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Abstract— The ubiquitous least squares method for systems
of linear equations returns solutions which typically have all
non-zero entries. However, solutions with the least number of
non-zeros allow for greater insight. An exhaustive search for
the sparsest solution is intractable, NP-hard. Recently, a great
deal of research showed that linear programming can find
the sparsest solution for certain ‘typical’ systems of equations,
provided the solution is sufficiently sparse. In this note we report
recent progress determining conditions under which the sparsest
solution to large systems is available by linear programming, [1]–
[3]. Our work shows that there are sharp thresholds on sparsity
below which these methods will succeed and above which they
fail; it evaluates those thresholds precisely and hints at several
interesting applications.

I. INTRODUCTION

The recently introduced Compressed Sensing [4] paradigm
portends a revolution in modern sampling theory. If an n
dimensional signal x is known to be compressible - a central
tenet of approximation theory - then dramatically fewer than
n non-adaptive measurements may be sufficient to capture
the signal’s essential information. Moreover, there is a known
reconstruction technique to recover an approximation to x
which achieves the same order as optimal adaptive sampling.

At the heart of Compressed Sensing is replacing tradi-
tional point value measurements with random projections,
and utilizing the highly non-linear reconstruction technique of
constrained `1 minimization, often referred to as Basis Pursuit
or convex relaxation. More precisely, let Ψ be an orthonormal
basis (or tight frame) in which x is compressible, and let Φ
be a d × n matrix whose columns are selected iid uniformly
at random from the d−1 dimensional unit sphere Sd−1; then,
the d non-adaptive samples of the signal are computed by
ACSx = ΦΨT x = b, and the reconstruction is the vector xCS

solving

min ‖ΨT xCS‖`1 subject to ACSxCS = b.

This note focuses on the reconstruction technique,

min ‖x‖`1 subject to Ax = b, (1)

in an environment analogous to that of Compressed Sensing.
Consider the stronger notion of compressibility, sparsity, mea-
sured as the number of non-zero entries and expressed by the

`0 ’norm’. Over the last few years it has been both observed
experimentally and shown theoretically that, for particular
classes of the sampling matrix A, if x is sufficiently sparse
then (1) often recovers the sparsest solution, ( [1]–[3], [5]–
[13] to name a few),

min ‖x‖`0 subject to Ax = b. (2)

This phenomenon is referred to as `1/`0 equivalence, or al-
ternatively LP/NP equivalence as (1) can be solved efficiently
by linear programming whereas the naive exhaustive search
for the sparsest solution of an underdetermined system of
equations is NP-hard.

Precise phase-transitions for `1/`0 equivalence have re-
cently been uncovered for a wide class of sampling matrices,
A, similar to those occurring in Compressed Sensing. These
thresholds allow us to precisely answer the question, how
sparse is necessary so that `0, (2), can be solved efficiently
as `1, (1)?

II. PROBLEM FORMULATION

Consider A = Ad,n, a d×n orthogonal projector from R
n to

R
d selected uniformly at random from the Grassman manifold

of such projectors. Consider the setting of proportional growth:
the aspect ratio given by δ ∈ (0, 1) with d = bδnc, and the
sparsity a fraction of d, k = ‖x‖`0 = ρd, for ρ ∈ (0, 1).
The aspect ratio, δ, measures the undersampling factor, and
ρ measures the fractional amount of sparsity. For n large,
the problem space is determined by these two parameters
(δ, ρ). We catalog four sparsity phase-transitions as functions
of the undersampling ratio, ρ(δ), which characterize the `1/`0

equivalence in the limit as n → ∞. These phase-transitions
quantify the necessary undersampling ratio, δ, above which the
solution to (1) is with overwhelming probability (exponential
in n) the sparsest solution, (2).

We consider four thresholds, separately the cases of x
having signed entries or non-negative entries, and for each
of these cases “strong” and “weak” thresholds, Table I. The
strong threshold ensures that `1/`0 equivalence holds for
k ≤ ρS(δ) · d, with overwhelming probability in the uniform
selection of A. For the weak threshold, `1/`0 equivalence
holds for most x where k = ‖x‖`0 ≤ ρW (δ) · d with



TABLE I
`1/`0 EQUIVALENCE THRESHOLDS

Strong Weak
Signed ρ±

S
(δ) ρ±

W
(δ)

Non-negative ρ+

S
(δ) ρ+

W
(δ)

overwhelming probability in the uniform selection of A. That
is, for the vast majority of random orthogonal projection
matrices A, the solution to (1) is the sparsest solution, (2), for
the overwhelming fraction of x. These statements are made
precise in the following section.

III. `1/`0 EQUIVALENCE THRESHOLDS

Theorem 1 (Strong, Signed [1]): Fix ε > 0. With over-
whelming probability for large n, Ad,n offers the property of
`1/`0 equivalence for all x satisfying ‖x‖`0 ≤ (ρ±S (δ)− ε) · d.

Theorem 2 (Strong, Non-negative [2]): Fix ε > 0. With
overwhelming probability for large n, Ad,n offers the property
of `1/`0 equivalence for all x ≥ 0 satisfying ‖x‖`0 ≤
(ρ+

S (δ) − ε) · d.
Formulae for calculating thresholds ρ±

S (δ) and ρ+

S (δ) were
derived in [14] and [15], [16] respectively. They yield the
depictions seen in Figure 1 as the dashed-lines, ρ±

S (top) and
ρ+

S (bottom). The strong thresholds characterize the sparsity
level required to ensure that all sparse signals can be recovered
efficiently. Although the strong thresholds already establish
`1/`0 equivalence for sparsity up to a fixed fraction of d, for
most signals `1/`0 equivalence is satisfied for a substantially
larger fraction of d. For such weak thresholds, consider the
problem ensemble (A, b) composed of a given Ad,n and all b
which are generated by an x where k = ‖x‖`0 ≤ ρW (δ) · d.

Theorem 3 (Weak, Signed [1]): Fix ε > 0. With over-
whelming probability for large n, the problem (A, b) offers the
property of `1/`0 equivalence for the overwhelming fraction
of x satisfying ‖x‖`0 ≤ (ρ±W (δ) − ε) · d.

Theorem 4 (Weak, Non-negative [2]): Fix ε > 0. With
overwhelming probability for large n, the problem (A, b)
offers the property of `1/`0 equivalence for the overwhelming
fraction of x ≥ 0 satisfying ‖x‖`0 ≤ (ρ+

W (δ) − ε) · d.
Formulae for calculating thresholds ρ±

W (δ) and ρ+

W (δ) were
similarly derived in [14] and [16] respectively; and are repro-
duced in Figure 1 as the solid lines. Table II states quantitative
values of the four thresholds for various values of δ.

TABLE II
SELECTED VALUES OF THRESHOLDS

δ = .1 δ = .25 δ = .5 δ = .75 δ = .9

ρ±
S

(δ) .048802 .065440 .089416 .117096 .140416
ρ+

S
(δ) .060131 .087206 .133457 .198965 .266558

ρ±
W

(δ) .188327 .266437 .384803 .532781 .677258
ρ+

W
(δ) .240841 .364970 .558121 .765796 .902596

A simple example of the type of statements which can be
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Fig. 1. Thresholds for x signed (above) and non-negative (below). Weak
thresholds in solid and strong thresholds in dashed.

gleaned from Table II is as follows. For a non-negative signal
of length n measure n/10 random inner-products; with high
probability for n large, the vast majority of signals with no
more than n/42 non-zero entries can be recovered efficiently
by linear programing, (1). Other applications include the
widely discussed context of error-correcting codes, [5], [17]. In
this setting the strong thresholds correspond to signal recovery
from malicious errors, whereas the weak thresholds concern
recoverability from random error. In either case, quantitative
threshold information such as in Table II allows for precise
design criteria. Application to error correcting codes will be
discussed in more detail in Section VI. We conclude this
section with a few remarks.

Remark (`1/`0 Thresholds):
i. Theorems 1 through 4 prove `1/`0 equivalence for

sparsity proportional to d, further establishing the
effectiveness of solving (1) to recover the sparsest
solution, even for relatively non-sparse signals.

ii. The fact that ρ+(δ) is larger than ρ±(δ) signals value
in using auxiliary information beyond sparsity; in
this case non-negativity. In short, in applications we
should exploit prior knowledge. Potential gains can



be achieved in determining sparse representations by
utilizing prior knowledge of applications.

iii. The significant increase of ρW (δ) over ρS(δ) in-
dicates the greatly improved behavior encountered
typically, in contrast to the strict for-all `1/`0 equiv-
alence.

iv. Results of Baryshnikov and Vitale imply that the
`1/`0 equivalence thresholds stated here are equally
valid for matrices Ad,n whose columns are drawn
independently from a multivariate normal distribu-
tion on R

d with nonsingular covariance. This follows
from the fact that the uniform random projection
of a spherico-regular simplex is affine equivalent
in distribution to a standard Gaussian point sample,
[18].

IV. `1/`0 EQUIVALENCE THRESHOLDS
ASYMPTOTIC BEHAVIOR

Section III stated results in the setting of proportional
growth; that is, each of the terms (k, dn, n) increasing with
k/dn → ρ and dn/n → δ as n → ∞. This section similarly
considers (k, dn, n) growing, but now with dn/n → 0 as
n → ∞. More precisely, we consider sub-exponential growth
of n with respect to dn,

dn/n → 0,
log(n)

dn

→ 0, n → ∞.

This regime occurs naturally in applications where there
are massively underdetermined systems of equations such as
sparse approximations of massive data sets, highly efficient
error-correcting codes, and in the context of Compressed
Sensing, [4], sparse representations from highly redundant
representations (such as n × n2 Gabor systems).

In this asymptotic regime, as δ → 0, the `1/`0 equivalence
thresholds are given by:

Theorem 5 (Strong Asymptotic, Nonnegative [3]):

ρ+

S (δ) ∼ |2e log(δ2
√

π)|−1, δ → 0 (3)
Theorem 6 (Strong Asymptotic, Signed [3]):

ρ±S (δ) ∼ |2e log(δ
√

π)|−1, δ → 0 (4)
Theorem 7 (Weak Asymptotics [3]):

ρ+

W (δ) ∼ |2 log(δ)|−1, δ → 0 (5)

ρ±W (δ) ∼ |2 log(δ)|−1, δ → 0 (6)
Figure 2 (top) illustrates the ratio of strong thresholds and

their asymptotic expressions in Theorems 5 and 6. As δ → 0
these ratios approach one. Figure 2 (bottom) shows a remark-
able match between the weak thresholds, ρ+

W (dotted) and ρ±

W

(dashed), and their leading asymptotic behavior, Theorem 7
(solid).

Remark (Asymptotic Behavior):
i. The principal difference between the strong and

weak asymptotic behavior is the presence of the
multiplicative factor e. That is, in the asymptotic
regime δ → 0, `1/`0 equivalence is satisfied for the
vast majority of x with sparsity constraint e times
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Fig. 2. Top: Ratio of strong thresholds and their asymptotic behaviors, ρ+

S
(δ)

as solid line and ρ±
S

(δ) as dashed line. Bottom: Weak thresholds ρ+

W
(dotted),

ρ±
W

(dashed), and their asymptotic behavior from Theorem 7 (solid).

weaker than is necessary to ensure `1/`0 equivalence
for all x.

ii. Remarkably, to first order, the asymptotic behavior
of the thresholds is the same for both the signed
and non-negative case. This is surprising since at
moderate values of δ the functions are quite different.

iii. More subtle differences occur in the arguments to
the logarithms approximating the strong thresholds,
with the signed and non-negative factors differing by
a multiple of 2.

V. EMPIRICAL EVIDENCE

The results of Theorems 1 and 2 cannot be verified compu-
tationally – it seems that this would be NP-hard. The results
of Theorems 3 and 4, however, can be tested empirically by
running tests of a random set of examples.

These examples used the modest value of n = 200. The
problem domain (δ, ρ) was partitioned into a 40× 40 uniform
mesh of [1/20, 99/100] in each direction. For each δ, a random
orthogonal projector Ad,n was computed with d = bδnc, and
for each value of ρ a random y with ‖y‖`0 = bρδnc was
selected. b was formed from Ay = b and equation (1) was
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Fig. 3. Empirical verification of the weak thresholds. Fraction of `1/`0

equivalence for 50 random tests with n = 200 used for both signed (top) and
non-negative (bottom) signals. Each plot has the associated analytic threshold,
ρ±

W
(top) and ρ+

W
(bottom) overlaying the results.

then solved from (A, b) to recover y. The fraction of successful
recovery was recorded for fifty problem instances at each of
the 1600 combinations of (δ, ρ). Figure 3 depicts the results
of these experiments with ρ±

W (δ) and ρ+

W (δ) overlaying the
corresponding signed (top) and non-negative (bottom) cases.
Each of the weak thresholds track very well with the phase
transition from successful to failed recovery of the sparsest
solution in the empirical calculations. As these calculations
were done with n = 200, the phase transitions are not
exact step functions from success to failure, but rather steep
transitions.

Similar empirical verification can be computed in the regime
as δ → 0. For these experiments we use n = 10, 000, and
partition the (δ, ρ) domain as follows. Two hundred repetitions
were considered for d = 10, 15, 20, . . . , 100 partitioning (δ ∈
[1/1000, 1/100]); and for each value of d, eleven values of
the sparsity, k, were computed surrounding the asymptotic
thresholds, ρ±

W (δ) · d and ρ+

W (δ) · d. Figure 4 depicts the
results of this experiment. The panels display the fraction of
successes of the above experiments averaged over 200 random

δ
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Fig. 4. Empirical verification of the weak thresholds in the asymptotic regime
δ ∈ [1/1000, 1/100]. Fraction of `1/`0 equivalence for 200 random tests
with n = 10, 000 used for both signed (top) and non-negative (bottom)
signals. Each plot has the associated analytic threshold, ρ±

W
(top - dashed)

and ρ+

W
(bottom - dotted) along with their asymptotic behavior from Theorem

7 (solid) overlaying the results.

tests for each of the signed (top) and non-negative (bottom)
cases. Along with the empirical results, each plot shows shows
the associated analytic threshold, ρ±

W (top - dashed) and ρ+

W

(bottom - dotted), and their asymptotic behavior, Theorem 7 -
solid.

Each of the thresholds ρW (δ) and their asymptotic behavior
as stated in Theorem 7 track very well with the phase transition
from successful to failed recovery of the sparsest solution in
the empirical calculations. Blocky appearance for smaller δ
is due to the finite discrete values used. Fixing the region
of δ ∈ [1/1000, 1/100] and increasing n allows for both an
improved achievable resolution in k/n, and yields a sharper
transition in agreement with the analytic thresholds.

VI. APPLICATIONS TO ERROR CORRECTING CODES

Consider the widely discussed application of error correct-
ing codes, where a block of information is encoded into a
longer block for redundancy against sparse errors. Unfortu-
nately, decoding of optimal error correcting codes is NP-
hard in general. Recently it has been shown that (1) allows



good, computationally feasible, decoding of certain ’random’
error correcting codes; [5], [17], [19]. Let U0 ∈ R

n×n be a
random unitary matrix. From U0 select n − dn columns as a
n− dn × n matrix B and let the remaining dn columns form
A. These two matrices are the encoding, B, and recovery, A,
matrices comprising the error correcting code. The information
α ∈ R

n−d is encoded to length n by forming s = BT α. The
redundancy allows for recovery of a corrupted signal; that is,
if s is transmitted, but r = s + η0 is received, then s can be
recovered efficiently by solving

min ‖η‖`1 subject to Aη = b (7)

where b = Ar, provided the corruption is sufficiently sparse.
For random errors, with high probability as n → ∞, the

vast majority of η0 can be recovered by solving (7) provided
the number of errors satisfies

‖η0‖`0 ≤ ρ±W (dn/n) · dn.

A more interesting application is when the corruption is not
random, but instead comes from a malicious source. In this
setting, with high probability in the selection of Ad,n, exact
recovery can by achieved efficiently by solving (7) irregardless
of the magnitude or location of the corruption, provided the
number of errors satisfies

‖η0‖`0 ≤ ρ±S (dn/n) · dn.

That is, the malicious observer can know the signal being
transmitted as well as the reconstruction matrix, and exact
recovery is possible provided only sufficiently few entries are
corrupted.

For fixed encoding redundancy n/(n−d), the precise thresh-
old ρ±(δ) can be read from Figure 1 (top). Alternatively, for
highly efficient transmission rates the redundancy approaches
one, that is dn/n → 0 as n → ∞. In this regime the
thresholds’ asymptotic behavior can be read from Theorems
6 and 7. Efficient recovery by solving (1) is possible from
random errors provided the number of errors satisfies

‖η0‖`0 ≤ dn/2 log(n/dn) n → ∞,

and from malicious errors provided the number of errors
satisfies

‖η0‖`0 ≤ dn/2e log(
√

π(n/dn)) n → ∞.

In the limit of low redundancy, tolerance for malicious errors
is 1/e times smaller than tolerance for random errors
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