
CRITICAL THRESHOLDS IN 1D EULER EQUATIONS WITH

NONLOCAL FORCES
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Abstract. We study the critical thresholds for the compressible pressureless Euler equa-
tions with pairwise attractive or repulsive interaction forces and non-local alignment forces
in velocity in one dimension. We provide a complete description for the critical threshold
to the system without interaction forces leading to a sharp dichotomy condition between
global in time existence or finite-time blow-up of strong solutions. When the interaction
forces are considered, we also give a classification of the critical thresholds according to
the different type of interaction forces. We also remark on global in time existence when
the repulsion is modeled by the isothermal pressure law.
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1. Introduction and statement of main results

We are concerned with the following 1D system of presureless Euler equations with non-
local interaction and alignment forces

∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0, (1.1a)

∂tu+ u∂xu =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy − ∂xK ? ρ, (1.1b)

subject to initial density and velocity

(ρ(·, t), u(·, t))|t=0 = (ρ0, u0).

Since the total mass is conserved in time, we may assume, without loss of generality, that
ρ is a probability density function, i.e., ‖ρ(·, t)‖L1 = 1.
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The system involves two types of non-local forces arising in many different fields such
as collective behavior patterns in mathematical biology, opinion dynamics, granular media
and others. In the particular context of multi-agents interactions, the system (1.1) arises
as macroscopic descriptions for individual based models (IBMs) of the form

ẋi = vi, v̇i =
1

N

N∑
j=1

ψ(xi − xj)(vj − vi)−
1

N

N∑
j=1

∂xiK(xi − xj),

where the force consists of attractive-alignment-repulsive interactions, under a “three-zone”
framework proposed in [1, 18, 11]. Starting from the basic system of IBMs, one can de-
rive a kinetic description by BBGKY hierarchies or mean field limits, see [10, 2, 4] and
the references therein. The hydrodynamic equations of the form (1.1) are obtained by
taking moments on the kinetic equations and assuming a closure based on a monokinetic
distribution, see [7, 10, 3, 4] for details. These hydrodynamic equations lead to numerical
solutions which share common features with the original IBMs systems such as flocks and
mills patterns as demonstrated in [5].

The first term on the right of (1.1b) represents a non-local alignment, where ψ ∈W 1,∞(R)
is the influence function which is assumed symmetric and uniformly bounded

0 ≤ ψm ≤ ψ(x) = ψ(−x) ≤ ψM .

The second term on the right of (1.1b) represents attractive and/or repulsive forces, through
a symmetric smooth enough interaction potential. We will start by assuming the regularity
K ∈ Ẇ 2,1(R). If the potential is convex (resp. concave) in x, the forces are attractive (resp.
repulsive).

We begin our discussion with the case in which the particles are only driven by align-
ment. Setting the attraction/repulsion force K ≡ 0, we arrive at a system of 1D mass and
momentum Euler equations coupled with the alignment force,

∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy.

(1.2)

We refer (1.2) as the Euler-Alignment system for short. It is realized as the hydrodynamic
system of the Cucker-Smale flocking model [8, 10].

The authors in [19] have recently shown that global regularity of Euler-Alignment system
is determined by the initial configurations. They show that there are only two possible
scenarios, depending on upper- and lower-thresholds σ+ > σ−. If the initial data lie above
the upper threshold in the sense that ∂xu0(x) > σ+ for all x ∈ R, then such initial data lead
to global smooth solutions which must flock; on the other hand, if the initial data lie below
the lower threshold σ−, namely, if there exists x ∈ R such that ∂xu0(x) < σ−, then such
supercritical initial data lead to finite time blowup of solutions. Our first result, investigated
in Section 2, refines this critical threshold phenomenon and quantifies the precise threshold
in this case of Euler-Alignment dynamics.

Theorem 1.1. Consider Euler-alignment system (1.2).

• [Subcritical region]. If ∂xu0(x) ≥ −ψ ? ρ0(x) for all x ∈ R, then the system has a

global classical solution, (ρ, u) ∈ C(R+;L∞(R))× C(R+; Ẇ 1,∞(R)).
• [Supercritical region]. If there exists an x such that ∂xu0(x) < −ψ ? ρ0(x), then the

solution blows up in a finite time.
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Theorem 1.1 is sharp in the sense that it provides a precise initial threshold characterized
by the pointvalues of ρ0 and ∂xu0, for the following dichotomy of initial configurations: either
subcritical initial data which evolve into global strong solutions, or supercritical initial data
which will blow up in a finite time. Moreover, in Appendix A.1 we show that for the more
general setup of subcritical case, the solutions remain as smooth as the initial data permit.

Remark 1.1. A subcritical condition which gives rise to global smooth solutions derived
in [19, Theorem 2.4], requires σ− < infx ∂xu0(x) < σ+, where the thresholds σ± ≡ σ±(V0)
shown in [19, Figure 1], are now functions of the initial variance of velocity V0 but otherwise
are uniform in x. In particular, the function σ+ is increasing and one checks that −ψ?ρ0 ≤
−ψm = σ+(0) ≤ σ+(V0). Similarly, σ− is decreasing and −ψ ? ρ0 ≥ σ−(0) ≥ σ−(V0). Thus,
Theorem 1.1 extends both, the sub- and supercritical regions derived in [19].

Next, we deal with the case of K 6≡ 0, i.e., there is an additional force through the
attractive-repulsive potential K. We begin by analyzing the behavior of the solutions for
the particular potential K(x) = k

2 |x|, k ∈ R. This special potential is the 1D Newtonian

potential, where ∂2xK = kδ0 is the Dirac delta function. When there is no alignment force,
ψ ≡ 0, the system coincides with the 1D pressureless Euler-Poisson equations

∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu = −k∂xφ, ∂2xφ = ρ.
(1.3)

Critical thresholds of the system (1.3) were studied in [9], followed by a series of extensions
on multi-dimensional systems [14, 16, 17]. The result in [9] shows that the system has finite
time blow-up in the attractive case, k > 0, while in the repulsive force, k < 0, there exists
a critical threshold.

With the alignment force (ψ 6≡ 0), we can naturally expect that the solution tends to
be smoother than for Euler-Poisson. In Section 3.1, we investigate the critical threshold
phenomenon for the following Euler-Poisson-Alignment system:

∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu = −k∂xφ+

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy, ∂2xφ = ρ.

(1.4)

Theorem 1.2. Consider Euler-Poisson-Alignment system (1.4).

(1) Attractive Poisson forcing k > 0. An unconditional finite-time blow up of the solu-
tion for all initial configurations.

(2) Repulsive Poisson forcing k < 0. We distinguish between two cases:
• [Subcritical region]. If ∂xu0(x) > −ψ ? ρ0(x) + σ+(x) for all x ∈ R, then the

system has a global classical solution. Here, σ+(x) = 0 whenever ρ0(x) = 0 and
elsewhere σ+(x) is the (unique) negative root of the equation

1

ρ0(x)
− 1

ψ2
M

(
k + ψMσ+(x)/ρ0(x)− keψMσ+(x)/kρ0(x)

)
= 0, ρ0(x) > 0.

• [Supercritical region]. If there exists an x such that

∂xu0(x) < −ψ ? ρ0(x) + σ−(x), σ−(x) := −
√
−2kρ0(x),

then the solution blows up in a finite time.

Remark 1.2. 1. In the attractive case, the blowup is “unconditional”, independent of the
choice of initial configuration. It indicates that Poisson force dominates the alignment force.
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2. In the repulsive case, alignment force enhances regularity. Indeed, we have a larger
subcritical region than the case of K ≡ 0, as σ+(x) < 0.

3. If ψ has a positive lower bound ψm > 0, we can obtain a better supercritical region
for the repulsive case. In particular, the threshold condition is sharp when ψ is a constant.
Consult Remark 3.1 below for details.

In Section 3.2, we consider general potentials with enough smoothness, K ∈ Ẇ 2,∞(R).
We show the following threshold conditions

Theorem 1.3. Consider the system (1.1) with alignment and attractive-repulsive forces.

(1) Attractive case, ∂2xK < 0. If there exists an x such that ∂xu0(x) < −ψ ? ρ0(x), then
the solution blows up in a finite time.

(2) Repulsive case ∂2xK > 0. We distinguish between two cases.
• [Subcritical region]. If ∂xu0(x) ≥ −ψ ? ρ0(x) for all x ∈ R, then the system has

a global classical solution.
• [Supercritical region]. if there exists an x such that

∂xu0(x) < −ψ ? ρ0(x)−
√
‖∂2xK‖L∞ ,

then the solution blows up in finite time.

We note in passing that if ψ admits a positive lower bound, ψm > 0, then we there is a
refined critical threshold outlined in remark 3.2 below, which is irrespective of the sign of
interaction force.

Finally, we close our discussion by considering the the alignment system with additional
pressure term p(ρ) := Aργ

∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0,

∂tu+ u∂xu+
∂xp(ρ)

ρ
= −k∂xφ+

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy, ∂2xφ = ρ.

(1.5)

The presence of the pressure destroys the original characteristic structure and it is well
known that the solutions of the isentropic Euler equation (1.5) with ψ ≡ k = 0 develop sin-
gularities in a finite time, consult e.g., [6] and the references therein. Thus, the regularizing
effects of Poisson and alignment forcing compete with the generic formation of singulari-
ties due to the pressure term. In [20] it was shown that the critical threshold for global
regularity of the perssureless Euler-Poisson equations (1.3) survives when pressure is being
added. The question arises whether the Euler-Alignment with pressure admits a critical
threshold for global regularity. Specifically, in Section 4, we consider the Euler-Alignment
with isothermal pressure p(ρ) = Aρ,

∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0,

∂tu+ u∂xu+A∂x ln(ρ) =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy.

This Euler-Alignment system with isothermal pressure was rigorously derived in [12] as the
hydrodynamic limit of the kinetic Cucker-Smale system (under the assumptions that ∂xu
and ∂x ln ρ are bounded). In Theorem 4.1 below we prove global regularity for subcritical
initial configurations in the special case of a constant influence function ψ ≡ Const. We also
point out the difficulties to extend this result to general influence functions, which is left for
a future investigation. The necessary a priori estimate on the isothermal Euler-Alignment
system is found in Appendix A.2.
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2. Euler-Alignment system

In this section, we study the one dimensional Euler-Alignment system (1.2), without
taking into account the interaction potential K.

Differentiate the momentum equation in (1.2) with respect to x, then v := ∂xu satisfies1

∂tρ+ u∂xρ = −ρv,

∂tv + u∂xv + v2 = −u
∫
R
∂xψ(x− y)ρ(y)dy −

∫
R
ψ(x− y)∂tρ(y)dy − v

∫
R
ψ(x− y)ρ(y)dy,

where we used∫
R
∂xψ(x− y)(u(y)− u(x))ρ(y)dy = −u(x)

∫
R
∂xψ(x− y)ρ(y)dy −

∫
R
ψ(x− y)∂tρ(y)dy.

Here the symmetry assumption of the influence function ψ is essential. Consider the char-
acteristic flow x(a, t) associated to the velocity field u defined by

d

dt
x(a, t) = u(x(a, t), t), with x(a, 0) = a.

Then along this characteristic flow we find

∂tρ(x(a, t), t) = −ρ(x(a, t), t)v(x(a, t), t),

∂t(v(x(a, t), t) + (ψ ? ρ)(x(a, t), t)) = −v2(x(a, t), t)− v(x(a, t), t)(ψ ? ρ)(x(a, t), t).

Set d = v + ψ ? ρ. Then we again rewrite the above system:

ρ′ = −ρv = −ρ(d− ψ ? ρ), (2.1a)

d′ = −v(v + ψ ? ρ) = −d(d− ψ ? ρ), (2.1b)

where ′ denotes the time derivative along the characteristic flow x(a, t).

Proposition 2.1. Consider the equation (2.1). Then we have

• If d0 < 0, then d→ −∞ in finite time.
• If d0 = 0, then d(t) = 0 for all t ≥ 0.
• If d0 > 0, then d(t) remains bounded for all time, and d(t)→ ψ ? ρ(t) as t→∞.

Proof. First case d0 < 0. It is clear to have that if d0 < 0, then d(t) ≤ 0 for all t ≥ 0. Then

it follows from (2.1b) that d′ ≤ −d2 which in turn yields d(t) ≤ d0
t+ d0

. Hence, d(t) blows

up at t∗ ≤ −d0.
The second case d0 = 0 is trivial.
Finally the third case d0 > 0. Note that if d(t) ∈ (0, ψ ? ρ(t)), then d′(t) > 0 thus d(t) is
increasing up to ψ ? ρ(t). On the other hand, if d(t) > ψ ? ρ(t), then d(t) is decreasing up
to ψ ? ρ(t). Note that

‖ψ ? ρ‖L∞ ≤ ‖ψ‖L∞‖ρ‖L1 = ψM <∞ .

Thus ψ ? ρ is bounded, and we conclude with the third statement of the proposition. �

We can also trace the dynamics of ρ along the characteristic flow from (2.1a).

• If ρ0 = 0, clearly ρ(t) = 0 for all t ≥ 0.

1We suppress the time dependence whenever it is clear from the context.
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• If ρ0 > 0, we set β := d
ρ and its dynamics along particle path is easily found to be

β′ =
d′ρ− dρ′

ρ2
=

1

ρ2
(
− d(d− ψ ? ρ)ρ+ dρ(d− ψ ? ρ)

)
= 0.

Thus β(t) = β0 for all t ≥ 0 and ρ remains proportional to d along each path,
ρ(t)β0 = d(t),

As a conclusion we have the following complete description of the critical threshold for
system (1.2), and Theorem 1.1 then follows as a direct consequence.

Corollary 2.1. Consider the Euler-Alignment system (1.2). Then we have

• If ∂xu0(a) < −ψ ? ρ0(a), then ∂xu(x(a, t), t) → −∞. Moreover, if ρ0(a) > 0,
ρ(x(a, t), t)→ +∞ in a finite time.
• If ∂xu(a) = −ψ ? ρ(a), then ∂xu(x(a, t), t) = −ψ ? ρ(x(a, t), t) for all time t ≥ 0.
• If ∂xu0(a) > −ψ ? ρ0(a), then ∂xu(x(a, t), t) and ρ(x(a, t), t) remains uniformly

bounded for all t ≥ 0, and furthermore ∂xu(x(a, t), t)→ 0 as t→ +∞.

3. Euler-Alignment system with attractive-repulsive potentials

In this section, we study the main system (1.1) of Euler equations with alignment, and
attractive-repulsive forces.

3.1. A special potential: Euler-Poisson-Alignment system. We first consider Euler-
Alignment system (1.1) with a special Newtonian potential:

K(x) =
k|x|

2
.

As ∂2xK = kδ0, k(∂xK ? ρ) is a Poisson force which is attractive if k > 0, or repulsive if
k < 0. We recall the corresponding Poisson-Alignment system (1.4):

∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu = −k∂xφ+

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy, ∂2xφ = ρ.

By using similar arguments to Section 2, we find

ρ′ = −ρ(d− ψ ? ρ), (3.1a)

d′ = −d(d− ψ ? ρ)− kρ. (3.1b)

In the case of vacuum ρ0 = 0, the dynamics of d (3.1b) are the same as for the Euler-
Alignment case (2.1b). Thus Proposition 2.1 holds.

We now focus on the case ρ0 > 0. Set β = d/ρ, then we can find

β′ = −k, i.e., β(t) = β0 − kt. (3.2)

This again yields that

ρ′ = −ρ(d− ψ ? ρ) = −ρ(ρ(β0 − kt)− ψ ? ρ) = −β0ρ2 + ktρ2 + ρ(ψ ? ρ). (3.3)

Then we obtain an implicit form of solution ρ from (3.3) that

1

ρ(t)
= e−

∫ t
0 (ψ?ρ)ds

(
1

ρ0
+

∫ t

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds

)
. (3.4)

For the attractive case k > 0, β0 − ks becomes negative in finite time, irrespective of
the value of β0. The right hand side decreases to 0 in finite time, resulting a blowup of
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ρ. Hence, we have the following lemma, and this directly implies the result in part (1) of
Theorem 1.2.

Lemma 3.1. [Blowup with attractive potential]. If k > 0, then ρ(t)→ +∞ in finite time.

For the repulsive case k < 0, critical thresholds are expected since a similar phenomenon
is proved for both Euler-Poisson [9] and Euler-Alignment (Section 2) systems. We start
with the following rough estimate.

Lemma 3.2. [Rough subcritical region with repulsive potential]. If k < 0 and β0 ≥ 0, then
ρ(t) remains bounded for all time t ≥ 0.

Proof. By our assumption on k and β0 we have β0 − kt ≥ 0 for all t ≥ 0. Also,

0 ≤ ψmt ≤
∫ t

0
(ψ ? ρ)ds ≤ ψM t. (3.5)

Hence, the following lower bound, 1/ρ(t) ≥ e−ψM t/ρ0 > 0, follows directly from (3.4). �

We notice that lemma 3.2 provides the same subcritical region as in the Euler-Alignment
system, namely, ∂xu0 + ψ ? ρ0 > 0. With the additional repulsive force, however, the
subcritical region is expected to be larger. Indeed, we turn to derive a refined estimate
which yields the larger subcritical region stated in Theorem 1.2.
Consider the case when β0 < 0. To bound ρ, it is enough check when the following value is
zero or not:

1

ρ0
+

∫ t

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds. (3.6)

Since β0 − ks ≤ 0 for s ≤ β0
k , we rewrite (3.6) as

1

ρ0
+

∫ β0
k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds+

∫ t

β0
k

(β0 − ks)e
∫ s
0 (ψ?ρ)dτds. (3.7)

Thus if there is no blow-up of solutions until t ≤ β0
k then it holds for all times, due to the

positivity of the last term in (3.7).

Proposition 3.1. Consider the dynamics (3.3) with k < 0 and β0 < 0. Then ρ(·, t) remains
bounded if and only if

1

ρ0
+

∫ β0
k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds > 0. (3.8)

In order to derive a sufficient condition for (3.8) determined by the initial conditions, we
use (3.5) to get∫ β0

k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds ≥

∫ β0
k

0
(β0 − ks)eψMsds

= − β0
ψM

+
k

ψ2
M

(
eψMβ0/k − 1

)
= − 1

ψ2
M

(
k + ψMβ0 − keψMβ0/k

)
.

Thus, we deduce that if initially

1

ρ0
− 1

ψ2
M

(
k + ψMβ0 − keψMβ0/k

)
> 0,

then there is no finite-time blow-up of classical solutions. Note that the left hand side is
increasing with respect to β0 if β0 < 0. This together with Lemma 3.2 implies the subcritical
region in part (2) of Theorem 1.2.
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Next, we estimate the blow-up criterion of solutions. According to Proposition 3.1, we
shall find a sufficient condition of d0 that makes

1

ρ0
+

∫ β0
k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds ≤ 0.

Since ∫ β0
k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds ≤

∫ β0
k

0
(β0 − ks)ds =

1

2

β20
k
,

we obtain 1/ρ0 + β20/2k ≤ 0, and this holds if d0 ≤ −
√
−2kρ0. It concludes that if d0 ≤

−
√
−2kρ0 then there exists t∗ such that ρ(t)→ +∞ until t ≤ t∗.

Remark 3.1. If ψ has a positive lower bound, i.e., ψm > 0, a better bound can be obtained
as follows:∫ β0

k

0
(β0 − ks)e

∫ s
0 (ψ?ρ)dτds ≤

∫ β0
k

0
(β0 − ks)eψmsds = − 1

ψ2
m

(
k + ψmβ0 − keψmβ0/k

)
.

Therefore, we arrive at a refined supercritical region, where σ− in Theorem 1.2 can be
redefined as

1

ρ0(x)
− 1

ψ2
m

(
k + ψmσ−(x)/ρ0(x)− keψMσ−(x)/kρ0(x)

)
= 0, for ρ0(x) > 0,

and σ−(x) = 0 for ρ0(x) = 0. In particular when ψ is a constant, σ+ = σ−, the two
thresholds matches and the results are sharp.

It follows from (3.2) that if ρ(t) blows up in finite time, then d(t) is also blowing up
in finite-time. Similarly, if ρ(t) remains bounded, then d(t) remains bounded as well. As
|ψ ?ρ| ≤ ψM , ρ(t) and ∂xu(t) blow up simultaneously, concluding the proof of Theorem 1.2.

3.2. Euler-Alignment with general attractive-repulsive potentials. In this part, we
consider Euler-Alignment system with general attractive-repulsive potentials:

∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy + ∂xK ? ρ.

By using the similar arguments in Section 2, we find

ρ′ = −ρ(d− ψ ? ρ),

d′ = −d(d− ψ ? ρ) + ∂2xK ? ρ.
(3.9)

For this system, we can classify the initial configurations that leading to the global
regularity or the finite-time breakdown, when ∂2xK is bounded.

Proposition 3.2. Consider the system (3.9). Then the following holds.

• [Attractive case ∂2xK > 0]. If d0 < 0, then d(t)→ −∞ in finite time.
• [Repulsive case ∂2xK < 0]. If d0 ≥ 0, then d(t) remains uniformly bounded for all

time t ≥ 0. On the other hand, if d0 < −
√
‖∂2xK‖L∞, then d(t) → −∞ in finite

time.

Proof. � We begin with the attractive case (∂2xK ≥ 0). In this case, we find from (3.9) that

ρ′ = −ρ(d− ψ ? ρ),

d′ ≤ −d(d− ψ ? ρ).
(3.10)
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Then one can use the comparison principle for the above system (3.10) with the system
(2.1) to obtain

d(t)→ −∞ in finite time if d0 < 0.

We turn to the repulsive case, (∂2xK < 0). We have

d′ = −d2 + (ψ ? ρ)d+ ∂2xK ? ρ.

To obtain a global bound on d, we estimate when d ≥ 0,

d′ ≥ −d2 + (ψ ? ρ)d.

Thus d(t) ≥ 0 if d0 ≥ 0 due to the comparison principle with the system (2.1). Moreover,
we can also obtain the upper bound when d > 0.

d′ ≤ −d2 + ψMd+B = −(d− d∗1)(d− d∗2), B := ‖∂2xK‖L∞ ,

where

d∗1 :=
ψM −

√
ψ2
M + 4B

2
and d∗2 :=

ψM +
√
ψ2
M + 4B

2
> 0.

It implies d′ < 0 for d > d∗2, and this deduces d has an upper bound. Hence we have the
global boundedness of d.

On the other hand, for d < 0, the upper bound is given as

d′ ≤ −d2 +B = −
(
d−
√
B
)(

d+
√
B
)
,

If d0 < −
√
B, through the comparison principle, it is easy to see that d(t)→ −∞ in finite

time. �

Collecting all characteristic flows together, we deduce Theorem 1.3.
We can also have more refined estimates by using the same argument as in Proposition

3.2 when the influence function ψ is bounded from below by ψm > 0. In this case, we can
treat the case of combined attractive and repulsive forces.

Corollary 3.1. Consider the system (1.1) with the nonlocal interaction force K ∈ Ẇ 2,∞(R).
Suppose that the influence function ψ satisfies ψ(x) ≥ ψm > 0. If the initial slope u′0 is not
“too negative” in the sense that

ψ2
m ≥ 4B and d0 ≥ −

ψm +
√
ψ2
m − 4B

2
,

then d(t) is bounded for all time t ≥ 0. On the other hand, if u′0 is “too negative” in the
sense that

d0 <
ψm −

√
ψ2
M + 4B

2
,

then d(t)→ −∞ in a finite time.

Remark 3.2. Corollary 3.1 implies that if the influence function ψ is bounded from below
and it is sufficiently large, then we have better threshold conditions:

• [Subcritical region]. If ψ2
m ≥ 4B and

∂xu0(x) ≥ −ψ ? ρ0(x)− 1

2

(
ψm +

√
ψ2
m − 4B

)
for all x ∈ R, then the system has a global classical solution.
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• [Supercritical region]. If there exists an x such that

∂xu0(x) < −ψ ? ρ0(x) +
1

2

(
ψm −

√
ψ2
M + 4B

)
,

then the solution blows up in finite time.

4. A remark on Euler-Alignment system with pressure

In this section, we consider Euler-Alignment system with pressure,

∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0,

∂tu+ u∂xu+
∂xp(ρ)

ρ
=

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy.

(4.1)

The pressure is usually modeled through a power law p(ρ) = Aργ , with A ≥ 0 and γ ≥ 1.
In particular, if there is no alignment interaction, namely ψ ≡ 0, the system becomes 1D
compressible Euler equation with isentropic pressure, where general initial data leads to
finite-time blowup. On the other hand, if A = 0, we recover the pressure-less system (1.2).

It is of great interest to see whether alignment force regularizes Euler equation with
pressure, and if there exists a non-empty subcritical region of initial configurations such
that the solution of (4.1) is globally smooth. As the pressure term destroys the original
characteristic structure, it is more delicate the trace the dynamics. To this end, we follow
the argument of [20], where Euler-Poisson equations with pressure is discussed.

Rewrite (4.1) as the following system(
ρ
u

)
t

+

(
u ρ

Aγργ−2 u

)(
ρ
u

)
x

=

(
0∫

R ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy

)
. (4.2)

We decouple the system by diagonalizing the matrix in (4.2). It yields

Rt + λRx =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy,

St + µSx =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy,

where λ, µ are eigenvalues of the matrix

λ := u−
√
Aγρ(γ−1)/2, µ := u+

√
Aγρ(γ−1)/2,

and R,S are the corresponding Riemann invariants

R =

{
u− 2

√
Aγ

γ−1 ρ
(γ−1)/2 γ > 1

u−
√
A ln ρ γ = 1

, S =

{
u+ 2

√
Aγ

γ−1 ρ
(γ−1)/2 γ > 1

u+
√
A ln ρ γ = 1

.

Let us denote material derivatives 8 = ∂t+λ∂x and ′ = ∂t+µ∂x along two particle paths.
We derive the dynamics of Rx and Sx using the same procedure as in [20]:

R8x +
1 + θ

2
R2
x +

1− θ
2

RxSx = ∂x

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy,

S′x +
1 + θ

2
S2
x +

1− θ
2

RxSx = ∂x

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t) dy,

(4.3)

where θ = γ−1
2 .

We treat the right hand side of the system similarly as the pressure-less system. Define

r = Rx + ψ ? ρ and s = Sx + ψ ? ρ.
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The paired equations (4.3) can be written in terms of (r, s).

r8 +
1 + θ

2
r2 +

1− θ
2

rs =

[(
1 +

θ

2

)
r − θ

2
s

]
(ψ ? ρ)−

√
Aγρθ(ψx ? ρ),

s′ +
1 + θ

2
s2 +

1− θ
2

rs =

[(
1 +

θ

2

)
s− θ

2
r

]
(ψ ? ρ) +

√
Aγρθ(ψx ? ρ).

We begin our study on a very special isothermal case, where p(ρ) = Aρ. Moreover, we
take ψ ≡ C > 0. Under this setup, the alignment force is reduced to a local damping force,
and system (4.1) is simplified to

∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu+A∂x(ln ρ) = −Cu+ C

∫
R
ρ0u0 dx.

(4.4)

Here we used the momentum conservation of the system (4.1), i.e.,∫
R
ρu dx =

∫
R
ρ0u0 dx, for t ≥ 0.

Under the above assumptions, the dynamics of (r, s) can be simplified as follows.

r8 = −1

2
r2 − 1

2
rs+ Cr, (4.5a)

s′ = −1

2
s2 − 1

2
rs+ Cs. (4.5b)

The following proposition shows a subcritical threshold where global regularity is guar-
anteed.

Proposition 4.1 (Subcritical region). If r0 and s0 are nonnegative and r0, s0 ∈ L∞(R),
then r(x, t), s(x, t) are bounded for all x ∈ R, t ≥ 0. More precisely, we have

0 ≤ r(x, t), s(x, t) ≤ max{‖r0‖L∞ , ‖s0‖L∞ , 2C} for (x, t) ∈ R× R+.

Proof. As r and s has the same dynamics along their own characteristics, it suffices to prove
that r is bounded along its characteristic path.

For the proof, we look for an invariant region of the form [0,M0] with M0 > 0 which will
be determined later. If r, s ∈ [0,M0], then we find from (4.5a) that

r8 ≥ −1

2
r2 − 1

2
M0r + Cr.

We will show that r can not escape from the left. Let q solve the following differential
equation:

dq

dt
= −1

2
q2 − 1

2
M0q + Cq,

with the initial data q0 = 0. Then by the uniqueness of solutions to the above equation, we
obtain q(t) ≡ 0. This and together with the comparison lemma yield r(t) ≥ 0 for all time.

We now show that r has an upper bound. We notice that

r8 = −1

2
r(r − 2C)− 1

2
sr ≤ −1

2
r(r − 2C).

Thus if r0 ∈ (0, 2C], then r(t) ≤ 2C for all time. On the other hand, if r0 > 2C, then we
clearly get r8 ≤ 0 and this implies that r(t) ≤ r0 for all time. Hence we obtain that r is
uniformly bounded in time with

0 ≤ r(t) ≤ max{‖r0‖L∞ , 2C}.
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The boundedness of s can be done by the same process, and this implies

0 ≤ r(t), s(t) ≤ max{‖r0‖L∞ , ‖s0‖L∞ , 2C}.
We conclude our desired result by choosing M0 = max{‖r0‖L∞ , ‖s0‖L∞ , 2C}. �

Recall r0 = ∂xu0−
√
A(∂xρ0)/ρ0 +C and s0 = ∂xu0 +

√
A(∂xρ0)/ρ0 +C. The subcritical

region is equivalent to

∂xu0(x) ≥ −C +
√
A

∣∣∣∣∂xρ0(x)

ρ0(x)

∣∣∣∣ , ∀ x ∈ R. (4.6)

For C > 0, the set (ρ0, u0) is non-empty. In the case of A = 0, we recover the subcritical
threshold condition for pressureless Euler dynamics with damping.

On the other hand, the boundedness of r and s imply the boundedness of ∂xu and ∂x ln ρ,
we obtain the following global existence result.

Theorem 4.1. Consider (4.4) with subcritical initial condition (4.6). Then, the system
has a global classical solution.

Remark 4.1. Critical thresholds on Euler equation with local damping has been discussed
in [15], for general types of pressure. Our result provides a larger subcritical region for the
special case (4.5).

For the general non-local influence function ψ, the strategy does not apply, due to the
presence of the extra term ±

√
Aγρθ(ψx ?ρ). In this case, r = 0 and s = 0 are not stationary

states, and it is more delicate to control the lower bound of (r, s) in time. We leave the
problem for future investigation.

Appendix A. Global regularity

In this part, we consider smoother subcritical initial data, and prove that initial regularity
persists globally in time, under suitable assumptions on the influence function ψ and the
interaction potential K.

A.1. Pressureless Euler equations with nonlocal forces. We start with our main
system (1.1).

Theorem A.1. Let s ≥ 0 be an integer. Consider system (1.1) with smooth influence
function ψ satisfying

ψ ∈ L1(R) + const, and x∂xψ ∈ L1(R), (A.1)

and potential K such that
∂2xK ∈ L1(R). (A.2)

Suppose the initial data (ρ0, u0) lie in the subcritical region, and satisfy ρ0, ∂xu0 ∈ Hs(R).
Then, there exists a unique global solution (ρ, u) such that

ρ ∈ C([0, T ];Hs(R)) and ∂xu ∈ C([0, T ];Hs(R))

for any time T .

Remark A.1. The condition (A.1) on ψ is valid for constant influence function ψ ≡ 1, as
well as the typical Cucker-Smale weight ψ(x) = (1 +x2)−γ, with γ > 1/2. The condition on
K is valid for Newtonian potential K = k

2 |x|.

As subcritical initial data imply global in time bounds on ‖ρ‖L∞ and ‖∂xu‖L∞ , it suffices
to prove the following estimate.
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Theorem A.2. Let s ≥ 0 be an integer. Define Y (t) := ‖∂xu(·, t)‖2Hs + ‖ρ(·, t)‖2Hs. If the
influence function ψ and the potential K satisfy (A.1) and (A.2), respectively, then

Y (T ) . Y (0) exp

[∫ T

0
(1 + ‖ρ(·, t)‖L∞ + ‖∂xu(·, t)‖L∞) dt

]
. (A.3)

Proof. We start with acting operator Λs on equation (1.1)1 and integrate by parts against

Λsρ. Here Λ := (I −∆)1/2 is the pseudo-differential operator. We also denote (·, ·) as L2

inner product in R.
The evolution of the Hs norm reads

1

2

d

dt
‖ρ(·, t)‖2Hs = − ([Λs∂x, u] ρ,Λsρ) +

1

2
(Λsρ, (∂xu)Λsρ) .

We postpone the proof of the following commutator estimate to Lemma A.1.

‖ [Λs∂x, u] ρ‖L2 . ‖∂xu‖L∞‖ρ‖Hs + ‖∂xu‖Hs‖ρ‖L∞ .
With this, we deduce the following estimate

d

dt
‖ρ(·, t)‖2Hs . [‖ρ‖L∞ + ‖∂xu‖L∞ ]

(
‖ρ‖2Hs + ‖∂xu‖2Hs

)
.

Similarly, for equation (1.1b), we have

1

2

d

dt
‖∂xu(·, t)‖2Hs = −

(
[Λs∂x, u] ∂xu,Λ

s∂xu
)

+
1

2
(Λs∂xu, (∂xu)Λs∂xu)

+

(
Λs∂xu,Λ

s∂x

∫
R
ψ(x− y)(u(y)− u(x))ρ(y)dy

)
+

(
Λs∂xu,Λ

s∂x

∫
R
∂xK(x− y)ρ(y)dy

)
.

For the commutator, we obtain the same estimate from Lemma A.1.

‖ [Λs∂x, u] ∂xu‖L2 . ‖∂xu‖L∞‖∂xu‖Hs .

For the alignment term, we claim and will prove in Lemma A.2 that(
Λs∂xu,Λ

s∂x

∫
R
ψ(x− y)(u(y)− u(x))ρ(y)dy

)
. ‖∂xu‖Hs

[
‖ρ‖Hs‖∂xu‖L∞ + (1 + ‖ρ‖L∞)‖∂xu‖Hs

]
.

(A.4)

For the attraction-repulsion term, as ∂2xK ∈ L1(R),(
Λs∂xu,Λ

s∂x

∫
R
∂xK(x− y)ρ(y)dy

)
. ‖∂xu‖Hs‖∂2xK‖L1‖Λsρ‖L2 . ‖∂xu‖Hs‖ρ‖Hs .

Putting everything together, we obtain

d

dt
‖∂xu(·, t)‖2Hs . [1 + ‖ρ‖L∞ + ‖∂xu‖L∞ ]

(
‖ρ‖2Hs + ‖∂xu‖2Hs

)
.

A Gronwall’s inequality implies (A.3). �

Next, we provide a short proof of the Kato-Pounce type commutator estimate [13] which
is used in the regularity estimates.

Lemma A.1 (Commutator estimate). Let f, ∂xu ∈ (L∞ ∩Hs)(R). Take s to be an non-
negative integer. Then,

‖[∂s+1
x , u]f‖L2 . ‖f‖L∞‖∂xu‖Hs + ‖∂xu‖L∞‖f‖Hs .



14 CARRILLO, CHOI, TADMOR, AND TAN

Remark A.2. Take f = ρ, we get

‖[∂s+1
x , u]ρ‖L2 . ‖ρ‖L∞‖∂xu‖Hs + ‖∂xu‖L∞‖ρ‖Hs .

Take f = ∂xu, we get

‖[∂s+1
x , u]∂xu‖L2 . ‖∂xu‖L∞‖∂xu‖Hs .

These imply the two commutator inequalities in Theorem A.2.

Proof of Lemma A.1. We first rewrite the commutator and use appropriate Hölder inequal-
ity to get

‖[∂s+1
x , u]f‖L2 =

∥∥∂s+1
x (uf)− u · ∂s+1

x f
∥∥
L2 ≤

s∑
i=0

(
s+ 1

i

)
‖∂s+1−i

x u · ∂ixf‖L2

≤
s∑
i=0

(
s+ 1

i

)
‖∂s−ix (∂xu)‖

L
2s
s−i
‖∂ixf‖L 2s

i
.

Next, we apply the following type of Gagliardo-Nirenberg interpolation inequality

‖∂jxg‖
L

2s
j
. ‖∂sxg‖

j/s
L2 ‖g‖

1− j
s

L∞ , j = 0, 1, · · · , s.

Taking (g, j) = (∂xu, s− i) and (g, j) = (f, i), we continue the estimate

‖[∂s+1
x , u]f‖L2 .

s∑
i=0

(
s+ 1

i

)
(‖∂sx(∂xu)‖L2‖f‖L∞)

s−i
s (‖∂sxf‖L2‖∂xu‖L∞)

i
s

. ‖∂sx(∂xu)‖L2‖f‖L∞ + ‖∂sxf‖L2‖∂xu‖L∞ .
The last estimate is due to Young’s inequality. This ends the proof. �

We are left with the final estimate (A.4).

Lemma A.2. If the influence function ψ satisfies (A.1), then∥∥∥∥∂s+1
x

∫
R
ψ(x− y)(u(y)− u(x))ρ(y)dy

∥∥∥∥
L2

. (‖ρ‖L∞ + 1)‖∂xu‖Hs + ‖∂xu‖L∞‖ρ‖Hs .

Proof. We first assume ψ ∈ L1(R). Estimate the left hand side as follows.

LHS ≤
s∑
i=0

(
s+ 1

i

)
‖∂s+1−i

x u·∂ix(ψ?ρ)‖L2+

∥∥∥∥∫
R
∂s+1
x ψ(x− y)(u(y)− u(x))ρ(y)dy

∥∥∥∥
L2

= I+II.

We control the first term in the similar way as Lemma A.1, along with the assumption that
ψ ∈ L1(R).

I ≤
s∑
i=0

(
s+ 1

i

)
‖∂s−ix (∂xu)‖

L
2s
s−i
‖∂ixρ‖L 2s

i
‖ψ‖L1 . ‖∂sx(∂xu)‖L2‖f‖L∞ + ‖∂sxf‖L2‖∂xu‖L∞ .

For the second term, we again break it into two terms (again, suppressing the t-dependence),

II =

∥∥∥∥∫
R
∂s+1
y ψ(x− y)(u(y)− u(x))ρ(y)dy

∥∥∥∥
L2

=

∥∥∥∥∫
R
ψ(x− y)∂s+1

y [(u(y)− u(x))ρ(y)] dy

∥∥∥∥
L2

≤

∥∥∥∥∥
∫
R
ψ(x− y)

s∑
i=0

(
s+ 1

i

)
∂s+1−i
y u(y)∂iyρ(y)dy

∥∥∥∥∥
L2

+

∥∥∥∥∫
R
ψ(x− y)(u(y)− u(x))∂s+1

y ρ(y)dy

∥∥∥∥
L2

= III + IV.
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The third term can be controlled by Lemma A.1 after applying Young’s inequality

III ≤ ‖ψ‖L1

s∑
i=0

(
s+ 1

i

)
‖∂s+1−i

x u · ∂ixρ‖L2 . ‖∂sx(∂xu)‖L2‖ρ‖L∞ + ‖∂sxρ‖L2‖∂xu‖L∞ .

Finally, for the last term, we have

IV =

∥∥∥∥∫
R
∂y [ψ(x− y)(u(y)− u(x))] ∂syρ(y, t)dy

∥∥∥∥
L2

≤
∥∥∥∥∫

R
∂yψ(x− y)(u(y)− u(x))∂syρ(y)dy

∥∥∥∥
L2

+

∥∥∥∥∫
R
ψ(x− y)∂yu(y)∂syρ(y)dy

∥∥∥∥
L2

≤ ‖x∂xψ‖L1‖∂xu‖L∞‖∂sxρ‖L2 + ‖ψ‖L1‖∂xu‖L∞‖∂sxρ‖L2 .

For ψ ∈ L1 + const, it is easy to check that for constant c,

∂s+1
x

∫
R
c(u(y, t)− u(x, t))ρ(y, t)dy = −c∂s+1

x u(x).

Thus, we conclude with the desired estimate. �

A.2. Isothermal Euler equations with nonlocal dissipation. In this part, we study
the global regularity for the system (4.1) with the pressure law p(ρ) = ρ. The system can
be rewritten in the following form.

∂tn+ u∂xn = −∂xu, n := ln ρ,

∂tu+ u∂xu+ ∂xn =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy.

(A.5)

Theorem A.3. Let s ≥ 0 be an integer. Consider the system (A.5) with the influence
function ψ satisfying

∂xψ ∈W s−1,∞(R), |x|1/2∂αxψ ∈ L2(R) for 1 ≤ α ≤ s+ 1. (A.6)

Suppose the initial data (n0 := ln ρ0, u0) satisfy ∂xn0 ∈ Hs(R), and ∂xu0 ∈ Hs(R). If the
solutions (n, u) have the following global in time bounds

sup
0≤t≤T

(‖∂xn‖L∞ + ‖∂xu‖L∞) <∞,

Then there exists a unique global solution (n, u) such that

∂xn ∈ C([0, T ];Hs(R)) and ∂xu ∈ C([0, T ];Hs(R)),

for any time T .

For the similar reason as before, it is enough to prove the following estimate for the global
solvability.

Remark A.3. If the influence function ψ is a constant, then we do not need the assumption
(A.6) for ψ. Since the subscritical initial data obtained in Theorem 4.1 for the system (4.4)
imply global in time bounds on ‖∂x(n, u)‖L∞, Theorem A.3 deduce that the initial regularity
persists globally in time.

Theorem A.4. Let s ≥ 0 be an integer. Define Y (t) := ‖∂xn(·, t)‖2Hs + ‖∂xu(·, t)‖2Hs. If
the influence function ψ satisfies (A.6), then

Y (T ) . Y (0) exp

(∫ T

0
(1 + ‖∂xn(·, t)‖L∞ + ‖∂xu(·, t)‖L∞) dt

)
.
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Proof. The proof is similar as in Theorem A.2.
We start with acting operator Λs∂x on equation (A.5)1 and integrate by parts against

Λs∂xn:

1

2

d

dt
‖∂xn(·, t)‖2Hs = − ([Λs∂x, u] ∂xn,Λ

s∂xn) +
1

2
(Λs∂xn, (∂xu)Λs∂xn)−

(
Λs∂sn,Λ

s∂2xu
)
.

The commutator estimate in Lemma A.1 implies

‖ [Λs∂x, u] ∂xn‖L2 . ‖∂xu‖L∞‖∂xn‖Hs + ‖∂xu‖Hs‖∂xn‖L∞ .

With this, we deduce the following estimate

1

2

d

dt
‖∂xn(·, t)‖2Hs +

(
Λs∂sn,Λ

s∂2xu
)
. [‖∂xn‖L∞ + ‖∂xu‖L∞ ]

(
‖∂xn‖2Hs + ‖∂xu‖2Hs

)
. (A.7)

Similarly, for equation (A.5)2, we have

1

2

d

dt
‖∂xu(·, t)‖2Hs = −

(
[Λs∂x, u] ∂xu,Λ

s∂xu
)

+
1

2
(Λs∂xu, (∂xu)Λs∂xu)−

(
Λs∂xu, ∂xΛs∂2xn

)
+

(
Λs∂xu,Λ

s∂x

∫
R
ψ(x− y)(u(y)− u(x))ρ(y)dy

)
.

With the same argument as in Theorem A.2, we get

1

2

d

dt
‖∂xu(·, t)‖2Hs +

(
Λs∂xu, ∂xΛs∂2xn

)
. [1 + ‖ρ‖L∞ + ‖∂xu‖L∞ ]

(
‖∂xn‖2Hs + ‖∂xu‖2Hs

)
,

(A.8)
provided the following estimate for the alignment term is true.(

Λs∂xu,Λ
s∂x

∫
R
ψ(x− y)(u(y)− u(x))ρ(y)dy

)
. ‖∂xu‖2Hs . (A.9)

See Lemma A.3 for the proof of this inequality.
Finally, we add (A.7)-(A.8) and use Gronwall’s inequality to end the proof. �

We end this section by proving the estimate (A.9). A stronger regularity on ψ is required
(compared with Lemma A.2) as we do not have regularity for ρ any more.

Lemma A.3. If ψ satisfies (A.6), then the estimate (A.9) is satisfied.

Proof. It suffices to prove for all 1 ≤ α ≤ s+ 1,(
∂αxu, ∂

α
x

∫
R
ψ(x− y)(u(y)− u(x))ρ(y)dy

)
. ‖∂xu‖2Hs .

In fact, we get

LHS =

(
∂αxu,

α∑
i=0

(
α

i

)∫
R
∂ixψ(x− y)∂α−ix (u(y)− u(x))ρ(y)dy

)

≤− (ψ ? ρ)‖∂αxu‖2L2 + ‖∂αxu‖L2

α−1∑
i=1

(
α

i

)∥∥∂α−ix u · ∂ix(ψ ? ρ)
∥∥
L2

+ ‖∂αxu‖L2

∥∥∥∥∫
R
∂αxψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy

∥∥∥∥
L2

≤ 0 + I + II.



17

Next, we estimate I and II term by term.

I ≤ ‖∂αxu‖L2

α−1∑
i=1

(
α

i

)
‖∂α−ix u‖L2‖∂ixψ‖L∞‖ρ‖L1 . ‖∂xψ‖W s−1,∞‖∂xu‖2Hs . ‖∂xu‖2Hs ,

II ≤ ‖∂αxu‖L2 [u]C1/2

∥∥|x|1/2∂αxψ(x) ? ρ
∥∥
L2

. ‖∂αxu‖L2‖∂xu‖L2‖|x|1/2∂αxψ(x)‖L2‖ρ‖L1 . ‖∂xu‖2Hs .

This concludes the proof. �
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