tk(ρn)− T ′k(ρn)ρn‖L2(Ω×(0,T )) ≤ ‖Tk(ρn)− T ′k(ρn)ρn‖αL1(Ω×(0,T ))‖Tk(ρ
n)− T ′k(ρn)ρn‖1−α

Lγ+1(Ω×(0,T ))
,

where α = γ−1
γ . Since

‖Tk(ρn)− T ′k(ρn)ρn‖L1(Ω×(0,T )) . k
1−γ sup

n
‖ρn‖γLγ(Ω×(0,T ))

and
lim sup
n→∞

‖Tk(ρn)− T ′k(ρn)ρn‖Lγ+1(Ω×(0,T )) ≤ C(T )
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from corollary 4.4, we have

b
′
(
Tk(ρ)

)(
Tk(ρ)− T ′k(ρ)ρ

)
∇ · u→ 0 in L1(Ω× (0, T ))

as k →∞. This completes Proposition 2.3 (iv).

4.4 Proof of Proposition 2.3. (v)

We introduce a family of functions Lk such that

Lk(z) =

 z log z for 0 ≤ z < k,

z log k + z

∫ z

k

Tk(s)

s2
ds for z ≥ k.

Setting
Lk(z) = βk(z) + bk(z), |bk(z)| ≤ C(k), b

′
k(z)z − bk(z) = Tk(z),

we have

∂tLk(ρ
n) +∇ · (Lk(ρn)un) + Tk(ρ

n)∇ · un = 0. (4.20)

On the other hand, by (1.10a),

∂tLk(ρ) +∇ · (Lk(ρ)u) + Tk(ρ)∇ · u = 0. (4.21)

By (4.20) and (4.21), for φ ∈ C∞c (Ω)∫
Ω

[
Lk(ρ

n)− Lk(ρ)
]
(t)φdx

=

∫
Ω

[
Lk(ρ

n
0 )− Lk(ρ0)

]
φdx

+

∫ t

0

∫
Ω

[
Lk(ρ

n)un − Lk(ρ)u
]
· ∇φ+

[
Tk(ρ)∇ · u− Tk(ρn)∇ · un

]
φdxds

(4.22)

Passing to the limit in (4.22) for n→∞,∫
Ω

[
Lk(ρ)− Lk(ρ)

]
(t)φdx

=

∫ t

0

∫
Ω

[
Lk(ρ)u− Lk(ρ)u

]
· ∇φdxds+ lim

n→∞

∫ t

0

∫
Ω

[
Tk(ρ)∇ · u− Tk(ρn)∇ · un

]
φdxds

(4.23)

By approximating φ to the identity function of Ω,∫
Ω

[
Lk(ρ)− Lk(ρ)

]
(t)dx

=

∫ t

0

∫
Ω
Tk(ρ)(∇ · u)dxdt− lim

n→∞

∫ t

0

∫
Ω
Tk(ρ

n)(∇ · un)dxds

≤
∫ t

0

∫
Ω

[
Tk(ρ)− Tk(ρ)

]
(∇ · u)dxds.

(4.24)

We approximate z log z by Lk(z). By corollary 4.4, with γ + 1 > 2, the right-hand side of (4.24)
tends to 0 as k →∞. Therefore,

ρ log ρ(t) = (ρ log ρ)(t), for all t ∈ [0, T ] (4.25)

which implies the strong convergence of {ρn} in L1(Ω × (0, T )). This completes the proof of
Proposition 2.3 (v). �
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5 Construction of approximate sequences

We now construct an approximate sequence of solutions to the system (1.10) so that we can apply
the compactness argument (Proposition 2.3) to obtain a weak solution. This section consists of
three parts: the regularization of ρ ddt + ρu · ∇ in (1.10b), nonlinear damping to the equation of ρ
and η, and the truncation of ργ and η2. Collecting all these steps, we can prove Theorem 2.2.

5.1 Smoothing ρ d
dt
+ ρu · ∇

We consider the following system of equations:

ρt +∇ · (ρu) = 0, (5.1a)

(ρεu)t +∇ · ((ρu)ε ⊗ u)−∆u−∇(∇ · u) +∇ργ +∇η2 = ∇ · σε −∇ηε, (5.1b)

ft +∇ · (uεf) +∇τ · (Pτ⊥(∇xuετ)f)−∆τf −∆f = 0. (5.1c)

In Section 5.2 will be shown that there exists a solution {ρ, u, f, η, σ} to (5.1) such that ρ ∈
Lp(Ω× (0, T )), p = 5

3γ. By the energy identity

d

dt

∫
Ω

[ρε|u|2
2

+
ργ

γ − 1
+ η2 + ψ

]
dx+ 4

∫
Ω

∫
S2

|∇τ
√
f |2dτdx+ 4

∫
Ω

∫
S2

|∇
√
f |2dτdx

+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dx = 0,

(5.2)

we can obtain the following a priori estimates:

ρ ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;Lγ(Ω)), ρε|u|2 ∈ L∞(0, T ;L1(Ω)), u ∈ L2(0, T ;H1(Ω))

ρεu ∈ L∞(0, T ;L
2γ
γ+1 (Ω)) ∩ L2(0, T ;Lr(Ω)),

1

r
=

1

6
+

1

γ

f ∈ L2(0, T ;L
6
5 (Ω× S2)), η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

σ ∈ L1(0, T ;L3(Ω)) ∩ L∞(0, T ;L2(Ω)), ∇σ ∈ L1(0, T ;L
3
2 (Ω)) ∩ L2(0, T ;L

4
3 (Ω)).

(5.3)

If u ∈ L2(0, T ;H1(Ω)), (5.1c) has a smooth solution, and the entropy ψ and its equation make
sense. Thus, we only focus on the existence of a solution {ρ, u, η} under the assumption that f is
smooth. By taking θ = 2

3γ − 1 in Lemma 4.1, we have

ρ ∈ Lp(Ω× (0, T )), p =
5

3
γ − 1. (5.4)

5.2 Nonlinear damping

We wish to build solutions of (5.1) as a limit of the following system of equations:

ρt +∇ · (ρu) + δρq = 0, (5.5a)

(ρεu)t +∇ · ((ρu)ε ⊗ u)−∆u−∇(∇ · u) +∇[ργ + η2] + δ[(ρq)ε + (ηm)ε]u = ∇ · σε −∇ηε, (5.5b)

ft +∇ · (uεf) +∇τ · (Pτ⊥(∇xuετ)f)−∆τf −∆f = 0, (5.5c)

ηt +∇ · (ηu)−∆η + δηm = 0. (5.5d)
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where q > γ+1 and m > 3, with m ≥ q, will be determined later. We note that we add a nonlinear
damping to the equation of η, not the equation of f . We will prove the existence of a solution
{ρ, u, f, η, σ} to (5.5) satisfying

u ∈ Ls(0, T ;W 1,s(Ω)), ut ∈ Ls(0, T ;W−1,s(Ω)), ρ, η ∈ C([0, T ];Ls(Ω)), 1 ≤ s <∞
ρε ∈ C1([0, T ];Ck(Ω̄)), (ρu)ε ∈ C([0, T ];Ck(Ω̄)), k ≥ 0

(5.6)

in Section 5.3. From (5.5), we have the following energy identity:

d

dt

∫
Ω

[ρε|u|2
2

+
ργ

γ − 1
+ η2 + ψ

]
dx+ 4

∫
Ω

∫
S2

|∇τ
√
f |2dτdx+ 4

∫
Ω

∫
S2

|∇
√
f |2dτdx

+ δ

∫ T

0

∫
Ω

(ρq)ε|u|2dxdt+ δ

∫ T

0

∫
Ω
ρq+γ−1dxdt+ δ

∫ T

0

∫
Ω

(ηm)ε|u|2dxdt

+ δ

∫ T

0

∫
Ω
ηm+1dxdt+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dx = 0.

(5.7)

Therefore, we have

ρ ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;Lγ(Ω)), ρε|u|2 ∈ L∞(0, T ;L1(Ω)), u ∈ L2(0, T ;H1(Ω))

δ

∫ T

0

∫
Ω

(ρq)ε|u|2dxdt ≤ C, δ

∫ T

0

∫
Ω
ρq+γ−1dxdt ≤ C,

ρεu ∈ L∞(0, T ;L
2γ
γ+1 (Ω)) ∩ L2(0, T ;Lr(Ω)),

1

r
=

1

6
+

1

γ

f ∈ L2(0, T ;L
6
5 (Ω× S2)), η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

δ

∫ T

0

∫
Ω

(ηm)ε|u|2dxdt ≤ C, δ

∫ T

0

∫
Ω
ηm+1dxdt ≤ C,

σ ∈ L1(0, T ;L3(Ω)) ∩ L∞(0, T ;L2(Ω)), ∇σ ∈ L1(0, T ;L
3
2 (Ω)) ∩ L2(0, T ;L

4
3 (Ω)).

(5.8)

Moreover, for a sufficiently small δ,

ρε ≥
1

C
on Ω̄× [0, T ] (5.9)

holds. To prove this, we integrate (5.5a) over Ω.∫
Ω
ρ(t)dx =

∫
Ω
ρ0,εdx− δ

∫ t

0

∫
Ω
ρq(s)dxds ≥

∫
Ω
ρ0dx− δ

∫ T

0

∫
Ω
ρq(t)dxdt

≥
∫

Ω
ρ0dx− δ

∫ T

0

∫
Ω
ρq+αI{ρ>1}dxdt− δ

∫ T

0

∫
Ω
ρI{ρ<1}dxdt

≥
∫

Ω
ρ0dx− δT 1− q+α

q+γ−1

[ ∫ T

0

∫
Ω
ρq+γ−1dxdt

] q+α
q+γ−1 − δT

∫
Ω
ρ0dx

≥
∫

Ω
ρ0dx− C(δT )

q+α
q+γ−1 − δT

∫
Ω
ρ0dx

where 0 < α < γ − 1. By taking a sufficiently small δ, we have∫
Ω
ρ(t)dx ≥ 1

2

∫
Ω
ρ0dx
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from which we have

ρε(x, t) =

∫
Ω
ρ(y, t)kε(x− y)dy ≥ inf

z∈2Ω
kε(z)

∫
Ω
ρ(y)dy ≥ 1

C
. (5.10)

Since ρε|u|2 ∈ L∞(0, T ;L1(Ω)), u ∈ L∞(0, T ;L2(Ω)). Moreover, from ρ ∈ L∞(0, T ;L1(Ω)), ρε ∈
L∞(Ω× (0, T )).

Next, we obtain higher integrability of ρ by using (3.9), with replacing the multiplication of ρ
by ρθ to (3.8). We also have additional terms from the damping terms.

ργ+θ =
d

dt

[
ρθ(−∆)−1∇ · (ρεu)

]
+∇ ·

[
uρθ(−∆)−1∇ · (ρεu)

]
+ 2(∇ · u)ρθ

+ (θ − 1)(∇ · u)ρθ(−∆)−1∇ · (ρεu)− ρθ(−∆)−1∇ · (∇ · σε −∇ηε)

+ ρθ
[
RiRj((ρui)εuj)− ujRiRj(ρεui)

]
+ ρθη2

+ δρθ(−∆)−1∇ · ((ρq)εu) + θδρq+θ−1(−∆)−1∇ · (ρεu) + δρθ(−∆)−1∇ · ((ηm)εu).

(5.11)

Integrating (5.11) over Ω× (0, T ), we have∫ T

0

∫
Ω
ργ+θdxdt . C(T ) +

∫ T

0

∫
Ω

∣∣(∇ · u)ρθ
∣∣dxdt+

∫ T

0

∫
Ω

∣∣(∇ · u)ρθ(−∆)−1∇ · (ρεu)
∣∣dxdt

+

∫ T

0

∫
Ω

∣∣ρθ(−∆)−1∇ · (∇ · σε −∇ηε)|dxdt+

∫ T

0

∫
Ω
|ρθη2

∣∣dxdt
+

∫ T

0

∫
Ω

∣∣∣ρθ[RiRj((ρui)εuj)− ujRiRj(ρεui)]∣∣∣dxdt
+ δ

∫ T

0

∫
Ω

∣∣ρθ(−∆)−1∇ · ((ρq)εu)
∣∣dxdt

+ δ

∫ T

0

∫
Ω

∣∣ρθ(−∆)−1∇ · ((ηm)εu)
∣∣dxdt

+ δ

∫ T

0

∫
Ω

∣∣ρq+θ−1(−∆)−1∇ · (ρεu)
∣∣dxdt.

(5.12)

Let θ = 2
3γ. We only provide estimations involving δ. The rest of them are easily by the regular-

ization. First,

δ‖ρθ(−∆)−1∇ · ((ρq)εu)‖L1(Ω×(0,T ))

. δ‖ρ‖θL∞(0,T ;Lγ(Ω))‖
√

(ρq)ε‖
L

2(q+γ−1)
q (0,T ;L∞(Ω))

‖√ρεu‖L2(0,T ;L2(Ω))

. δ‖ρ‖θL∞(0,T ;Lγ(Ω))ε
−α‖
√
ρq‖

L
2(q+γ−1)

q (Ω×(0,T ))
‖√ρεu‖L2(0,T ;L2(Ω))

. ε−αδδ−
2

2(q+γ−1) δ−
1
2 → 0 as δ → 0,

(5.13)

where 0 < 1
2 + q

2(q+γ−1) < 1. Similarly,

δ‖ρθ(−∆)−1∇ · ((ηm)εu)‖L1(Ω×(0,T )) . ε
−βδδ−

1
m δ−

1
2 → 0 as δ → 0, (5.14)
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where 0 < 1
2 + 1

m < 1. Next, we want to estimate δρp+θ−1(−∆)−1∇ · (ρεu). Since ρεu ∈
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L6(Ω)) and

δ‖ρq+θ−1‖
L
q+γ−1
q+θ−1 (Ω×(0,T ))

. δδ−
q+θ−1
q+γ−1 ,

we have

δ‖ρq+θ−1(−∆)−1∇ · (ρεu)‖L1(Ω×(0,T )) → 0 as δ → 0 (5.15)

by taking q > γ + 1, which is close to γ + 1. Therefore, as δ → 0,

ρδ is bounded in L∞(0, T ;Lγ(Ω)) ∩ Lp(Ω× (0, T )), p =
5

3
γ

uδ is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
(5.16)

so we can pass to the limit to (5.5) to obtain a solution of (5.1) by the compactness argument in
Section 4. Indeed,

(ρδ)ε → ρε ∈ Lr(Ω× (0, T )), uδ → u ∈ Lr(0, T ;L2(Ω)) 1 ≤ r <∞

so the analysis is easier than the case without ε.

5.3 Truncation of the pressure

In this section, we construct a solution of (5.5) by

ρt +∇ · (ρu) + δρq = 0, (5.17a)

(ρεu)t +∇ · ((ρu)ε ⊗ u)−∆u−∇(∇ · u) +∇T (R) + δ[(ρq)ε + (ηm)ε]u = ∇ · σε −∇ηε, (5.17b)

ft +∇ · (uεf) +∇τ · (Pτ⊥(∇xuετ)f)−∆τf −∆f = 0, (5.17c)

ηt +∇(ηu)−∆η + δηm = 0. (5.17d)

where T (R) = (ρ∧R)γ + (η ∧R)2 and f ∧R = min{f,R}. We will show at the end of this section
that there exists a smooth solution to (5.17) such that

ρ, η ∈ C([0, T ];W 1,s(Ω)), u ∈ Ls(0, T ;W 2,s(Ω)), ut ∈ Ls(Ω× (0, T )), 1 ≤ s <∞. (5.18)

We begin with the energy identity of (5.17).

d

dt

∫
Ω

[ρε|u|2
2

+AR(ρ) +BR(η) + ψ + η
]
dx+ 4

∫
Ω

∫
S2

|∇τ
√
f |2dτdx

+ 4

∫
Ω

∫
S2

|∇
√
f |2dτdx+ δ

∫ T

0

∫
Ω

(ρq)ε|u|2dxdt+ δ

∫ T

0

∫
Ω
ρqA

′
R(ρ)dxdt

+ δ

∫ T

0

∫
Ω

(ηm)ε|u|2dxdt+ δ

∫ T

0

∫
Ω
ρmB

′
R(η)dxdt

+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇(η ∧R)|2

]
dx ≤ 0,

(5.19)

where

AR(ρ) = ρ

∫ ρ

0

(t ∧R)γ

t2
dt, A

′
R(ρ) =

γ(ρ ∧R)γ−1

γ − 1
, BR(η) = η

∫ η

0

(t ∧R)2

t2
dt, B

′
R(η) = 2(η ∧R).
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From (5.19), we have

ρ ∈ C([0, T ];L1(Ω)), ρε|u|2 ∈ L∞(0, T ;L1(Ω)), u ∈ L2(0, T ;H1(Ω))

AR(ρ) ∈ L∞(0, T ;L1(Ω)), A
′
R(ρ)ρq ∈ L1(Ω× (0, T )),

δ

∫ T

0

∫
Ω

(ρq)ε|u|2dxdt ≤ C, δ

∫ T

0

∫
Ω
ρq+γ−1dxdt ≤ C,

ρεu ∈ L∞(0, T ;L
2γ
γ+1 (Ω)) ∩ L2(0, T ;Lr(Ω)),

1

r
=

1

6
+

1

γ

f ∈ L2(0, T ;L
6
5 (Ω× S2)), BR(η) ∈ L∞(0, T ;L2(Ω)), η ∧R ∈ L2(0, T ;H1(Ω)),

σ ∈ L1(0, T ;L3(Ω)) ∩ L∞(0, T ;L2(Ω)), ∇σ ∈ L1(0, T ;L
3
2 (Ω)) ∩ L2(0, T ;L

4
3 (Ω)).

(5.20)

We still have ρε ≥ 1
C uniformly in R ≥ 1 as for sufficiently small δ so that u ∈ L∞(0, T ;L2(Ω)) and

(ρu)ε ∈ Lp(0, T ;Ck(Ω̄)). We are going to prove

ρ ∈ L∞(0, T ;Ls(Ω)), u ∈ Ls(0, t;W 1,s(Ω)), ut ∈ Ls(0, T ;W−1,s(Ω)), 1 < s <∞. (5.21)

For any 1 < r <∞,
d

dt
ρr +∇ · (uρr) + δrρq+r−1 = (r − 1)(∇ · u)ρr.

By taking s = q+r−1
q−1 ,

‖ρ‖
r
s

L∞(0,T ;Lr(Ω)) + ‖ρq−1‖Ls(Ω×(0,T )) . ‖∇u‖Ls(Ω×(0,T )). (5.22)

We can estimate η by using the same method. We set a = m+r−1
m−1 . For m ≥ q, s > a. Therefore,

‖η‖
r
a

L∞(0,T ;Lr(Ω)) + ‖ηm−1‖La(Ω×(0,T )) . ‖∇u‖Ls(Ω×(0,T )). (5.23)

We now estimate u by using the estimation of the heat equation ([13]). By writing (ρu)ε · ∇u =
∇ · ((ρu)ε ⊗ u)− (∇ · (ρu)ε)u,

‖ut‖Ls(0,T ;W−1,s(Ω)) + ‖u‖Ls(0,T ;W 1,s(Ω))

. C(T ) + ‖(ρ ∧R)γ‖Ls(Ω×(0,T )) + ‖(ρu)ε ⊗ u‖Ls(Ω×(0,T )) + ‖(∇ · (ρu)ε)u‖Ls(Ω×(0,T ))

+ ‖σε‖Ls(Ω×(0,T )) + ‖ηε‖Ls(Ω×(0,T )) + ‖η‖2L2s(Ω×(0,T ))

. C(T ) + ‖ρ‖γLγs(Ω×(0,T )) + ‖ρu‖
L

ls
l−s (0,T ;L1(Ω))

‖u‖Ll(0,T ;Ls(Ω)) + ‖η‖2L2s(Ω×(0,T ))

(5.24)

for any s ≤ l ≤ ∞. Since q > γ+1 andm > 3, (m−1)a > 2s and (q−1)s > γs. Therefore, we can ob-
tain (5.21) by (5.22), (5.23), and (5.24) provided that we can bound ‖ρu‖

L
ls
l−s (0,T ;L1(Ω))

‖u‖Ll(0,T ;Ls(Ω))

in (5.24). This can be done by a bootstrap argument. First, we take s = 2, l =∞. Then,

ρ ∈ L∞(0, T ;Lq−1(Ω)), thus ρ ∈ L∞(0, T ;Lγ(Ω)). (5.25)

If γ ≥ 2, then ρu ∈ L∞(0, T ;L1(Ω)) so that

‖ut‖Ls(0,T ;W−1,s(Ω)) + ‖u‖Ls(0,T ;W 1,s(Ω)) . C(T ) + ‖ρ‖γLγs(Ω×(0,T )) + ‖u‖Ls(Ω×(0,T ))

+ ‖η‖2L2s(Ω×(0,T )).
(5.26)
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We note that we do not have ∇·σε−∇ηε in the right-hand side of (5.26) due to the regularization.
If γ < 2, then we take s = 10q

3q+4 , k = 10q
3q−6 so that q = ks

k−s . Then,

ρ ∈ L∞(0, T ;Lw(Ω)), w =
s− 1

q − 1
. (5.27)

Since w > 2, ρu ∈ L∞(0, T ;L1(Ω)). Therefore, we can conclude as the previous case.
Now, we want to pass to the limit in R→∞. Since

‖ρθ(ρ ∧R)γ − ρθ+γ‖L1(Ω×(0,T )) ≤
∫ T

0

∫
Ω
ρθ+γI{ρ>R} ≤

1

R

∫ T

0

∫
Ω
ρθ+γ−1dxdt .

1

R
,

we have ‖ρθ(ρ∧R)γ−ρθ+γ‖L1(Ω×(0,T )) → 0. Similarly, ‖ρθ(η∧R)2−ρθη2‖L1(Ω×(0,T )) → 0. Therefore,
we can recover a solution of (5.5) satisfying (5.6) in Section 5.2.

It remains to show (5.18). First, we show that ρ ∈ L∞(Ω× (0, T )). From the equation of ρ,

d

dt
(log ρ) + u · ∇ log ρ+∇ · u+ δρp−1 = 0 (5.28)

Moreover,

∇ · u =
1

2
(ρ ∧R)γ − 1

2

1

|Ω|

∫
Ω

(ρ ∧R)γdx+
1

2
(η ∧R)2 − 1

2

1

|Ω|

∫
Ω

(η ∧R)2dx

+ (−∆)−1∇ · (∇ · σε −∇ηε)− (−∆)−1∇ · (δ(ρq)εu)− (−∆)−1∇ · (δ(ηm)εu)

−RiRj((ρui)εuj)−
d

dt
(−∆)−1∇ · (ρεu)

(5.29)

Let Φ = (−∆)−1∇ · (ρεu). By (5.28) and (5.29),

d

dt
(log ρ+ Φ) + u · ∇(log ρ+ Φ) + δρp−1 = Ψ ∈ L∞(Ω× (0, T )). (5.30)

By the maximum principle, log ρ+ Φ ≤ C. Therefore, ρ ∈ L∞(Ω× (0, T )). Next, we estimate ∇ρ.
For any 1 ≤ r <∞,

d

dt
|∇ρ|r +∇ · (u|∇ρ|r) . |∇u||∇ρ|r + |∇2u||∇ρ|r−1 (5.31)

which implies that

d

dt
‖∇ρ‖Lr(Ω) . ‖∇u‖L∞(Ω)‖∇ρ‖Lr(Ω) + ‖∇2u‖Lr(Ω). (5.32)

Similarly,

d

dt
‖∇η‖Lr(Ω) . ‖∇u‖L∞(Ω)‖∇η‖Lr(Ω) + ‖∇2u‖Lr(Ω). (5.33)

We need to estimate derivatives of u. From standard parabolic estimates,

‖∇2u‖Lr(Ω×(0,T )) . C(T ) + ‖∇(ρ ∧R)γ‖Lr(Ω×(0,T )) + ‖∇(η ∧R)2‖Lr(Ω×(0,T ))

. C(T ) + ‖∇ρ‖Lr(Ω×(0,T )) + ‖∇η‖Lr(Ω×(0,T )).
(5.34)

By taking r > 3,

‖∇u(t)‖L∞(Ω) . log
[
C(T ) + max

0≤τ≤t

(
‖∇ρ(τ)‖Lr(Ω) + ‖∇η(τ)‖Lr(Ω)

)
‖Lq(Ω)

]
. (5.35)

By the Gronwall’s inequality, ‖∇ρ‖L∞(0,T ;Lr(Ω)) + ‖∇η‖L∞(0,T ;Lr(Ω)) ≤ C(T ), which implies that
∇u ∈ L∞(Ω × (0, T )) and ∇2u ∈ Lr(Ω × (0, T )). Therefore, from the equation of u, ut ∈ Lr(Ω ×
(0, T )). This completes the proof. �
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6 Appendix

6.1 Appendix 1: derivation of the equation of ψ

We take the time derivative to ψ =
∫
S2 f ln fdτ . Then,

ψt =

∫
S2

ft ln f + ftdτ = (I) + (II).

We obtain (I) and (II) by using the equation of f (1.10c).

(I) = −
∫
S2

[
∇ · (uf) +∇τ · (Pτ⊥(∇xuτ)f)−∆τf −∆f

]
ln fdτ = (a) + (b) + (c) + (d).

(a) = −
∫
S2

∇ · (uf) ln fdτ = −
∫
S2

∇ · (uf ln f)dτ +

∫
S2

u · ∇xfdτ

= −∇ · (uψ) + u · ∇
∫
S2

fdτ.

(6.1)

(b) = −
∫
S2

∇τ · (Pτ⊥(∇xuτ)f) ln fdτ =

∫
S2

∇uτf · ∇τf
f

= ∇u :

∫
S2

τ ⊗∇τfdτ = ∇u : σ. (6.2)

The proof of last equality in relation (6.2) requires the expression of these quantities in spherical
coordinates. We refer the reader to [19] for further details.

(c) =

∫
S2

∆τffdτ =

∫
S2

[
∆τ (f ln f)− 2∇τf · ∇τ ln f − f∆(ln f)

]
dτ

= −2

∫
S2

|∇τf |2

f
−
∫
S2

f∇τ ·
∇τf
f

dτ

= −2

∫
S2

|∇τf |2

f
dτ −

∫
S2

∆τfdτ +

∫
S2

|∇τf |2

f
dτ

= −4

∫
S2

|∇τ
√
f |2dτ.

(6.3)

(d) =

∫
S2

∆xffdτ =

∫
S2

[
∆x(f ln f)− 2∇xf · ∇x ln f − f∆x(ln f)

]
dτ

= ∆xψ − 2

∫
S2

|∇xf |2

f
dτ −

∫
S2

∆xf +

∫
S2

∫
S2

|∇xf |2

f
dτ

= ∆xψ − 4

∫
S2

|∇τ
√
f |2dτ −∆xη.

(6.4)

Now, we calculate (II).

(II) = −
∫
S2

[
∇ · (uf) +∇τ · (Pτ⊥(∇xuτ)f)−∆τf −∆xf

]
dτ = −∇ · (uη) + ∆xη. (6.5)
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Collecting all terms in (6.1) - (6.5),

ψt = −∇ · (uψ) + u · ∇η +∇u : σ − 4

∫
S2

|∇τ
√
f |2dτ −∆xψ

− 4

∫
S2

|∇x
√
f |2dτ −∆η −∇ · (uη) + ∆η

= −∇(uψ) + ∆ψ − 4

∫
S2

|∇τ
√
f |2dτ − 4

∫
S2

|∇x
√
f |2dτ +∇u : σ − (∇ · u)η.

(6.6)

6.2 Appendix 2: verification of the formal proof in Section 3.4

In this section, we provide a rigorous proof of the formal proof in Section 3.4. First, we verify (3.6).
From the equation of the density,

ρt +∇ · (ρu) = 0,

we can obtain

d

dt
β(ρ) +∇ · (uβ(ρ)) + (∇ · u)

[
ρβ
′
(ρ)− β(ρ)

]
= 0, (6.7)

where β is a C1 function from [0,∞] to R such that

β
′
(t) ≤ C(1 + tα), α =

q − 2

2
.

We note that (6.7) makes sense because u ∈ L2(0, T ;H1
loc(Ω)). We approximate ρ log ρ by βδ(ρ) =

ρ log(ρ+ δ). Then,
ρβ
′
δ(ρ)− βδ(ρ)→ 0 in Lq,

which verifies (3.6) in the sense of distributions.
Next, we want to verify (3.8) by showing that each term in the right-hand side of (3.7) can be

multiplied by ρ to be in L1(Ω× (0, T )).
• ρ× ργ is from ρ ∈ Lγ+1(Ω).
• Since ρ ∈ L∞(0, T ;Ls), s > 3 and η2 ∈ L1(0, T ;L3), the product ρη2 is in L1(Ω× (0, T )).
• ρ(−∆)−1∇· (∇·σ−∇η) ∼ ρ(σ−ηI) ∈ L∞(0, T ;Ls(Ω))×L1(0, T ;L3(Ω)). Since s > 3, 1

s + 1
3 ≤ 1.

• ρ(−∆)−1∂i∂j(ρuiuj) ∼ ρρu⊗ u: Since u⊗ u ∈ L1(0, T ;L3(Ω)),

ρu⊗ u ∈ L1(0, T ;Lr(Ω)) ∩ Lp(0, T ;Lq(Ω)),
1

r
=

1

s
+

1

3
≤ 1,

1

q
=

1

rp
+ 1− 1

p
.

Since ρ ∈ L∞(0, T ;Ls), ρρu⊗ u ∈ L1(Ω× (0, T )), with 1
s + 1

r = 2
s + 1

3 ≤
2
3 + 1

3 = 1.

• We rewrite ρ ddt

[
(−∆)−1∇ · (ρu)

]
as

ρ
d

dt

[
(−∆)−1∇ · (ρu)

]
=

d

dt

[
ρ(−∆)−1∇ · (ρu)

]
− ρt(−∆)−1∇ · (ρu)

=
d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ · (ρu)(−∆)−1∇ · (ρu)

=
d

dt

[
ρ(−∆)−1∇ · (ρu)

]
+∇ ·

[
(ρu)(−∆)−1∇ · (ρu)

]
− (ρu)∇(−∆)−1∇ · (ρu).

First, (ρu) ·∇(−∆)−1∇· (ρu) ∼ ρρu⊗u which is already done. Next, we estimate ρ(−∆)−1∇· (ρu).

Since ρu ∈ L∞(0, T ;L
2γ
γ+1 (Ω)), (−∆)−1∇·(ρu) ∈ L∞(0, T ;L

6γ
γ+3 (Ω)). Therefore, ρ(−∆)−1∇·(ρu) ∈
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L∞(0, T ;L1(Ω)) because 1
s + γ+3

6γ < 1
3 + γ+3

6γ < 3γ+3
6γ < 1. Finally, (ρu)(−∆)−1∇ · (ρu) makes sense

because (−∆)−1∇ · (ρu) ∈ L∞(0, T ;L
6γ
γ+3 (Ω)), ρ ∈ L∞(0, T ;Ls(Ω)), and u ∈ L2(0, T ;L6(Ω)), with

1
s + 1

6 + γ+3
6γ < 1

3 + 1
6 + γ+3

6γ < 1.
Finally, we verify (3.11) by passing to the limit in (3.10).

• ρn log ρnun: We take gn = ρn log ρn and hn = un. To verify the condition of gn, we can use (4.6).
• ρn(−∆)−1∇(∇ · σn −∇ηn): We take gn = ρn, hn = (−∆)−1∇ · (∇ · σn −∇ηn). This is possible
because ∇ · σn,∇ηn ∈ L1(0, T ;L3(Ω)) and ρn ∈ L∞(0, T ;Ls(Ω)), s > 3.
• We already show that ρn(ηn)2 converges to ρη2 in the sense of distributions.
• ρn(−∆)−1∇ · (ρnun) and ρnun(−∆)−1∇ · (ρnun): Since

ρnun ∈ L∞(0, T ;Lq(Ω)) ∩ L2(0, T ;Lr(Ω)),
1

q
=

1

2s
+

1

2
,

1

r
=

1

6
+

1

s
≤ 1

2
.

we have
(−∆)−1∇ · (ρnun) ∈ L∞(0, T ;W 1,q

loc (Ω)) ∩ L2(0, T ;W 1,r
loc (Ω)).

Therefore, we can take gn = ρn, ρnun and hn = (−∆)−1∇ · (ρnun).

• ρn
[
(−∆)−1∂i∂j(ρ

nuni u
n
j )− un · ∇(−∆)−1∇ · (ρnun)

]
= ρn[unj , RiRj ](ρ

nun): First, we control the

commutator. Since ∇un ∈ L2(0, T ;L2(Ω)) and ρnun ∈ L2(0, T ;Lp(Ω)), with 1
p = 1

6 + 1
s ≤

1
2 ,

[unj , RiRj ](ρ
nun) is bounded in L1(0, T ;W 1,q(Ω)),

1

q
=

1

2
+

1

p
.

Let gn = ρnuni and hn = unj . Then,

Un = [unj , RiRj ](ρ
nuni )→ U = [uj , RiRj ](ρui) ∈ L1(0, T ;Lq2(Ω)),

1

q2
< 1 +

1

s
− 2

3
.

in the sense of distributions. Now, let gn = ρn and hn = Un. Then, ρnUn converges to ρU in the
sense of distributions. This completes the proof of the formal argument in Section 3.4. �
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