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Abstract. In this paper, we establish analyticity of the Navier-Stokes equations with small

data in critical Besov spaces Ḃ
3

p
−1

p,q . The main method is so-called Gevrey estimates, which is
motivated by the work of Foias and Temam [19]. We show that mild solutions are Gevrey regu-

lar, i.e. the energy bound ‖e
√

tΛv(t)‖Ep
< ∞ holds in Ep := L̃∞(0, T ; Ḃ

3

p
−1

p,q )∩ L̃1(0, T ; Ḃ
3

p
+1

p,q ),
globally in time for p < ∞. We extend these results for the intricate limiting case p = ∞ in
a suitably designed E∞ space. As a consequence of analyticity, we obtain decay estimates of
weak solutions in Besov spaces. Finally, we provide a regularity criterion in Besov spaces.
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1. Introduction and statement of main results

It is well-known that regular solutions of many dissipative equations, such as the Navier-
Stokes equations, the Kuramoto-Sivashinsky equation, the surface quasi-geostrophic equa-
tion and the Smoluchowski equation are in fact analytic, in both space and time variables
[4, 14, 18, 36, 49]. In fluid-dynamics, the space analyticity radius has an important physi-
cal interpretation: at this length scale the viscous effects and the (nonlinear) inertial effects
are roughly comparable. Below this length scale the Fourier spectrum decays exponentially
[13, 17, 27, 28]. In other words, the space analyticity radius yields a Kolmogorov type length
scale encountered in turbulence theory. At a more practical level, this fact can be used to
show that the finite dimensional Galerkin approximations converge exponentially fast in these
cases [12]. Other applications of analyticity radius occur in establishing sharp temporal decay

Key words and phrases. Navier-Stokes equations, scaling invariant Besov spaces, Gevrey regularity, decay of
Besov norms, regularity condition.
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rates of solutions in higher Sobolev norms [39], establishing geometric regularity criteria for
the Navier-Stokes equations, and in measuring the spatial complexity of fluid flow [24, 31, 32].

In this paper, we study analyticity properties of the incompressible Navier-Stokes (NS)
equations in R

3. The system of equations is given by

vt + v · ∇v − µ∆v + ∇p = 0,(1.1a)

∇ · v = 0,(1.1b)

where v is the velocity field, p is the pressure, and µ > 0 is the viscosity coefficient which for
simplicity we set µ = 1.

Since ∇ · v = 0, we can rewrite the momentum equation (1.1a) by projecting it onto the
divergence-free space. Let P = Id − ∇(−∆)−1div be the orthogonal projection of L2 over
divergence-free vector fields. By applying P to (1.1a), we obtain

vt + P∇ · (v ⊗ v)− ∆v = 0.(1.2)

Formally, we can express a solution v of (1.2) in the integral form:

v(t) = et∆v0 −
∫ t

0

[
e(t−s)∆

P∇ · (v ⊗ v)(s)
]
ds.(1.3)

Any solution satisfying this integral equation is called a mild solution. We can find it by using
a fixed point argument for the function v 7→ F (v),

F (v)(t) = et∆v0 −
∫ t

0

[
e(t−s)∆

P∇ · (v ⊗ v)(s)
]
ds.

The invariant space for solving this integral equation corresponds to a scaling invariance prop-
erty of the equation. Assume that (v, p) solves (1.1). Then, the same is true for rescaled
functions:

vλ(t, x) = λv(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx), λ > 0.(1.4)

Under these scalings, L3, Ḣ
1
2 , Ẇ

3
p
−1,p

and Ḃ
3
p
−1

p,q are critical spaces for initial data (t = 0), i.e.,
the corresponding norms are invariants under these scaling. One can find various well-posedness
results for small data in these critical spaces in [6, 7, 9, 21, 29, 30, 40].

The goal of this paper is threefold:

(i) analyticity of mild solutions in critical Besov spaces,
(ii) decay of Besov norms of weak solutions, and
(iii) a new regularity condition in Besov spaces.

More details of these three topics will be presented in section 1.1, section 1.2, and section 1.3
respectively.

1.1. Analyticity of mild solution. Let us begin with analyticity results of this paper. Com-
pared to previous works by [15, 23, 37] (derivative estimations), [4] (lp space on T

3), and [25, 26]
(complexified equations), we are able to establish analyticity of the Navier-Stokes equations

by obtaining Gevrey estimates in Besov spaces Ḃ
3
p
−1

p,q . Namely, we will show that a solution

v(t) ∈ Ḃ
3
p
−1

p,q satisfies supt>0 ‖e
√

tΛv(t)‖
Ḃ

3
p−1

p,q

< ∞, where Λ is the Fourier multiplier whose
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symbol is given by |ξ|1 =

3∑

i=1

|ξi|. We emphasize that here Λ ≡ Λ1 is quantified by the l1 norm

rather than the usual l2 norm associated with Λ2 := (−∆)
1
2 . This approach enables one to

avoid cumbersome recursive estimation of higher order derivatives.

In order to explain the main idea, we define V (t) = e
√

tΛv(t). Then, V (t) satisfies the
following equation:

V (t) = e
√

tΛ+t∆v0 −
∫ t

0

[
e[
√

tΛ+(t−s)∆]
P∇ · (e−

√
sΛV (s)⊗ e−

√
sΛV (s))

]
ds

= e
√

tΛ+t∆v0 −
∫ t

0

[
e[(

√
t−√

s)Λ+(t−s)∆]
P∇ · e

√
sΛ(e−

√
sΛV (s)⊗ e−

√
sΛV (s))

]
ds.

Since e
√

t|ξ|1 is dominated by e−t|ξ|2 for |ξ| � 1, the behavior of the linear term, e
√

tΛ+t∆v0,
closely resembles that of v(t). The estimates of the nonlinear term are similar to those of v(t)
due to the nice boundedness property of the bilinear operator Bs:

Bs(f, g) = e
√

sΛ
(
e−

√
sΛf(s)e−

√
sΛg(s)

)
.

As noticed from the above argument, the existence result of v(t) is crucial in establishing
Gevrey regularity. Thus, in section 3 (for p <∞) and section 4 (for p = ∞), we will first show
the existence of a mild solution and then proceed to explain how to modify the existence proof
to obtain Gevrey regularity.

Compared to previous works in [19, 39], where they defined Gevrey norms of the form

‖e
√

tΛ2v(t)‖X with a L2 based space Sobolev space X , the use of Λ instead of Λ2 is fundamental
for the estimates of Bs in Lp based function spaces. A similar approach using Λ in Lp-spaces
was taken by [34]. However, our results cover a larger Besov class of initial data in the full
range of p, q ∈ [1,∞], and the same method can be applied to other dissipative equations; see
for example [1, 2].

We now present our existence/analyticity results for p < ∞ and p = ∞ separately. For
notational simplicity, we will suppress the dependence of norms (defined below) on q.

1.1.1. The case p < ∞. The existence of global-in-time solutions for small data in Ḃ
3
p
−1

p,q for
p < ∞ was proved by Chemin [9]. The result indicates a gain of two derivatives from the
maximal regularity of the heat kernel, which is realized in terms of the function space Ep,

Ep :=
{
u ∈ S

′
: ‖u‖Ep = ‖u‖

L̃∞
t Ḃ

3
p−1

p,q

+ ‖u‖
L̃1

t Ḃ
3
p +1

p,q

<∞
}
,

where

‖u‖
L̃∞

t Ḃ
3
p−1

p,q

=




∑

j∈Z

2j( 3
p
−1)q‖4ju‖q

L∞
t Lp





1
q

, ‖u‖
L̃1

t Ḃ
3
p +1

p,q

=




∑

j∈Z

2j( 3
p
+1)q‖4ju‖q

L1
t Lp





1
q

with the usual change for q = ∞.
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Theorem 1.1 (Existence [9]). . Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and v0 ∈ Ḃ
3
p
−1

p,q . There exists a

constant ε0 > 0 such that for all v0 ∈ Ḃ
3
p
−1

p,q with ‖v0‖
Ḃ

3
p−1

p,q

≤ ε0, the NS equations (1.2) admit

a global-in-time solution v ∈ Ep. Moreover, if q <∞, v ∈ CtḂ
3
p
−1

p,q .

The first result of this paper is showing that solutions of Theorem 1.1 are, in fact, analytic
in the following sense.

Theorem 1.2 (Analyticity). There exists a positive constant ε0 > 0 such that for all v0 ∈ Ḃ
3
p
−1

p,q

with ‖v0‖
Ḃ

3
p−1

p,q

≤ ε0, the NS equations (1.2) admit a solution v ∈ Ep such that e
√

tΛv ∈ Ep.

1.1.2. The case p = ∞. The case of Ḃ−1
∞,q data, corresponding to p = ∞, is much harder

because the Navier-Stokes equations are ill-posed in Ḃ−1
∞,q for q > 2 ([5, 22, 51]). To circumvent

the difficulty in this case, we prove the existence of solutions subject to a restricted class of
initial data in Ḃ−1

∞,q ∩ Ḃ0
3,∞, 1 ≤ q <∞. The corresponding function space is defined as follows.

E∞ :=

{
u ∈ S

′
: ‖u‖E∞ = ‖u‖L̃∞

t Ḃ0
3,∞

+ sup
t>0

[
‖u(t)‖

Ḃ−1
∞,q

+ t
3
4 ‖u(t)‖

Ḃ
1
2
∞,q

]}
.

Compared to the time-integrated gain of two derivatives we had in the case p < ∞, here we
have pointwise-in-time gain of regularity of order 3

2 , which is realized in E∞.

Theorem 1.3 (Existence). Let 1 ≤ q < ∞ and v0 ∈ Ḃ−1
∞,q ∩ Ḃ0

3,∞. There exists a constant

ε0 > 0 such that for all v0 ∈ Ḃ−1
∞,q ∩ Ḃ0

3,∞ with ‖v0‖Ḃ−1
∞,q

+ ‖v0‖Ḃ0
3,∞

≤ ε0, the NS equations

(1.2) admit a global-in-time solution v ∈ E∞.

Remark 1.1. We note that one can replace Ḃ0
3,∞ with other auxiliary spaces, Ḃ

3
p
−1

p,∞ , 3 ≤ p <∞
in Theorem 1.1. We choose the former because it is closely related to spaces appearing in the
regularity criterion [16] with initial data in L3. Also, we choose q <∞ to avoid the embedding

Ḃ0
3,∞ ⊂ Ḃ−1

∞,∞.

Once we show the existence of a solution of (1.3) in E∞, we can show the following analyticity
result along the lines of the proof of Theorem 1.2 and Theorem 1.3.

Theorem 1.4 (Analyticity). There exists a positive constant ε0 > 0 such that for all v0 ∈
Ḃ−1

∞,q ∩ Ḃ0
3,∞ with ‖v0‖Ḃ−1

∞,q
+ ‖v0‖Ḃ0

3,∞
≤ ε0, the NS equations (1.2) admit a solution v ∈ E∞

such that e
√

tΛv ∈ E∞.

1.2. Decay of weak solution. As an application of analyticity of solutions addressed above,
we will estimate decay rates of weak solutions. Most of decay results have been based on L2

estimations as one can see in [38, 39, 42, 41, 43, 44, 45, 50]. Here, we obtain the decay of

weak solutions in Besov spaces Ḃ
3
p
−1

p,q for all p. Before presenting our result, we recall the usual

notion of a weak solution, v(t) ∈ L∞
t L

2 ∩ L2
t Ḣ

1, satisfying (1.2) in the sense of distributions
and the additional energy inequality,

‖v(t)‖2
L2 +

∫ t

0
‖∇v(s)‖2

L2ds ≤ ‖v0‖2
L2.
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The fundamental theorem of Leray [35] states the existence of such weak solutions for initial
data v0 ∈ L2 with ∇ · v0 = 0.

We now briefly explain the main idea of the decay estimates: (i) The energy inequality
implies that lim inf

t→∞
‖v(t)‖

Ḣ1 = 0. If we show that Besov norms ‖v(t)‖
Ḃ

3
p−1

p,q

can be controlled

by Ḣ1 norm, then ‖v(t0)‖
Ḃ

3
p−1

p,q

becomes sufficiently small after a certain transient time t0. (ii)

Theorem 1.2 and Theorem 1.4 tell us that if initial data are sufficiently small in critical spaces

Ḃ
3
p
−1

p,q , then the solution satisfies the estimate ‖e
√

tΛv(t)‖
Ḃ

3
p−1

p,q

globally in time. Combining

these two observation, we will show the following decay estimates of weak solutions in section
5.

Theorem 1.5 (Decay). Let v be a weak solution of the three dimensional Navier-Stokes equa-
tions, subject to initial data v0 ∈ L2 and, in addition ω0 = ∇ × v0 ∈ L1 in case 1 < p < 2.
Then, there exists a time t0 > 0 such that ‖v(t0)‖

Ḃ
3
p−1

p,q

becomes sufficiently small so that The-

orem 1.2 or Theorem 1.4 hold for p < ∞ and , respectively, p = ∞. Moreover, the following
decay estimate holds for ζ > 0,

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

≤ Cζ‖v(t0)‖
Ḃ

3
p−1

p,q

(t− t0)
− ζ

2 , Cζ = ‖Λζ
2e

−Λ‖L1,

{
q ≥ 2 for p ≥ 2,
q ≥ p

p−1 for 1 < p < 2.

Remark 1.2. By the Sobolev embedding, one can easily extend previous L2 decay results to
obtain decay rates in Lp spaces, p > 2. However, the decay rates for p < 2 are new.

Remark 1.3. This decay rate satisfies the Petrowsky parabolicity condition [48].

Remark 1.4. The case p = q = 2 corresponds to the upper bound of decay rate in [39]. In
that paper, however they assumed the following two conditions to the solution itself: (a) there

exist positive real numbers M1 and γ which may depend on v0 such that ‖v(t)‖2
L2 ≤ M1

(1 + t)γ

for all t ≥ 0 and (b) for r ≥ 3

2
, lim inf

t→∞
‖v(t)‖Hr < ∞. By contrast, we do not need these two

conditions to obtain the decay estimate asserted in theorem 1.5.

1.3. Regularity condition. As a related subject, we will provide a Serrin-type regularity
criterion in Besov spaces. The Serrin criterion [46] says that the Leray weak solution v is

smooth for t ∈ (0, T ] if v ∈ Lr(0, T ;Ls), with
2

r
+

3

s
= 1. We would like to show a new

regularity criterion in Besov spaces with less regularity.

Theorem 1.6. There exists a smooth solution of the Navier-Stokes equation on the time in-
terval [0, T ] for smooth initial data v0 if on any time interval [T − t, T ],

(1.5) (T − t)
1
q ‖v(t)‖Ḃσ

p,∞






≤ C, t < T,

→ 0, t 7→ T,

2

q
+

3

p
− σ = 1, 3 ≤ p ≤ ∞, 2 < q <∞.

Remark 1.5. Theorem 1.6 generalizes the Serrin’s regularity condition and other related results
in two aspects: (i) σ can be negative and (ii) for σ = 0, ‖v(t)‖Ḃ0

p,∞
≤ ‖v(t)‖Lp.
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Remark 1.6. Compared to a new regularity criterion obtained by [10] in Lq(0, T ;B
2
q
−1

∞,∞) for

2 < q <∞, where their result is better than our result in the spatial variables by Ḃ
2
q
−1

∞,∞ ⊂ B
2
q
−1

∞,∞
for a negative regularity index 2

q−1, our result improves the criterion in the time variable because

the time singularity (T − t)−
1
q is in the weak Lq space, which contains the Lq space. Moreover,

our proof is much simpler. However, our method cannot cover several known results due to the
missing end point q = ∞: for example, L∞(0, T ;L3) in [16] and C((0, T ];B−1

∞,∞) in [10].

2. Notations: the Littlewood-Paley decomposition and paraproducts

We begin with some notations. Lp(0, T ;X) denotes the Banach set of Bochner measurable

functions f from (0, T ) to X endowed with either the norm
(∫ T

0
‖f(·, t)‖p

Xdt
) 1

p
for 1 ≤ p <∞

or sup
0≤t≤T

‖f(·, t)‖X for p = ∞. For T = ∞, we use Lp
tX instead of Lp(0,∞;X). For a sequence

{aj}j∈Z, {aj}lq :=
(∑

j∈Z

|aj|q
) 1

q , with the usual change for q = ∞. Finally, A . B means there

is a constant C such that A ≤ CB.
We next provide notation and definitions in the Littlewood-Paley theory. We take a couple of

smooth functions (χ, ϕ) supported on {ξ; |ξ| ≤ 1} with values in [0, 1] such that for all ξ ∈ R
d,

χ(ξ) +

∞∑

j=0

ψ(2−jξ) = 1, ψ(ξ) = ϕ(
ξ

2
) − ϕ(ξ)

and we denote ψ(2−jξ) by ψj(ξ). The homogeneous dyadic blocks and lower frequency cut-off
functions are defined by

4ju = 2jd

∫

Rd

h(2jy)u(x− y)dy, Sju = 2jd

∫

Rd

h̃(2jy)u(x− y)dy,(2.1)

with h = F−1ψ and h̃ = F−1χ. Then, we can define the homogeneous Littlewood-Paley
decomposition by

u =
∑

j∈Z

4ju in S
′

h,(2.2)

where S
′

h is the space of tempered distributions u such that lim
j→−∞

Sju = 0 in S
′
. Using this

decomposition, we define stationary/ time dependent homogeneous Besov spaces as follows:

Ḃs
p,q =

{
f ∈ S

′

h ; ‖f‖Ḃs
p,q

:=
( ∑

j∈Z

2jsq
∥∥4jf

∥∥q

Lp

) 1
q
<∞

}
,

Lr(0, T ; Ḃs
p,q) =

{
f ∈ S

′

h ; ‖f‖Lr(0,T ;Ḃs
p,q)

:=
∥∥∥
( ∑

j∈Z

2jsq‖4jf‖q
Lp

) 1
q
∥∥∥

Lr(0,T )
<∞

}
,

L̃r(0, T ; Ḃs
p,q) =

{
f ∈ S

′

h ; ‖f‖L̃r(0,T ;Ḃs
p,q)

:=
(∑

j∈Z

2jsq‖4jf‖q
Lr(0,T ;Lp)

) 1
q
<∞

}

(2.3)
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with the usual change if q = ∞. According to the Minkowski inequality, we have

‖f‖L̃r(0,T ;Ḃs
p,q)

≤ ‖f‖Lr(0,T ;Ḃs
p,q)

if r ≤ q,

‖f‖L̃r(0,T ;Ḃs
p,q)

≥ ‖f‖Lr(0,T ;Ḃs
p,q)

if r ≥ q.
(2.4)

The concept of paraproduct enables to deal with the interaction of two functions in terms of
low or high frequency parts, [8]. For two tempered distributions f and g,

fg = Tfg + Tgf + R(f, g),

Tfg =
∑

i≤j−2

4if4jg =
∑

j∈Z

Sj−1f4jg, R(f, g) =
∑

|j−j
′ |≤1

4jf4j
′ g.(2.5)

Then, up to finitely many terms,

4j(Tfg) = Sj−1f4jg, 4jR(f, g) =
∑

k≥j−2

4kf4kg.(2.6)

In section 3, we will use the following decomposition:

fg =
∑

j∈Z

Sjf4jg +
∑

j∈Z

Sjf4jg.(2.7)

Again, up to finitely many terms, we have

4j(fg) =
∑

k≥j−2

Skf4kg +
∑

k≥j−2

4kfSkg.(2.8)

We finally recall a few inequalities which will be used in the sequel.

Bernstein’s inequality [8]. For 1 ≤ p ≤ q ≤ ∞ and k ∈ N,

sup
|α|=k

‖∂α4jf‖Lp ' 2jk‖4jf‖Lp , ‖4jf‖Lq . 2
jd( 1

p
− 1

q
)‖4jf‖Lp .(2.9)

Localization of the heat kernel [9].

‖et∆4jf‖Lp . e−t22j‖4jf‖Lp .(2.10)

3. The case p <∞: proof of Theorem 1.1 (existence) and Theorem 1.2
(analyticity)

In this section, we prove Theorem 1.2, analyticity of the Navier-Stokes equations with small

initial data in Ḃ
3
p
−1

p,q , with p <∞. The proof is based on an adequate modification of the proof
Theorem 1.1. Therefore, we begin with the detailed existence proof of [9].
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3.1. Proof of Theorem 1.1. We recall the definition of the function space Ep,

Ep =
{
u ∈ S

′
: ‖u‖Ep = ‖u‖

L̃∞
t Ḃ

3
p−1

p,q

+ ‖u‖
L̃1

t Ḃ
3
p +1

p,q

<∞
}
.(3.1)

We construct a solution in the integral form: v(t) = et∆v0 − B(v, v), where the bilinear form
B is

B(u, v) =

∫ t

0

[
e(t−s)∆

P∇ · (u⊗ v)(s)
]
ds.(3.2)

We only need to show that B maps Ep × Ep to Ep. We first decompose the product u⊗ v as
paraproduct (2.7). Then, B can be decomposed as

B(u, v) = B1(u, v)+B2(u, v), B1(u, v) =
∑

j∈Z

B(Sju⊗4jv), B2(u, v) =
∑

j∈Z

B(Sjv⊗4ju).

We now estimate B1 in Ep. We apply 4j to B1 and take the Lp norm. By Bernstein’s
inequality (2.9) and localization of the heat kernel as (2.10), we have

‖4jB1(u, v)‖Lp .
∑

k≥j−2

2i

∫ t

0

[
e−(t−s)22k‖Sku(s)4kv(s)‖Lp

]
ds

≤
∑

k≥j−2

2i

∫ t

0

[
e−(t−s)22k‖Sku(s)‖L∞‖4kv(s)‖Lp

]
ds.

(3.3)

By Bernstein’s inequality (2.9),

‖Sku‖L∞ ≤
∑

l≤k−1

‖4lu‖L∞ .
∑

l≤k−1

2
l 3
p ‖4lu‖Lp =

∑

l≤k−1

2l2
l( 3

p
−1)‖4lu‖Lp .

Therefore, we can replace the right-hand side of (3.3) by

(3.4) ‖4jB1(u, v)‖Lp .
∑

k≥j−2

2j

∫ t

0

[
e−(t−s)22k

( ∑

l≤k−1

2l2
l( 3

p
−1)‖4lu(s)‖Lp

)
‖4kv(s)‖Lp

]
ds.

By taking the L∞ norm of (3.4) in time with the aid of Young’s inequality in time, we obtain

‖4jB1(u, v)‖L∞
t Lp .

∑

k≥j−2

2j
[ ∑

l≤k−1

2l2
l( 3

p
−1)‖4lu‖L∞

t Lp

]
‖4kv‖L1

t Lp

. ‖u‖
L̃∞

t Ḃ
3
p−1

p,q

∑

k≥j−2

2j2k‖4kv‖L1
t Lp

≤ ‖u‖Ep

∑

k≥j−2

2j2−k( 3
p
)2k( 3

p
+1)‖4kv‖L1

t Lp .

(3.5)

We multiply (3.5) by 2
j( 3

p
−1)

. Then,

2
j( 3

p
−1)‖4jB1(u, v)‖L∞

t Lp . ‖u‖Ep

∑

k≥j−2

2
−(k−j)( 3

p
)
2

k( 3
p
+1)‖4kv‖L1

t Lp .(3.6)
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Since 3
p > 0, we can use Young’s inequality to estimate the right-hand side of (3.6) with respect

to lq. Namely, we let aj = 2−j( 3
p
) and bj = 2j( 3

p
+1)‖4jv‖L1

t Lp and apply Young’s inequality to∑

k≥j−2

ak−jbk to obtain

‖B1(u, v)‖
L̃∞

t Ḃ
3
p−1

p,q

. ‖u‖Ep‖v‖
L̃1

t Ḃ
3
p +1

p,q

≤ ‖u‖Ep‖v‖Ep.(3.7)

Similarly, we can obtain the L1 in time estimation of B1(u, v). By taking the L1 norm in time
to (3.4) and applying Young’s inequality in time,

‖4jB1(u, v)‖L1
tLp . ‖u‖Ep2

−2j
∑

k≥j−2

2j2
−k( 3

p
)
2

k( 3
p
+1)‖4kv‖L1

t Lp .(3.8)

We multiply (3.8) by 2
j( 3

p
+1)

. Then,

2j( 3
p
+1)‖4jB1(u, v)‖L1

tL
p . ‖u‖Ep

∑

k≥j−2

2−(k−j)( 3
p
)2k( 3

p
+1)‖4kv‖L1

t Lp

from which we have

‖B1(u, v)‖
L̃1

tḂ
3
p +1

p,q

. ‖u‖Ep‖v‖Ep.(3.9)

Therefore, we conclude that ‖B1(u, v)‖Ep . ‖u‖Ep‖v‖Ep. By the symmetry of the paraproduct
of B(u, v), we finally have

‖B(u, v)‖Ep . ‖u‖Ep‖v‖Ep,(3.10)

which completes the proof.

Remark 3.1. We will need to apply Young’s inequality to sequences several times to estimate
sequences having the convolution structure. Since the structure of sequences appearing later
(for example, (4.5), (4.9) , (4.10) and (6.3)) is exactly of the form used to obtain (3.7), we will
apply Young’s inequality to sequences without defining {aj} and {bj} each time.

3.2. Preliminaries. The proof of Theorem 1.2 in this section and likewise, Theorem 1.4 in
section 4, requires a couple of elementary inequalities which are summarized in the following
two lemmas.

Lemma 3.1. Consider the operator E := e−[
√

t−s+
√

s−
√

t]Λ for 0 ≤ s ≤ t. Then E is either the
identity operator or is an L1 kernel whose L1 norm is bounded independent of s, t.

Proof. Clearly, a :=
√
t− s +

√
s −

√
t is non-negative for s ≤ t. In case a = 0, E = e−aΛ is

the identity operator, while if a > 0, E = e−aΛ is a Fourier multiplier with symbol Ê(ξ) =∏d
i=1 e

−a|ξi|. Thus, the kernel of E is given by the product of one dimensional Poisson kernels∏d
i=1

a
π(a2+x2

i )
. The L1 norm of this kernel is bounded by a constant independent of a.

Lemma 3.2. The operator E = e
1
2
a∆+

√
aΛ is a Fourier multiplier which maps boundedly

Lp 7→ Lp, 1 < p <∞, and its operator norm is uniformly bounded with respect to a ≥ 0.

Proof. When a = 0, E is the identity operator. When a > 0, then E is Fourier multiplier

with symbol Ê(ξ) = e−
1
2
|√aξ|2+|√aξ|1. Since Ê(ξ) is uniformly bounded for all ξ and decays

exponentially for |ξ| � 1, the claim follows from Hormander’s multiplier theorem, e.g., [47].
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3.3. Proof of theorem 1.2. We are now ready to prove Theorem 1.2. For the notational
simplicity, we define a function space Fp such that

Fp =
{
v(t) ∈ Ep ; e

√
tΛv(t) ∈ Ep

}
.

We only need to show that B in (3.2) is bounded from Fp × Fp to Fp. To this end, we first

apply e
√

tΛ to B in (3.2).

e
√

tΛ
B(u, v) = e

√
tΛ

∫ t

0

[
e(t−s)∆

P∇ · (u⊗ v)(s)
]
ds.(3.11)

Let U(s) = e
√

sΛu, V (s) = e
√

sΛv, with U, V ∈ Ep. Then,

e
√

tΛ
B(u, v) = e

√
tΛ

∫ t

0

[
e(t−s)∆

P∇ · (e−
√

sΛU ⊗ e−
√

sΛV )(s)
]
ds.(3.12)

We rewrite (3.12) as

e
√

tΛ
B(u, v) =

∫ t

0

[
e(

√
t−√

s)Λe
1
2
(t−s)∆e

1
2
(t−s)∆e

√
sΛ

P∇ · (e−
√

sΛU ⊗ e−
√

sΛV )(s)
]
ds.(3.13)

We apply 4j to (3.13) and take the Lp norm. By Lemma 3.1 and Lemma 3.2, we have

(3.14) ‖4je
√

tΛ
B(u, v)‖Lp .

∫ t

0

[
e−

1
2
(t−s)22j

2j
∥∥e

√
sΛ4j

(
e−

√
sΛU ⊗ e−

√
sΛV )(s)

)∥∥
Lp

]
ds.

To deal with the right-hand side of (3.14), we decompose the product e−
√

sΛU ⊗ e−
√

sΛV as

e−
√

sΛU ⊗ e−
√

sΛV =
∑

j∈Z

(
e−

√
sΛSjU

)
⊗

(
e−

√
sΛ4jV

)
+

∑

j∈Z

(
e−

√
sΛ4jU

)
⊗

(
e−

√
sΛSjV

)
.

Then,

‖4je
√

tΛ
B(u, v)‖Lp ≤

∫ t

0

∑

k≥j−2

[
e−

1
2
(t−s)22j

2j
∥∥e

√
sΛ

(
e−

√
sΛSkU ⊗ e−

√
sΛ4kV )(s)

∥∥
Lp

]
ds

+

∫ t

0

∑

k≥j−2

[
e−

1
2
(t−s)22j

2j
∥∥e

√
sΛ

(
e−

√
sΛ4kU ⊗ e−

√
sΛSkV )(s)

∥∥
Lp

]
ds.

(3.15)

To estimate the right-hand side of (3.15), we introduce the bilinear operators Bt of the form

Bt(f, g) = e
√

tΛ(e−
√

tΛfe−
√

tΛg) =

∫

R3

∫

R3

eix·(ξ+η)e
√

t(|ξ+η|1−|ξ|1−|η|1)f̂ (ξ)ĝ(η)dξdη.

Recall that for a vector ξ = (ξ1, ξ2, ξ3), we denoted ‖ξ‖1 =

3∑

i=1

|ξi|. As one can see below,

this l1 version of Λ instead of the usual l2 version of Λ is crucial to estimate Bt. For ξ =
(ξ1, ξ2, ξ3), η = (η1, η2, η3), we now split the domain of integration of the above integral into
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sub-domains depending on the sign of ξj, ηj and ξj + ηj. In order to do so, we introduce the
operators acting on one variable (see page 253 in [33]) by

K1f =
1

2π

∫ ∞

0
eıxξf̂ (ξ) dξ, K−1f =

1

2π

∫ 0

−∞
eıxξf̂(ξ) dξ.

Let the operators La,−1 and La,1 be defined by

La,1f = f, La,−1f =
1

2π

∫

R

eıxξe−2a|ξ|f̂(ξ) dξ.

For ~α = (α1, α2, α3), ~β = (β1, β2, β3) ∈ {−1, 1}3, denote the operator

Z
a,~α,~β

= Kβ1Lt,α1β1 ⊗ · · · ⊗Kβ3Lt,α3β3 and K~α = Kα1 ⊗Kα2 ⊗Kα3.

The above tensor product means that the j−th operator in the tensor product acts on the
j−th variable of the function f(x1, x2, x3). A tedious (but elementary) calculation now yields
the following identity:

Bt(f, g) =
∑

(~α,~β,~γ)∈{−1,1}3×3

Kα1 ⊗Kα2 ⊗Kα3

(
Z

t,~α,~β
fZt,~α,~γg

)
,(3.16)

We now note that the operators K~α, Za,~α,~β
defined above, being linear combinations of Fourier

multipliers (including Hilbert transform) and the identity operator, commute with Λ. Moreover,
they are bounded linear operators on Lp, 1 < p < ∞ and the corresponding operator norm of
Z

t,~α,~β
is bounded independent of t ≥ 0. By taking the Lp norm to (3.16), we have

‖Bt(f, g)‖Lp . ‖Z
t,~α,~β

fZt,~α,~γg‖Lp.

We now apply this argument the right-hand side of (3.15). Then,

‖e
√

tΛ
B(u, v)‖Lp .

∫ t

0

∑

k≥j−2

[
e−

1
2
(t−s)22j

2j‖ZSkU ⊗ Z4kV ‖Lp

]
ds

+

∫ t

0

∑

k≥j−2

[
e−

1
2
(t−s)22j

2j‖Z4kU ⊗ ZSkV ‖Lp

]
ds,

(3.17)

where we denote Z without indices t, ~α, ~β for the notational simplicity. By Bernstein’s inequality
(2.9), we have

‖ZSku‖L∞ ≤
∑

l≤k−1

‖Z4lu‖L∞ .
∑

l≤k−1

‖4lZu‖L∞

.
∑

l≤k−1

2l 3
p ‖4lZu‖Lp .

∑

l≤k−1

2l2l( 3
p
−1)‖4lu‖Lp ,

where we use the fact that Z commutes with 4l and the boundedness of Z on Lp. Therefore,
we can follow the lines from (3.4) to (3.10) in proof of Theorem 1.1 to obtain

‖B(u, v)‖Fp . ‖U‖Ep‖V ‖Ep ≤ ‖u‖Fp‖v‖Fp,(3.18)

which completes the proof.
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4. The case p = ∞: proof of theorem 1.3 (existence) and Theorem 1.4
(analyticity)

We now show the well-posedness and analyticity for the Navier-Stokes equations of the
limiting case p = ∞. To this end, we recall the definition of the space E∞

E∞ :=

{
u ∈ S

′
: ‖u‖E∞ = ‖u‖L̃∞

t Ḃ0
3,∞

+ sup
t>0

[
‖v(t)‖Ḃ−1

∞,q
+ t

3
4 ‖v(t)‖

Ḃ
1
2
∞,q

]}
.

As one can see below, we need to obtain two additional estimates t
1
4‖v(t)‖

Ḃ
−1

2
∞,q

and t
1
2‖v(t)‖Ḃ0

∞,q
.

(See (4.10), (4.14) and (4.18)). These terms can be obtained by interpolating ‖v(t)‖Ḃ−1
∞,q

and

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

, but we proceed the proof by establishing bounds in K∞ whose norm is given by

‖v‖K∞ = sup
t>0

[
‖v(t)‖Ḃ−1

∞,q
+ t

1
4‖v(t)‖

Ḃ
−1

2
∞,q

+ t
1
2‖v(t)‖Ḃ0

∞,q
+ t

3
4 ‖v(t)‖

Ḃ
1
2
∞,q

]
(4.1)

to avoid complicated expressions coming from the interpolation. The time weights appearing
in (4.1) will be introduced below through the Gaussian bound,

|ξ|ae−t|ξ|2 . t−
a
2 .(4.2)

In addition, we will use the following lemma repeatedly in the proof of Theorem 1.3.

Lemma 4.1. For any 0 < a < 1 and 0 < b < 1,

∫ t

0

[
(t− s)−as−b

]
ds . t1−a−b.

The result follows by decomposing the time integral into two parts,

∫ t

0

[
(t− s)−as−b

]
ds =

∫ t
2

0

[
(t− s)−as−b

]
ds+

∫ t

t
2

[
(t− s)−as−b

]
ds

. t−a

∫ t
2

0

s−bds+ t−b

∫ t

t
2

(t− s)−ads.

4.1. Proof of theorem 1.3. As we did in the proof Theorem 1.2, we need to show that B

maps E∞ × E∞ to E∞. Since we already estimated the bilinear term B in Ḃ0
3,∞ in Theorem

1.1, we only need to show that B maps from E∞ ×E∞ to K∞. We decompose u⊗ v as (2.5).
Then,

B(u, v) =

∫ t

0

[
∇e(t−s)∆

P(Tu ⊗ v + Tv ⊗ u+ R(u⊗ v))
]
ds

:= B1(u, v) + B2(u, v) + B3(u, v).

(4.3)
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Estimation of B3(u, v). We estimate B3 first, where we need the auxiliary norm ‖u‖L∞
t Ḃ0

3,∞
.

By Bernstein’s inequality (2.9) and localization of the heat kernel (2.10),

‖4jB3(u, v)(t)‖L∞ . 2j‖4jB3(u, v)(t)‖L3

.

∫ t

0

[
22je−(t−s)22j

∑

k≥j−2

‖4ku(s)‖L3‖4kv(s)‖L∞

]
ds

. ‖u‖L∞
t Ḃ0

3,∞

∫ t

0

[
2

3j
2 e−(t−s)22j ∑

k≥j−2

2
j−k
2 2

k
2 ‖4kv(s)‖L∞

]
ds

≤ ‖u‖E∞

∫ t

0

[
2

3j
2 e−(t−s)22j

∑

k≥j−2

2
j−k
2 2

k
2 ‖4kv(s)‖L∞

]
ds.

(4.4)

We will repeatedly use (4.4) to estimate B3(u, v) in K∞. To estimate B3(u, v) in L∞
t Ḃ

−1
∞,q , we

multiply (4.4) by 2−j . Then,

2−j‖4jB3(u, v)(t)‖L∞ . ‖u‖E∞

∫ t

0

[
2

j
2 e−(t−s)22j ∑

k≥j−2

2
j−k
2 2

k
2 ‖4kv(s)‖L∞

]
ds

. ‖u‖E∞

∫ t

0

[
(t− s)−

1
4 s−

3
4

∑

k≥j−2

2
j−k
2 s

3
4 2

k
2 ‖4kv(s)‖L∞

]
ds.

(4.5)

By taking the lq norm to (4.5) with the aid of Young’s inequality (as mentioned in Remark
3.1), we have

‖B3(u, v)(t)‖Ḃ−1
∞,q

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

0

[
(t− s)−

1
4 s−

3
4

]
ds.

Therefore, Lemma 4.1 implies that

(4.6) ‖B3(u, v)(t)‖Ḃ−1
∞,q

. ‖u‖E∞‖v‖E∞.

We will do the same calculation to estimate B3 for the next two terms in (4.1) without details.

(4.7) ‖B3(u, v)(t)‖
Ḃ

−1
2

∞,q

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

0

[
(t− s)−

1
2 s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
1
4

.

(4.8) ‖B3(u, v)(t)‖Ḃ0
∞,q

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

0

[
(t− s)−

3
4 s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
1
2

.

To estimate t
3
4‖B3(u, v)(t)‖

Ḃ
1
2
∞,q

, we need to divide the time integration into two parts.

2
j
2‖4jB3(u, v)(t)‖L∞ . 2

3j
2

∫ t
2

0

[
2je−(t−s)22j ∑

k≥j−2

‖4ku(s)‖L∞‖4kv(s)‖L3

]
ds

+ 2
j
2

∫ t

t
2

[
2je−(t−s)22j

∑

k≥j−2

‖4ku(s)‖L∞‖4kv(s)‖L∞

]
ds

= Ij + IIj.



14 HANTAEK BAE, ANIMIKH BISWAS, AND EITAN TADMOR

We begin with Ij. By Bernstein’s inequality (2.9),

Ij =

∫ t
2

0

[
22je−(t−s)22j

2
j
2

∑

k≥j−2

‖4ku(s)‖L3‖4kv(s)‖L∞

]
ds

.

∫ t
2

0

[ 1

t− s

∑

k≥j−2

‖4ku(s)‖L32
j−k
2 2

k
2 ‖4kv(s)‖L∞

]
ds

≤ ‖u‖L∞
t Ḃ0

3,∞

∫ t
2

0

[ 1

t− s

∑

k≥j−2

2
j−k
2 2

k
2 ‖4kv(s)‖L∞

]
ds

≤ ‖u‖E∞

∫ t
2

0

[ 1

t− s

∑

k≥j−2

2
j−k
2 2

k
2 ‖4kv(s)‖L∞

]
ds.

Using Young’s inequality, we obtain that

(4.9)
{
Ij

}
lq

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t
2

0

[
(t− s)−1s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
3
4

.

Next, we estimate IIj.

IIj .

∫ t

t
2

[
(t− s)−

1
2

∑

k≥j−2

2
j−k
2 2

k
2 ‖4ku(s)‖L∞‖4kv(s)‖L∞

]
ds

=

∫ t

t
2

[
(t− s)−

1
2 s−

3
4 s−

1
2

∑

k≥j−2

2
j−k
2 s

1
2‖4ku(s)‖L∞s

3
4 2

k
2 ‖4kv(s)‖L∞

]
ds

from which we have

{
IIj

}
lq

.
[
sup
t>0

t
1
2‖v(t)‖Ḃ0

∞,q

][
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

t
2

[
(t− s)−

1
2 s−

3
4 s−

1
2

]
ds

.
‖u‖E∞‖v‖E∞

t
3
4

.

(4.10)

By (4.9) and (4.10), we have

‖B3(u, v)(t)‖
Ḃ

1
2
∞,q

.
‖u‖E∞‖v‖E∞

t
3
4

.(4.11)

Therefore, by (4.6), (4.7), (4.8), and (4.13),

‖B3(u, v)‖K∞ . ‖u‖E∞‖v‖E∞.(4.12)

Estimation of B1(u, v) and B2(u, v). Now, we estimate B1(u, v). By applying 4j to
B1(u, v) and taking the L∞ norm, we have

‖4jB1(u, v)(t)‖L∞ .

∫ t

0

[
2je−(t−s)22j‖Sju(s)‖L∞‖4jv(s)‖L∞

]
ds.

We note that we used the auxiliary norm ‖u‖Ḃ0
3,∞

to replace ‖4ku‖L∞ by ‖4ku‖L3 to gain one

derivative to estimate B3(u, v). Here, we can gain one derivative from Sju to estimate B1 and
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B2(u, v) as follows.

‖Sju‖L∞ .

j∑

l=−∞
‖4lu‖L∞ =

j∑

l=−∞
2l2−l‖4lu‖L∞ . 2j‖u‖Ḃ−1

∞,q
≤ 2j‖u‖E∞.(4.13)

We will use this property to estimate B1(u, v) for the first three terms in (4.1). We begin with
the estimation of ‖B1(u, v)‖L∞

t Ḃ−1
∞,q

.

2−j‖4jB1(u, v)(t)‖L∞ . ‖u‖E∞

∫ t

0

[
2je−(t−s)22j‖4jv(s)‖L∞

]
ds

. ‖u‖E∞

∫ t

0

[
(t− s)−

1
2 ‖4jv(s)‖L∞

]
ds

= ‖u‖E∞

∫ t

0

[
(t− s)−

1
2 s−

1
2 s

1
2‖4jv(s)‖L∞

]
ds

which implies, by lemma 4.1, that

(4.14) ‖B1(u, v)(t)‖Ḃ−1
∞,q

. ‖u‖E∞

[
sup
t>0

t
1
2‖v(t)‖Ḃ0

∞,q

] ∫ t

0

[
(t− s)−

1
2 s−

1
2

]
ds . ‖u‖E∞‖v‖E∞.

Again, we will use the same calculation to estimate B1(u, v) for the following two terms without
details.

(4.15) ‖B1(u, v)(t)‖
Ḃ

−1
2

∞,q

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

0

[
(t− s)−

1
2 s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
1
4

.

(4.16) ‖B1(u, v)(t)‖Ḃ0
∞,q

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

0

[
(t− s)−

3
4 s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
1
2

.

To estimate t
3
4‖B1(u, v)(t)‖

Ḃ
1
2
∞,q

, we need to divide the time integration into two parts.

2
j
2 ‖4jB1(u, v)(t)‖L∞ .

∫ t
2

0

[
2

j
2 2je−(t−s)22j‖Sju(s)‖L∞‖4jv(s)‖L∞

]
ds

+

∫ t

t
2

[
2

j
2 2je−(t−s)22j‖Sju(s)‖L∞‖4jv(s)‖L∞

]
ds

= IIIj + IVj.

We begin with IIIj. By (4.13),

IIIj . ‖u‖E∞

∫ t
2

0

[
22je−(t−s)22j

2
j
2‖4jv(s)‖L∞

]
ds.

Thus, we have

(4.17)
{
IIIj

}
lq

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t
2

0

[
(t− s)−1s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
3
4

.
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To estimate IVj, we slightly change the estimation of ‖Sju‖L∞ as follows:

‖Sju(s)‖L∞ .

j∑

l=−∞
‖4lu(s)‖L∞ =

j∑

l=−∞
2

l
2 s−

1
4 2−

l
2 s

1
4‖4lu(s)‖L∞

. 2
j
2 s−

1
4

[
sup
s>0

s
1
4‖u(s)‖

Ḃ
−1

2
∞,q

]
≤ 2

j
2 s−

1
4‖u‖E∞.

(4.18)

Therefore,

IVj . ‖u‖E∞

∫ t

t
2

[
2

3j
2 e−(t−s)22j

s−
1
4 2

j
2 ‖4jv(s)‖L∞

]
ds

. ‖u‖E∞

∫ t

t
2

[
(t− s)−

3
4 s−

1
4 2

j
2‖4jv(s)‖L∞

]
ds

which implies that

(4.19)
{
IV

}
lq

. ‖u‖E∞

[
sup
t>0

t
3
4‖v(t)‖

Ḃ
1
2
∞,q

] ∫ t

t
2

[
(t− s)−

3
4 s−

1
4 s−

3
4

]
ds .

‖u‖E∞‖v‖E∞

t
3
4

.

By (4.17) and (4.19), we have

‖B1(u, v)(t)‖
Ḃ

1
2
∞,q

.
‖u‖E∞‖v‖E∞

t
3
4

.(4.20)

Therefore, By (4.14), (4.15), (4.16), and (4.20),

‖B1(u, v)‖K∞ . ‖u‖E∞‖v‖E∞.(4.21)

Since B2(u, v) is of the form of B1(u, v) by changing the role of u and v, we have

‖B2(u, v)‖K∞ . ‖u‖E∞‖v‖E∞.(4.22)

Combining (4.12), (4.21), and (4.22), we finally have

‖B(u, v)‖K∞ . ‖u‖E∞‖v‖E∞(4.23)

which completes the proof of Theorem 1.3.

4.2. Proof of theorem 1.4. We can prove Theorem 1.4 along the lines the proof of Theorem
1.2 and Theorem 1.3. We define a function space F∞ such that

F∞ =
{
v(t) ∈ E∞ ; e

√
tΛv(t) ∈ E∞

}
.

We only need to show that B in (3.2) is bounded from F∞ × F∞ to F∞. Let U(s) =

e
√

sΛu, V (s) = e
√

sΛv, with U, V ∈ E∞. By replacing the Lp norm by the L∞ norm in (3.14),
we have

(4.24) ‖4je
√

tΛ
B(u, v)‖L∞ .

∫ t

0

[
e−

1
2
(t−s)22j

2j
∥∥e

√
sΛ4j

(
e−

√
sΛU ⊗ e−

√
sΛV

)
(s)

∥∥
L∞

]
ds.

Then, we decompose
(
e−

√
sΛU ⊗ e−

√
sΛV

)
as

Te−
√

sΛU ⊗ e−
√

sΛV + Te−
√

sΛV ⊗ e−
√

sΛU +R(e−
√

sΛU ⊗ e−
√

sΛV )
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and follows calculations in the proof of theorem 1.3. In general, K~α and Z
t,~α,~β

do not map L∞

to L∞. However, these operators are bounded in L∞ when localized in dyadic blocks in the
Fourier spaces. Therefore,

‖e
√

tΛ
B(u, v)‖K∞ . ‖U‖E∞‖V ‖E∞ ≤ ‖u‖F∞‖v‖F∞.(4.25)

Since we already obtained ‖e
√

tΛB(u, v)‖L∞
t Ḃ0

3,∞
in section 3, we finally have

‖B(u, v)‖F∞ . ‖u‖F∞‖v‖F∞.

This completes the proof of Theorem 1.4.

5. Proof of theorem 1.5: decay of Besov norms

In this section, we will obtain various decay estimates of weak solutions of the Navier-Stokes
equations in Besov spaces. We need the following lemma to proceed.

Lemma 5.1. The Fourier multipliers corresponding to the symbols m(ξ) = |ξ|ζe−
√

t|ξ|1 are

given by convolution with corresponding kernels k which is a L1 functions with ‖k‖L1 ≤ Cζ

tζ/2 .

Proof. For a proof of the L1 bound on k, we apply lemma 2.1 in [33] under the scaling: ξ 7→
t

1
2 ξ.

Theorem 1.2 and Theorem 1.4 tell us that if initial data are sufficiently small in critical

spaces Ḃ
3
p
−1

p,q , then the solution is globally in the Gevrey class. Then, lemma 5.1 allows us to
obtain the following time decay of (homogeneous) Besov norms:

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

= ‖Λζ
2e

−
√

tΛe
√

tΛv(t)‖
Ḃ

3
p−1

p,q

≤ Cζt
− ζ

2 ‖e
√

tΛv(t)‖
Ḃ

3
p−1

p,q

, ζ > 0,

where we recall that Λ2 = (−∆)
1
2 . If we can show that a solution v(t) satisfies

lim inf
t→∞

‖v(t)‖
Ḃ

3
p−1

p,q

= 0,(5.1)

then due to Theorem 1.2 and Theorem 1.4, after a certain transient time t0, we have

sup
t>t0

‖e
√

tΛv(t)‖
Ḃ

3
p−1

p,q

<∞.

Consequently, we obtain

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

≤ Cζ‖v(t0)‖
Ḃ

3
p−1

p,q

(t− t0)
− ζ

2 , ζ > 0,(5.2)

where ‖v(t0)‖
Ḃ

3
p−1

p,q

is sufficiently small to apply Theorem 1.2 or Theorem 1.4.
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5.1. Proof of theorem 1.5. We only need to show (5.1). For v0 ∈ L2, we have the following
energy inequality:

‖v(t)‖2
L2 +

∫ t

0
‖∇v(s)‖2

L2ds ≤ ‖v0‖2
L2.

This implies that

sup
t>0

‖v(t)‖2
L2 ≤ ‖v0‖2

L2, lim inf
t→∞

‖v(t)‖Ḣ1 = 0.(5.3)

In order to obtain the second relation in (5.3), for ε > 0 arbitrary, choose t large so that
1

t
‖v0‖2

L2 <
ε

4
. We note that the energy inequality yields

1

t

∫ t

0
‖∇v(s)‖2

L2 ≤ 1

t
‖v0‖2

L2. This

immediately implies that there exists t0 ∈ (0, t) such that ‖∇v(t0)‖2
L2 < ε. Due the uniform

bound on ‖v(t)‖L2, it also follows that lim inf
t→∞

‖u(t)‖
Ḣβ = 0 for 0 < β ≤ 1.

For p = q = 2, Ḃ
1
2
2,2 = Ḣ

1
2 . Thus by (5.2), we have

‖Λζ
2v(t)‖Ḣ

1
2
≤ Cζ‖v(t0)‖

Ḣ
1
2
(t− t0)

− ζ
2 , ζ > 0,(5.4)

where ‖v(t0)‖
Ḣ

1
2

is sufficiently small to apply Theorem 1.2.

For p > 2 and q ≥ 2, the embedding Ḣ
1
2 ⊂ Ḃ

3
p
−1

p,q implies that ‖v(t)‖
Ḃ

3
p−1

p,q

→ 0 as t → ∞.

Therefore,

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

≤ Cζ‖v(t0)‖
Ḃ

3
p−1

p,q

(t− t0)
− ζ

2 , ζ > 0,(5.5)

where ‖v(t0)‖
Ḃ

3
p−1

p,q

is sufficiently small to apply Theorem 1.2 for p < ∞ or Theorem 1.4 for

p = ∞ and q <∞.
To deal with the case p < 2, we will use the vorticity ω = ∇×v. From the vorticity equation,

ωt + v · ∇ω − ∆ω = ω∇v, we have ([11])

‖ω(t)‖L1 ≤ ‖v0‖2
L2 + ‖ω0‖L1.(5.6)

We will use this L1 vorticity bound to estimate the decay rate in Besov spaces. By the inter-
polation of L1 norm and L2 norm of 4jv(t), we have

‖4jv(t)‖Lp ≤ C‖4jv(t)‖α
L2‖4jv‖1−α

L1 , α =
2p− 2

p
.(5.7)

We multiply (5.7) by 2
j( 3

p
−1+ζ)

. Then,

2
j( 3

p
−1+ζ)‖4jv(t)‖Lp ≤ C2

j( 1
p
+ζ)‖4jv(t)‖α

L2

(
2j‖4jv(t)‖L1

)1−α

≤ C2
j( 1

p
+ζ)‖4jv(t)‖α

L2

(
‖4jw(t)‖L1

)1−α

≤ C2j( 1
p
+ζ)‖4jv(t)‖α

L2,

(5.8)

where we use the fact that

‖4j∇v‖L1 ≤ C‖4jw‖L1 ≤ C‖w‖L1, C independent of j.
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By taking the lq norm to (5.8), we have

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

≤ C
( ∑

j

2jq( 1
p
+ζ)‖4jv(t)‖αq

L2

) 1
q
.(5.9)

We take q0 such as αq0 = 2. Then for q ≥ q0 = p
p−1 > 2, we have

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

≤ C‖v(t)‖
2
q

Ḣ
q
2 ( 1

p +ζ)
.(5.10)

Since q
2( 1

p + ζ) = 1
2(p−1) + qζ

2 > 1
2 for p < 2, the right-hand side of (5.10) goes to 0 as t → ∞

by (5.4). Therefore,

‖Λζ
2v(t)‖

Ḃ
3
p−1

p,q

≤ Cζ‖v(t0)‖
Ḃ

3
p−1

p,q

(t− t0)
− ζ

2 , ζ > 0,(5.11)

where ‖v(t0)‖
Ḃ

3
p−1

p,q

is sufficiently small to apply Theorem 1.2. This completes the proof of

Theorem 1.5.

Remark 5.1. By using the relation between Besov spaces and Triebel-Lizorkin spaces Ḟ s
p,q

Ḃs
p,p ⊂ Ḟ s

p,p,

we can obtain decay of weak solutions in Sobolev spaces Ẇ s,p with p < 2. (For the definition
of Triebel-Lizorkin spaces and embedding properties, see [20]). By taking p = q < 2,

‖e
√

tΛv(t)‖
Ḟ

3
p−1

p,p

. ‖v(t0)‖
Ḃ

3
p−1

p,p

.

Since lp ⊂ l2 for p < 2,

‖e
√

tΛv(t)‖
Ḟ

3
p−1

p,2

. ‖v(t0)‖
Ḃ

3
p−1

p,p

which is equivalent to the estimate solutions in the potential function W s0,p such that

‖e
√

tΛv(t)‖Ẇ s0,p . ‖v(t0)‖
Ḃ

3
p−1

p,q

, s0 =
3

p
− 1 > 0.

Therefore,

‖Λζ
2v(t)‖Lp ≤ Cζ‖v(t0)‖

Ḃ
3
p−1

p,p

(t− t0)
− ζ−s0

2 , ζ > s0,

where ‖v(t0)‖
Ḃ

3
p−1

p,p

is sufficiently small to apply Theorem 1.2.

6. Proof of theorem 1.6: regularity condition in Besov spaces

In order to prove Theorem 1.6, we only need to show that ‖∇v(t)‖L∞ appearing in the
blowup criterion ([3]) can be controlled by (1.5). To this end,we will estimate ∇v in Besov

spaces Ḃ
3
p

p,1 which is contained in the L∞. As before, we express v in the integral form:

v(t) = et∆v0 −
∫ t

0

[
e(t−s)∆

P∇ · (v ⊗ v)(s)
]
ds.(6.1)
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By applying 4j to (6.1) and taking the Lp norm , we have

‖4jv(t)‖Lp . e−t22j‖4jv0‖Lp +

∫ t

0

[
2je−(t−s)22j‖4j(v ⊗ v)(s)‖Lp

]
ds

. e−t22j‖4jv0‖Lp +

∫ t

0
2j

[
e−(t−s)22j

(
‖Sjv(s)‖L∞‖4jv(s)‖Lp

+
∑

k≥j−2

2
k 3

p ‖4kv(s)‖Lp‖4kv(s)‖Lp

)]
ds

= e−t22j‖4jv0‖Lp + I + II,

where we use the decomposition v ⊗ v = 2Tv ⊗ v +R(v ⊗ v) at the second inequality.

Estimation of I. By Bernstein’s inequality (2.9),

‖Sjv(s)‖L∞ .

j∑

l=−∞
2l 3

p 2−σl2σl‖4lv(s)‖Lp . 2j( 3
p
−σ)‖v(s)‖Ḃσ

p,∞
,

where we use the condition 3
p
− σ = 1 − 2

q
> 0 for q > 2. Then,

I(t) .

∫ t

0

[
2

j(1+ 3
p
−σ)

e−(t−s)22j‖v(s)‖Ḃσ
p,∞

‖4jv(s)‖Lp

]
ds.

Therefore,

‖(I)‖
Ḃ

3
p +1

p,1

.

∫ t

0

[
(t− s)

− 1
2
(1+ 3

p
−σ)

s
− 1

q s
1
q ‖v(s)‖Ḃσ

p,∞
‖v(s)‖

Ḃ
3
p+1

p,1

]
ds

. sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσ

p,∞
‖v(τ)‖

Ḃ
3
p +1

p,1

] ∫ t

0

[
(t− s)

− 1
2
(1+ 3

p
−σ)

s
− 1

q

]
ds

. sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσ

p,∞
‖v(τ)‖

Ḃ
3
p +1

p,1

]
,

(6.2)

where we use the condition 1 + 3
p
− σ = 2 − 2

q
< 2 for q < ∞, and

1

2

(
1 +

3

p
− σ

)
+

1

q
= 1 to

apply Lemma 4.1.

Estimation of II.

II(t) .

∫ t

0

[
2je−(t−s)22j

∑

k≥j−2

2−k2−kσ2kσ‖4kv(s)‖Lp2k( 3
p
+1)‖4kv(s)‖Lp

]
ds

.

∫ t

0

[
2−jσe−(t−s)22j‖v(s)‖Ḃσ

p,∞

∑

k≥j−2

2(j−k)2
k( 1

p
+1)‖4kv(s)‖Lp

]
ds
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from which we obtain

‖II(t)‖
Ḃ

3
p +1

p,1

.

∫ t

0

[
(t− s)−

1
2
(1+ 3

p
−σ)

s
− 1

q s
1
q ‖v(s)‖Ḃσ

p,∞
‖v(s)‖

Ḃ
3
p +1

p,1

]
ds

. sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσ

p,∞
‖v(τ)‖

Ḃ
3
p +1

p,1

] ∫ t

0

[
(t− s)

− 1
2
(1+ 3

p
−σ)

s
− 1

q

]
ds

. sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσ

p,∞
‖v(τ)‖

Ḃ
3
p +1

p,1

]
.

(6.3)

By (6.2) and (6.3),

‖v(t)‖
Ḃ

3
p +1

p,1

. ‖v0‖
Ḃ

3
p +1

p,1

+ sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσ

p,∞
‖v(τ)‖

Ḃ
3
p +1

p,1

]
.(6.4)

We translate the time interval from [0, t] to [T − a, T ]. Then,

‖v(T )‖
Ḃ

3
p +1

p,1

. ‖v(T − a)‖
Ḃ

3
p +1

p,1

+ sup
0<τ<a

[
(τ)

1
q ‖v(t+ τ)‖Ḃσ

p,∞
‖v(t+ τ)‖

Ḃ
3
p +1

p,1

]
.(6.5)

Therefore, ‖v(t)‖
Ḃ

3
p +1

p,1

does not blow up at T as long as (1.5) holds. This completes the proof

of Theorem 1.6.
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