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1 Introduction and Motivations

The purpose of this paper will focus on constructing an innovative hybrid
approximation method for geophysical fluid dynamics. To accomplish such
a task, we will focus on the shallow-water equations which provide a useful
model to global climate modeling because their solutions include nonlinear
effects and wave structures similar to those of the full primitive equations of
the atmosphere. The main backbone of this hybrid meshless/spectral-element
shallow-water model will be focusing on incorporating a unique regional scale
approximation method. This regional scale method will be accomplished by
using a robust meshless approximation scheme called the empirical Backus-
Gilbert reproducing kernel developed by C. Blakely in [5]. The advantage of
such a hybrid approximation is two-fold: 1) High-order approximation results
can be obtained in complex shaped geometries without the need of a mesh.
Thus, no remeshing of a local region into smaller rectangles is needed, ulti-
mately speeding up the computation time; 2) The Backus-Gilbert reproducing
kernel method has been shown to be endowed with the unique power of ignor-
ing oscillatory effects in scattered data. This will be useful when the spectral
approximation forms high oscillations due to discontinuities in the data.
This article is organized as follows. Section (2) begins with a brief re-
view of the shallow-water equations defined on the cubed-sphere and it’s dis-
cretization in time using a semi-implicit time stepping scheme. We follow
this discussion in section (3) with a brief review of the spectral-element and
Backus-Gilbert reproducing kernel discretization methods of the time-discrete
shallow-water equations. Next, we present the three-field variational formu-
lation which effectively couples the two types of approximations in a weak
sense by introducing two additional approximation spaces on the interfaces
between the approximation, akin to domain decompositon and the mortar el-
ement method. Implementation of the coupling is then given and then finally,
in order to verify the mathematical correctness of the algorithms presented
in this paper and to validate the performance hybrid model, we conclude the
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paper with some standardized test cases which were proposed by Williamson
et al. in [22] (W92).

2 The shallow-water equations on the cubed-sphere

Being the simplest form of motion equations that can approximate the hor-
izontal structure of the atmosphere or the dynamics of oceans, the shallow-
water equations have been used as a robust testing model in atmospheric and
oceanic sciences. The solutions can represent certain types of motion includ-
ing Rossby waves and inertia-gravity waves while describing an incompressible
fluid subject to gravitational and rotating acceleration. The governing equa-
tions for the inviscid flow of a thin layer of fluid in 2-D are the horizontal
momentum and continuity equations for the velocity u = (u1,us2) and the
geopotential height 7 .

While there are many different ways of defining the shallow-water equa-
tions, we focus in this model on cubed-sphere geometry originally proposed
by Sadourny in [17] and used in other global models in recent years such as
[20] and [21]. We begin by a brief review of the cubed-sphere while adopting
notational conventions from [20]. Consider a cube inscribed inside a sphere
where each corner of the cube is a pointin the sphere and where each face of
the cube is subdivided into Ng subregions. The goal is to project each face
of the cube onto the sphere and in effect, obtain a quasi-uniform spherical
grid of 6 x Ng subregions which can be further subdivided into many spectral
element and meshless collocation subregions. In the mapping of the cube to
sphere, each face of the cube is constructed with a local coordinate system
and employs metric terms for transforming between the cube and the sphere
which will now be defined.

Let (o, 3) be equal angular coordinates such that —w/4 < o, < 7/4.
Then any x1 and x5 on a face P; of the cube is related through z; = tana, x5 =
tan 3. We denote r the corresponding position vector on the sphere with lon-
gitude A and latitude 6. For such an equiangular projection, we define basis
vectors a; =r, and ay = rg which may be written as

1 1
= mru (1)

——T, rg =
cos?a Y p
wherer,, and r,, are defined asr,, = (cos 0z, 011) andry;, = (cos 0 Xs,, Gm)

The metric tensor g;;, 4,7 € [1,2] can be derived as

1 1+tan’a —tanatanf
Gij = ai-aj = )

rtcos2acos? 3 | —tanatan B 1+ tan? 8

where 72 = 1+ tan? a + tan? B and the Jacobian of the transformation and
the matrix A are, respectively,
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1 cosf A\, cosb A,

= [det(gi)]"? = —F5—5—, A=
Vg = [det(gy;)] r3 cos2 accos? 3’ ) 05

While using the definition of g;; given in (2), we can write transformations
between covariant and contravariant components of a vector v as

1 1 11 12
2] g11 912 u U g9 Uy

B 2| 2 - 21 22 ' @)
U2 921 922 U u g g U2
With the metric terms defined, we can now write the shallow water equa-
tions in in the curvilinear coordinates system to be integrated on the cubed-
sphere. In such a coordinate system, the shallow-water equations can be writ-
ten as follows

out y d /1 . on
i .k 2 (= k el

ar 9 |ew g(f+<)+8xj(2uku)+axj}’

o~ ;0np n 0 j

o o T gam W)

Here, we define n = 1’ + 19, f is the Coriolis force and ( is the relative
vorticity. Covariant and contravariant vectors are defined through the short-
hand metric tensor notation u’ = g“u;, g = (g;;)~*. Furthermore, using
€;; as the two-dimensional permutation matrix.the divergence and relative
vorticity can be calculated as

9V v =), = ®)

We note that the metric terms can be precalculated and stored once the
issue of discretizing the cube has been resolved. To this end, we discuss the
discretization of the cubed-sphere using the spectral element method in section
3.1 and the meshless collocation method in section 3.2. An example of the
resulting discretized cube is shown in figures (1)

2.1 Semi-Implicit Time Discretization

As an integral part of the hybrid meshless/spectral-element model, the semi-
implicit time stepping scheme which we discuss in this subsection has many
computational advantages. Semi-implicit time-stepping schemes were first
used in atmospheric models in order to aleviate the problem of stability con-
straints ultimately due to the fast moving gravity waves in the discrete shal-
low water equations [20]. They have been successfully applied for allowing
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Fig. 1. Hybrid Cube

an increase in the time step without affecting the atmospherically important
Rossby waves. Such a semi-implicit method is described in this subsection and
was originally proposed in the spectral element model developed in [20].

In the hybrid meshless/spectral-element method, the semi-implicit time
stepping is composed of an explicit leapfrog scheme for the advection terms
combined with a Crank-Nicholson scheme for the gradient and divergence
terms. Adopting the difference notation du’ = w**t) — ("= and §n* =
(D) — (=1 “the time discretized shallow water equations in curvilinear
coordinates can be written as

; 9 ij 9 n— i(n
bu' + Atg" == (8 ) = 2At[— 9" == () Ly i ﬂ,

xd

] Mo 0 i 7o 0 1 .
on' + At— —(gou’ :2At|:__ Jyn z(n)}7
n' + gaﬂ(!]u) gaxj(gu) +f
where the tendencies f,, and f, contain nonlinear terms along with the Coriolis
term, namely

.. 0 1 n
— ¥ e k™) (0 WIRY (RPN
fom s et 5+ 2 (L)',
and 5
— 9
fo = —u Oxi”
Lastly, bringing the implicit terms to the left hand side of the equation and

the explicit terms to the right, we end up with the time discrete evolution
form of the shallow water equations
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i(n+1) ij n+1l _ i(n—1) _ ij n—1 i(n)
u + Atg p " =u Atg D07 (m)" ™" +2ALf; (4)
0 ‘ 0 ,
n+1 tno i jyn+1 _ n—1 _ tnO i Jyn+1 QAL FT
M A e (gu”) U At B (gu?)"™™" + 24t f} ()

which is now in the form needed for spatial discretization using the hybrid
meshless/spectral-element. Because of the Crank-Nicholson terms, the stor-
age of two previous time steps is needed. The overall performance of this
semi-implicit method is reduced to the performance of a robust solver that
can ultimately be parallelizable in an efficient manner for obtaining the solu-
tion at the n + 1 time step. The preconditioned conjugate gradient method
using a block-jacobi type preconditioner offers such an approach but at the
cost of inter-elemental communication at every iteration step of the iterative
solver. The method is of course highly dependent on the spatial approximation
scheme and will be discussed in the next two subsections. To this end, we first
briefly review the construction of the nodal spectral element spproximation
on the cubed-sphere.

3 Hybrid Meshless/Spectral-Element Discretization

3.1 Spectral-Element Discretization

The spectral element formulation for the cubed sphere begins by decomposing
each face on the unit cube denoted by P;, i = 1,...,6 into N, nonoverlapping
subdomain elements 2¢ of equal area which are each referenced to a standard
element 2y = [—1,1]? by a mapping x¢(r, s) € £2¢ for (r,s) € 4. The map-
ping also has a well defined inverse (r,s)¢(x) € £25;,x € £2°. Since two fields
are being approximated in the discrete shallow water equations, namely the
velocity and the geopotential, two different approximation spaces are needed.
As in most shallow water models, we adapt the so-called staggered grid ap-
proach to discretization. We begin by defining the approximation space for
the velocity as Viy := Py n, N H'(P;), where Py n, is the space of piecewise
continuous functions that map to polynomials of degree less than or equal N
to the reference element on face i. Namely,

PN g (Pi) = v(x(r,8)) [0 € Pn(r) @ Pn(s), e=1,..., N,

where Py (r) is the space of all polynomials of degree less than or equal to
N. In order to facilitate inter-element continuity on 2¢ for all e € [1, N.]
and more globally, inter-face continuity on P;, i = 1,...,6, nodal Lagrangian
interpolants are used to construct the basis within each element. In this pa-
per, we use Lagrangian interpolants constructed from orthogonal Legendre
functions of degree p.

While many spectral-element and spectral collocation models of fluid dy-
namics such as the ones found in [19] have utilized a staggered grid where the
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pressure/geopotential field on each element is discretized on an N — 2 Gauss-
Legendre distribution which does not include the boundaries of the element,
this hybrid meshless/spectral-element model relies on boundary information
of the geopotential field as explained in the next section on the three-field
formulation for the shallow water equations. We thus build a staggered grid
for the geopotential field which includes the boundaries of each element 2¢
by considering the space My :=P(y_s,n,) N L?(P;) and distributing (N —2)?
Gauss-Lobotto-Legendre points (£/, £3).

Using the space My, the geopotential is expanded in a similar manner
to the velocity components by using the (N — 2)-th degree Lagrangian inter-

polants 7; as
N—-2N-2

n(r )l = 3 S w7 (9),
i=0 j=0

with 7f; being the nodal values of the geopotential at (&L, 5]2) This expansion
will require evaluation not only on the geopotential grid, but on the velocity
grid as well. As will be shown later, the geopotential field provides the means
for coupling the spectral element and meshless collocation approximations.

With the definitions of the Lagrangian nodal expansion and quadrature
rule in place for each element, we can now apply weak formulation to the semi-
implicit time discretized shallow water equations. Find (u®,n) € Vi x My such
that for all (v;,q) € Vy x My

@, ) — At i+, D) = WD, )+ Atg 7, L) + 28671, 0y)

" Oxd Ox

3 - — 8 i\ n
<n”+17q>+At%<q,@(gu7)”“> =" 1,q>—At%0<q7@(guj) )+ 24¢(f) q).
(6)

With the matrices, cubed-sphere metrics, and Coriolis forcing constructed
on each element, the semi-implicit scheme can now be formulated into N,
local Helmholtz problems where the geopotential is solved at every timestep
from a discrete Helmholtz problem and then ’communicated’ to the velocity
field. Writing the assembled discrete shallow water system from the previous
subsection in matrix-vector form, we get

B! -D¢

unt! R
N |:,'7n+1:| = |:Rt :| 3 (7)
Dt Bt m
where

B’ =B/At, Rl =R.,/At, B'=B/(Atn), Rl =R,/(Atno) (8)

The Helmholtz problem for the geopotential perturbation at each timestep is
obtained by solving for the velocity u™*! in the above block system to arrive
at
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un+1 _ B_l(RZ —I—AtgijDT’I]n—i_l), (9)

and then applying back-substitution to obtain an equation for the geopotential
R -1, i T,.n
gBn" T + At*neDgB g DTy = R (10)

where
R = gR, — AtnoDgB™'R.,,. (11)

Once the geopotential n"*! is computed, the velocity components u!, u? are

computed from (9) where thereafter, shared local nodal values on element
boundaries of the velocity components are then averaged.

Furthermore, due to the fact that ng, g, B and B! are diagonal, and
g% can be shown to be symmetric, it is easy to see that the matrix Hgg is
symmetric and positive definite. In effect, an efficient preconditioned conju-
gate gradient method can be constructed by using local element direct solvers
for the Helmholtz problem with zero Neumann pressure gradient boundary
conditions. The inverse of each local Helmholtz operator matrix restricted to
an element H|pe is computed once and stored for use as a block-Jacobi pre-
conditioner. This preconditioning technique enjoys a computational structure
ideal for parallel processors due to the fact that the preconditioner is strictly
local to an element and requires no global communication.

3.2 The Empirical Backus-Gilbert Reproducing Kernel
Discretization

Coupled with the global spectral-element method for use in regional approxi-
mation of the shallow-water model, the empirical Backus-Gilbert reproducing
kernel discretization method, originally introduced in Blakely [5] has been
demonstrated to produce highly accurate solutions to time-dependent nonlin-
ear PDEs while being endowed with great freedom in choosing the approxima-
tion space for building the reproducing kernel. Furthermore, as the name of
the method suggests, the EBGRK is completely empirical with respect to the
distribution of meshless nodes in the domain of interest. For complete details
of the method the reader is referred to [5].
The EBGRK method considers a quasi-interpolant of the form

Pu(x) = Z w(x;) P (x). (12)

i=1

where u = [u(x;), ..., u(xy)]? represents the given data on a set of N distinct
evaluation nodes X = {x1,...,xy} on a bounded domain {2 C R2. The finite
set of nodes X is endowed with a seperation distance defined as

1.
qQx ‘= 5 xﬁgzi ||Xz — XjHQ.
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The quasi-interpolant ¥;(x), or discrete reproducing kernel in some literature,
is constructed to be minimized in a discrete quadratic expression subject to
some approximation space reproduction constraints. Details on constructing
the empirical reproducing kernel is out of the scope of this paper. We refer the
reader to Blakely [5] for the construction of the kernel and efficient numerical
implementation.

To initiate regional meshless approximation on the cubed-sphere, con-
sider the domain 2M = UM, Q¢ constructed of M contiguous elements
on the discretized cubed-sphere. For simplicity, we will assume 2™ lies on
only one face of the the cube. Building a meshless approximation space
Vg x begins by randomly distributing two sets of Vs distinct collocation
nodes in 2™ and on its boundary 92 giving two sets Xy, X}, such that
XY, = X);. Using the EBGRK method, the kernels %;(-) and &;(-) are con-
structed to form the discrete spaces Vy x» = span{¥;(-), i =1,...,Nj} and
Mg x = span{®;(-), i = 1,..., Ny} and with respect to the sets X}, and
X}y, respectively.

For writing the cubed-sphere shallow water equations in strong form, we
utilize the matrix-vector form of the equations originally given in [21]. As
in any other collocation method, we construct the set of Dirac delta test
functionals ITyy = {0x,,...,0xy,, } C (HY)'(2M) and multiply each of the
velocity components and geopotential by each Dirac delta test functional dx, €
Iy evaluated which gives

<6xj,u( +1)>+At<5x]79]%(77) +1>

= (B, DY — Atg (5, Ly 4 24010 6,

9 Qi
(13)
n o 9 n

<6xjvn +1>+At< X]7_Oa—( ) +1>

_ n—1\ @i j\n+1 n

= (0x,, 0" ") — At(dy,, g D7 (gu?)") + 240, f1))
with 9

<6xj)f:b(n)> = _ejk<5xj-agzjuk(n)gf> - <5x1agl]u2@uk(n)>v
and

n jon”
<6Xjafn>:_<5x77 Oz ]>

In order to approximate these equations spatially with the EBGRK method,
we look for a solution u € (Vg x)? C (H*(£2M))? and n € Vy » by taking for
alln >0

N
Xj) = Zﬂﬁ(xi)%(xj), n"(x;) = Zf;”(xi)@i(xj) for xj, € Xy,
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where 4} (x;) and 7"(x;) are the approximated values at the collocation nodes
x; at time step n. Substituting these into (13) and applying the Dirac delta
functionals, we get for all dx, € II Xy,

N1\4 NJVI

XJ,Z”“(”“) )i(x)) + (Atg™ 6]&,2“*1 (%))

N]\/j N]\/I

= (G0 > @D () (%)) + <Atg” x,,z 7" (%) @i (%)) + (2486, fi™)

i=1

Nar n P N

~n41g5. o Y =i (n+1) ( .
<6Xj7iz:;’r} QSZ(X)> + <At g al'j 6Xj7g;uj (X’L)!pl(x)>

N]\{ NJVI
=<5xj,2ﬁ”_1(X)¢i(X)>—<At x,»gzuj(" D (xi)Wi(x)) + 2(Atdy,, f7)

i=1

(14)
The calculation of o (x)
i(X;
Ix; 8xk] , ijX]‘\f[

which is used in the divergence terms of the strong form shallow water system
is made prior to time stepping and stored as matrices in the form

9x, T1(x1) g, o(x1) - gx vy (x1)
Jx, 11 (x2) Ix,T2(X2) o+ gx, TNy, (X2)
Dy = , . (15)
gXNMTl(XNM) ngMTQ(XNM) e ngMTN(XNM)

where 7;(-) denotes the differential operator ai
x

- acting on the kernel ¥;(-),
which was shown how to be constructed in section (3.2). A similar matrix
gijD,z used in calculating the gradient of the geopotential in strong form is
also computed and stored prior to time stepping. These matrices are akin
to the two-dimensional derivative matrix D; of size N2 x N2 in the spectral
element formulation.

Using notation borrowed form the spectral element formulation, we write
the discretized equations in matrix form with D = (D1, D3) as the derivative
matrices with respect to the collocation nodes and B, B as the collocation
matrices for the velocity and geopotential, respectively. This leads to the sys-

tem
Bt _Dt

] - L]
Dt Bt ﬁn+1 Rfy ’

where
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B'=B/At, Rl =R!/At (16)
(17)
B' = B/(Atno), R, = Ry/(Atno) (18)

Performing the Uzawa velocity-geopotential decoupling algorithm where we
solve for the velocity u™*! in the above block system to arrive at

"t = BRI, + Atg"DTi ). (19)

and then applying back-substitution to obtain an equation for the geopotential
at the time step n + 1.

gBﬁ'rrFl + AtQHODnglgijDTﬁn+1 — R% (20)

where
R = gR, — AtnyDgB™'R.,,.

As with the spectral element case, we are now concerned with the solution
to the Helmholtz problem for the geopotential. Although the meshless col-
location method yields a strong form of the discrete shallow water model,
the resulting discrete Helmholtz equation is similar to the spectral element
Helmholtz equation in that the matrix operator

Hyv = gB + At?ngDgB™ g7 DT (21)

is symmetric and positive definite and of size Nj; x Ny,. It is important to
notice that the term
DnglgijDT

is a discrete pseudo-Laplacian operator on 2, a local domain on the sphere
S2. Because of the fact that the domain is locally defined on the sphere, essen-
tial boundary conditions on 92 are needed in order to show direct equiva-
lence to a local Helmholtz elliptic problem on 2. This was not the case with
the spectral element discretization on the sphere since no boundary conditions
are needed for the global shallow water model. As a result, the boundary in-
formation on 2™ must come from the spectral element approximation in
order to produce a unique solution to the discrete Helmholtz problem (20).
As we propose in the next section, if 777! is the unique solution to this local
Helmholtz problem at time n + 1 with respect to the boundary information
given by a global spectral element discretization at time n+1, then 7" *! is an
approximation to the geopotential field restricted to 2™ at time step n + 1.
To accomplish this task, we adapt the three-field domain decomposition algo-
rithm developed in [7] for coupling the two Helmholtz discretizations, which
is discussed in the next section.
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4 Coupling the meshless and SE approximations

Because the meshless approximation is done locally utilizing the strong for-
mulation of the shallow-water equations on a local domain 2%, certain transi-
tion conditions are needed on the boundary of the subdomain connecting the
meshless and spectral-element approximations in order to satisfy continuity
and flux conditions of the solution along with the artificial fluxes of the field
variables. In 1994, Brezzi and Marini (see [7]) developed a method termed the
three-field formulation for hybrid finite-element formulations where the goal
was to give the possibility of coupling different finite-element approximations
using different meshes and basis functions from one subdomain to another.

In this paper, we extend the idea of the three-field technique to couple
spectral-element and meshless collocation methods. As shown in the previous
sections, the manner in which we couple the two approximation schemes is
done implicity. Namely, after deriving the semi-implicit method, a symmetric
positive definite discrete Helmholtz type equation was left to be solved at
each time step for the geopotential. With the solution of the geopotential at
hand, it could then be used to approximate the velocity field at the same time
step. So the question that remains is how to solve Helmholtz equations for the
coupled meshless/spectral-element approximation. In this section we consider
solving the elliptic problem

Hu = Au(x) + g(x)u(x) = f(x), €52, (22)

where S? is the unit sphere which is discretized via the cubed-sphere method
discussed in section (2). The fact that spatial discretization is not per-
formed with spherical harmonics but rather on a cubed-sphere mesh allows
for an adaptive localized approximation using meshless collocation via do-
main decomposition. Thus the heart of the hybrid shallow water model lies
in the efficient handling of the Helmholtz equation on the sphere using the
meshless/spectral-element formulation.

For proper stability analysis of this new three-field formulation for coupling
spectral-elements and meshless collocation including Babuska-Brezzi inf-sup
type conditions, the reader is referred to the paper by Blakely, [6]. In order
to introduce the method, we must first discuss the necessary approximation
spaces that will be used in the formulation and discretization and their rele-
vant physical meaning.

4.1 The Continuous Three-Field Formulation

Using the notation from the previous subsections, suppose we have are given
a subdomain of M unioned elements 2 = UM Q¢ For simplicity of expo-
sition of the three-field method, we assume 2% is on one face of the cube.
Let I'sg/n denote the boundary of 2M which we will call the interface of the
hybrid method between the spectral element and meshless collocation approx-
imations. Finally, we denote 2°F = 2 —2M namely the collection of spectral
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elements not in 2™ and then set 21 := 2°%, 2y := QM and I := 942, for
i = [1,2], which are the boundaries of these domains sharing the interface
I'sg/u-

In addition to the Sobolev space H}(§2;) on each domain (2;, utilizing the
interface I'sp/ps leads to two additional types of spaces that will be needed
for domain decomposition. We define a trace space and two dual spaces on
T'sgp v by considering HY/2(I'sp/as) with corresponding norm || - || := || -
#1721, @nd denote the dual of this space as H~'2(I'). Furthermore
we introduce two spaces of Lagrangian multipliers which provide the role of
enforcing necessary boundary continuity over the interface I'sp/n; and are
defined as A; := H~'/?(I3) for i = [1,2] which can be regarded as the dual of
the trace spaces associated with the two Hilbert spaces H!(§2;) and H'({2).
The Lagrangian multiplier space is endowed with the standard scalar inner
product L2(I"), (A*, HY/?)p = Jr Aiutds for v € H'(£2). The third function
space which acts as the global continuity space for the hybrid approximation
is defined on the interface I" as restrictions of functions on the sphere 52 to
the interface. Namely

O:={vel*I):3uecH(S?),u=vonT}. (23)

Global norms for the spaces V; := Hg(£2;) and A; can be given as broken
norms over §2;

2 2
|mm~=(§;wﬂﬁm),th:(g;xwzéuwy

and can easily be shown to be Hilbert spaces with these induced norms. Fur-
thermore, with the use of extension operators, the interface continuity space
is endowed with the norm

[elle == inf [[ull1,e.
ulr=¢

With the three approximation spaces at hand, the three-field formulation
of the Helmholtz problem can be written for the two subdomains utilizing the
additional two interface spaces A; and the global continuity space @. Using the
dual product notation (-,-); = (H~/2(I}), H'/?(I})) the following variational
form is called the three-field formulation. Find u € V, A € A, and ¢ € @ such
that

Z) Z?:l (aﬂi (ui’vi) - <)‘iﬂvi>Fi) = Z?:l(fv vi>Qi7 Vvev,
i) Z?:ﬂﬂiaui —oyp, =0, YueA (24)

i) Yi (N, =0, Ved
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The bilinear operator a g, stems from the weak formulation of the Helmholtz
equation and is defined as

ag, (u',v’) = / Vu'Vo' + gutvtds;.
2;

Furthermore, the inner products of the form
(HV2(L), HYVA(L)r,

signify the artificial boundary or interface matching conditions. To be more
specific, the second equation enforces weak continuity along the interface I
with the solution u? on §2; with respect to the interface continuity variable ¢.
The third equation serves two purposes; 1) It further constraines the space of
Lagrangian multipliers A by adding orthogonality conditions with the inter-
face space @ and 2) It renders the discrete formulation of the above system as
a symmetric positive definite system which can then be solved for the global
solution (u, A, ) using a preconditioned conjugate gradient method as will be
shown in the next subsection.

We first note that a key observation in the three-field formulation comes
from the first two equations of (24). For a given ¢ on the skeleton I, the first
two equations are local Dirichlet problems where the boundary conditions on
I'; are imposed in the weak sense. Because of this, one can show that the local
problems are well-posed for a given sufficient ¢. For a complete analysis of the
three field method for coupling meshless and spectral-element approximations
for elliptic equations, the reader is referred to the paper by Blakely [6]. The
thesis by Rabin [16] and relevent references therein also give much insight to
the three-field variational formulation in the finite-element context.

4.2 Discrete version of the three-field formulation

The difficulty in passing to the discrete formulation the variational problem
(24) is in choosing the appropriate discrete subspaces of V, A, and @. Arbi-
trarily choosing the subspaces can lead to unstable solutions of the discrete
variational problem primarily due to not satisfying the discrete versions of
the inf-sup conditions, so careful consideration of the spaces is necessary. In
past approaches to the method, usually the discretization of the space V
is chosen first and then A and & are chosen thereafter to satisfy the inf-
sup requirements. In this section, we propose a discrete approximation to
the three-fields formulation by considering the spectral-element and meshless
collocation methods as the discretization tools which will then lead to the
hybrid meshless/spectral-element method for the shallow water equations on
the sphere.

With (2; defining the domain for the spectral element approximation and
the regional domain {25 being allocated for meshless collocation, we define
the space Vi = Py n, N HY($21), where Py n, is the space of piecewise
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continuous functions that map to polynomials of degree less than or equal N
to the reference element 2°. Namely,

Py e(21) = {U(xe(r))\ge € Py(r)®Pn(s), e=1,..., N, such that £2° € Ql},

where Py (r) is the space of all polynomials of degree less than or equal to
N. To restrict this space to 21, we include all £2¢ such that 2, N £2¢ # 0.
This approximation space will provide each component of the velocity field on
the spectral element partition (2;. As described in section (3.1), the discrete
geopotential space is obtained by utilizing the staggered grid approach and
setting M3, := Py_2.n, N H'(§21). Since the bounderies on each element 2°
are essential to the three-field method, the N — 2 Gauss-Lobatto-Legendre
distribution of nodes is used for the geopotential grid, which is contrary to
many spectral element staggered grids which use Gauss-Legendre nodes for
the geopotential /pressure field.

The regional domain {25 allocates a collocation approximation by consider-
ing a random (or uniform) distribution of Ny, distinct collocation nodes 2
and on its boundary 002 giving two sets X};, X}, such that X}, = X},. We
then construct the approximation space M3, = Vg = span{¥1(x),..., ¥y, (x)}
as defined in section (3.2).

With the spaces defined for the velocity and geopotential fields on each
subdomain £2;, the Lagrangian multiplier spaces A’ for the interface bound-
aries I'; can now be constructed by using the spaces My and Mg, . Since My
defines a spectral approximation of order N —2, we define the Lagrangian mul-
tiplier space for I} as the space of Lagrangian interpolants of order less that
or equal to N and restricted to I';. This is given by

AL =Py p(1) = {)\(xe(r))|ge € Py_a(r)|ry, e =1,..., N, such that 2°NI} # o}.
(25)

Using such a space for H _%(F 1), it can be shown that the discrete inf-sup

condition for the interface inner product on I is satisfied. Namely, for some

constant C y dependent on the degree N of the spectral elements, we have

. B)\l ) A I )\1 ) A 1
Aveal /10y enty oy Innllacy, IANIAy  lIonllacy | IAN Ay,

is satisfied. This result is proved in the paper on the Mortar Spectral Element
method by Ben Belgacem et al. [3] in a similar interface inner product using
Lagrangian multipliers.

In order to complete the space A we need the additional interface space
on (2. On the boundary I, a second meshless collocation space for A%
is constructed using a random distribution of Njs,. nodes restricted to the
interface I producing the set Xr,. Using the EBGRK method presented in
section (3.2), the Lagrangian multiplier space for I is taken to be A% =
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span{¥(x),..., ¥}, (x): x € [} C H~2(I%) where W)(-) denotes the i-th
discrete reproducing kernel function on Xp,.

Lastly, in order to connect the two pairs of approximation spaces (M %, A%))
and (MIQVM , A?VM) on {21 and {25, respectively, we build a suitable discrete sub-
space of @ by taking the Lagrangian interpolants constructed from Legendre
polynomials of degree N — 2 restricted to I'. Namely,

&y = {o(x°(r))|ne € Pny_o(r)|r, e=1,..., N, such that 2°N N #0}.

This will ensure that the discrete inf-sup condition for @ and A}, on I3 is
satisfied.

The last issue we need to resolve in this three field formulation is complying
with the strong form of the shallow water equations on §25. To this end,
since {25 utilizes a meshless collocation technique, we define the set of test
distributions on {25 as M 52’ Ny = {0, : x; € Xf,VM } where Jy, is the Dirac
delta function at node x;. The original variational formulation in (24) can now
be modified as follows. Find (ny, Ay, 13, Axs @) € MyQANQMER, QA% @
such that

i) ag, My, Xn) — Ao xn)n = (Fxh)a,  Yxy € My,
i) (> ny —en)n =0, Vuy € Ay, (26)

7’”) <>\}V7¢N>F1 = 0> V¢N S ¢7

and
i) ag,( X) — A3 = (Fx3) e Xk € My,
i) (Wi, Mk — NI, =0, Yui € A% (27)
ii) (A%, ¥n)r, =0 Vi € .

Once the discrete approximation spaces have been chosen and numerical
integration has been done, an efficient manner in solving this is to construct
the Schur compliment system and then apply a conjugate gradient method.
To do this, we first write (26) and (27) in algebraic form as:

Aini — Bf Xi = £,
~Bin; + Cl¢ = 0,

Ci\i =0,

for ¢ = 1,2. Now applying block Gaussian elimination to the linear system,
we obtain a linear system for ¢ as



16 Christopher D. Blakely

Sy =g, (28)
where S = 81 + S, g = g1 + g2 and
Si:=C;D;'C, g, := C;D;'B;A; ', D, := B;AT'B i =1,2  (29)

7

The S matrix can be considered as the Schur compliment matrix with respect
to u and A of the entire system defined above. Furthermore, it was shown by
Brezzi in [7] that the Schur compliment S is symmetric and positive definite if
the matrices B and C; have full rank. One can then apply a conjugate gradi-
ent method to the system (28) to obtain the solution of the elliptic problem on
the global domain. It can be remarked that by definition of g;, the calculation
of a conjugate gradient iteration requires the solution to the local Helmholtz
equation in each subdomain §2;, i = 1, 2. Block-Jacobi preconditioning is used
to solve each of these local Helmholtz problems by considering zero Neumann
conditions for each local problem. This way, each local Helmholtz problem
has a unique solution and in effect, the matrix A; has an inverse which can
be calculated before time-stepping.

The last issue of the discrete three-field formulation is related to the effi-
cient construction of the matrices C' and B. As they include the integration
of the basis functions for the Lagrangian multiplier spaces and the interface
space and are independent of the data, they can be calculated and stored prior
to time stepping as well. The matrices have the form

Ci(j, k) = (pij  ¢)r,  pij € Ay, i € DV, (30)

Bi(j, k) = (nigopik)ry,  wig € Ay nik € My (31)

For ¢ = 2, the above calculations involve integration on a spectral grid
using meshless reproducing kernels. The choice of the 3 parameter and Nj,
for a given radial basis that constructs the reproducing kernel determines the

stability of the entire hybrid model. A study on these parameters is given in
full detail in Blakely [6].

5 Numerical Experiments

As is it well established that the spherical rotational shallow-water equations
represent a simplified model of the dynamica of the atmosphere, Williamson
et al. [22] have proposed a series of eight test cases for the equations in spher-
ical geometry. It is proposed by the authors that in order to have any type
of success with a new numerical scheme for an a climate model, successfull
integrations of the numerical scheme with these test cases are imperative. The
purpose of the tests are to examen the sensitivites of a numerical scheme with
many computational challenges faced in atmospheric modeling such as sta-
bilization of the scheme for large time steps over a long period of time, the
pole problem, simulating flows which have discontinuous first-derivatives in
the potential vorticity, and simulating flows over mountain topographies.
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5.1 Test Case 2: Global Steady State Nonlinear Zonal Geostrophic
Flow

As the second test case, a steady state flow to the full non-linear shallow water
equations is prescribed and the challenge for a numerical scheme is simply to
test its numerical stability with respect to l1, [;nf errors over time. Since the
flow is steady, the numerical scheme should be able to integrate the model for
many steps without the addition any filtering. The velocity field is given as

u = ug(cos cosa + cos A sin b sin a),

v = —ugsin A sin «,

which is non-divergent. The analytic geopotential field is give by
u2
n = gho — (a()uo + ?0> (—cos Acosf sina + sinf cos a)?,

with constants ug = 27a/(12days) and ghg = 2.94 x 10*m?/s2.

For this numerical experiment, we began with 24 total spectral elements (4
on each face) and ran the model for 121 days without any additional filtering.
A second integration was performed using on face number 2 of the cube the
meshless collocation approximation built from compactly supported radial
functions (see [18]). Figure (2) shows the [; errors over time of the geopotential
solution on face 2 for both the spectral element and meshless collocation
approximations.

6e-06

T T
Spectral Elements
hless -------

5e-06 [ —

4e-06 [ 1

3e-06 [ 1

2e-06 [ —

1e-06 - 1

0 L L L L L L L
0 20 40 60 80 100 120 140 160

Fig. 2. Plot of [; errors of the spectral element and meshless geopotential solutions
on face 2 of the cubed sphere using 256 (64 per element) nodes for the evaluation of
the solutions.

Notice how errors in the meshless approximation do not grow nearly as fast
as in the spectral element approximation, despite not being as accurate. This is



18 Christopher D. Blakely

due to the collocation properties of the radial basis used. For the geopotential
grid, a total 256 Gaussian-Lobatto-Legendre nodes (64 per element) were
used at each time step. Furthermore, to obtain an accurate error comparison
between the methods, the collocation approximation was evaluated at the
spectral element nodes. Similar results for the [;,; error were also obtained.

5.2 Test Case 6: Rossby-Haurwitz Waves

The most interesting of the test cases features an initial condition for the
velocity which is actually the analytical solution to the non divergent nonlinear
Barotropic equation on the sphere, given as a vorticity equation. We refer
the reader to [22] for the initial conditions of the velocity components and
geopotential field.

As originally proposed, these waves were expected to evolve nearly steadily
with wavenumber 4. However, Thuburn and Li showed that this case is actu-
ally weakly unstable in that it will eventually break down once perturbed. This
usually occurs after about 40 days depending on the model and parameters
used. Figures in (3) show the geopotential layed out on rectangular coordi-
nates for easier viewing. The figure to the left shows the field after 10 days
at an angle where the hybrid mesh structure on the cubed-sphere can easily
be seen. Notice that the continuity along the interfaces between the mesh-
less and spectral-element approximations are preserved, meaning the inf-sup
conditions along the interface are satisfied.

6 Conclusion

In this article, we proposed and developed a new hybrid numerical scheme
for the shallow water equations on the sphere based on the merging of sev-
eral numerical tools including meshless collocation, spectral elements, and the
three-field variational formulation. Furthermore, a high-performance Fortran
90 software suite has been developed for the hybrid method for use on dis-
tributed memory parallel processors with the message passing interface. Such
a successful high-performance implementation ultimately required the use of
other Fortran 90 numerical packages for almost half of the computational tasks
in the model, such as the domain decomposition. Although much work still
remains with theoretical issues of the hybrid approximation scheme such as
stability and convergence, the numerical examples in the previous section have
clearly shown the method’s robustness in approximating the global solution
with spectral elements along with localized regions using meshless collocation.
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Fig. 3. Plots of geopotential approximation using 20 spectral elements and 4 ele-
ments allocated to meshless collocation. Plot after 10 and 60 days
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