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Abstract— The objective of this paper is the linear recon-
struction of a vector, up to a unimodular constant, when all
phase information is lost, meaning only the magnitudes of frame
coefficients are known. Reconstruction algorithms of this type
are relevant for several areas of signal communications, including
wireless and fiber-optical transmissions. The algorithms discussed
here rely on suitable rank-one operator valued frames defined
on finite-dimensional real or complex Hilbert spaces. Examples
of such operator-valued frames are the rank-one Hermitian op-
erators associated with vectors from maximal sets of equiangular
lines or maximal sets of mutually unbiased bases. A more general
type of examples is obtained by a tensor product construction.
We also study erasures and show that in addition to loss of phase,
a maximal set of mutually unbiased bases can correct for erased
frame coefficients as long as no more than one erasure occurs
among the coefficients belonging to each basis, and at least one
basis remains without erasures.

I. INTRODUCTION

Maximizing bandwidth is a priority in the design of to-
day’s digital communication systems. Analog transmissions,
whether wireless or via optical fibers, have to exhaust what
is physically possible for the given medium. To this end,
transmissions send parallel streams of data, e.g., from antenna
arrays through a number of links to the receiver (see e.g. [35],
[24], [5]), or through multiple electromagnetic modes in an
optical fiber (as described in [40], [1], [38]). The benefit of
using analog channels in parallel comes, however, at the cost
of an increased susceptibility to oscillator instabilities and of
a resulting loss of coherence in the transmission ([21], [27]).

The purpose of this paper is to investigate linear encoding
and decoding strategies for analog signals that use redundancy
to overcome the dependence on phase information. In other
words, we are concerned with the question of reconstructing
a vector in a finite-dimensional real or complex Hilbert space
when only the magnitudes of the coefficients of the vector
under a linear map are known. In a previous paper [3], part
of the authors discussed this problem in the context of signal
processing, in particular the analysis of speech. It was shown
that the magnitudes of inner products with a generic set
containing a sufficient number of (frame) vectors characterize
each vector, up to a unimodular constant. However, at least in
the complex case, reconstruction algorithms were difficult to
implement.

To obtain the linear algorithms presented here, we use
that characterizing a vector x in a Hilbert space H, up to

a unimodular factor, is equivalent to reconstructing the rank-
one Hermitian operator x ⊗ x∗. After “squaring” the vector,
we are able to provide linear reconstruction algorithms in
terms of {|〈x, fj〉|2}N

j=1, the squares of frame coefficients of
x with respect to a suitable frame {f1, f2, . . . fN} for H. The
same strategy appears under the name of state tomography
in quantum theory, see e.g. [36] or [37]. While the quantum
literature emphasizes the design of minimal measurements
(smallest number of frame vectors) to characterize an unknown
operator x ⊗ x∗ with x of unit-norm (as in [18], [19]), we
focus on types of frames which provide an efficient, linear
reconstruction algorithm for x ⊗ x∗. The frames we use for
this purpose are maximal equiangular tight frames or maximal
sets of mutually unbiased bases, which contain N ≥ d2 frame
vectors in the complex case and N ≥ d(d + 1)/2 vectors in
the real case. In the case of complex Hilbert spaces, a more
general type of frames providing linear reconstruction without
phase is obtained from tensor products of maximal equiangular
tight frames or maximal sets of mutually unbiased bases.

In addition, we consider the situation when coefficients are
lost, e.g. in the course of a data transmission ([22], [30],
[11], [7], [6]). We investigate which of the encoding strategies
provide a correction mechanism for erasures. Maximal sets of
mutually unbiased bases can correct under certain conditions
up to d erasures in the complex case or d/2 in the real case, in
addition to loss of phase information. Therefore, the encoding
requires N = d(d + 1) or N = d(d/2 + 1) frame vectors,
respectively. The condition for correctibility is that for a given
partition of the coefficients in subsets of size d corresponding
to each basis, at most one loss occurs within each subset.

The organization of this paper is as follows. Section II
introduces the notion of operator-valued frames. Section III
presents examples of frames which provide a linear recon-
struction algorithm from the magnitudes of frame coefficients.
This algorithm is described in Section IV. Finally, Section V
discusses the correction of erasures.

II. FROM FRAMES TO OPERATOR-VALUED FRAMES

In this section we introduce the main idea in this paper:
Reconstructing a vector x in a Hilbert space H from the
magnitudes of its frame coefficients, up to a unimodular con-
stant, is equivalent to reconstructing the rank-one Hermitian
operator x ⊗ x∗, given by x ⊗ x∗y = 〈y, x〉x, y ∈ H, from



its expansion with respect to an operator-valued frame. For a
more exhaustive treatment of operator-valued frames, see [28].

Definition 2.1: Let H be a d-dimensional real or com-
plex Hilbert space. A finite family of vectors F =
{f1, f2, . . . fN} ∈ HN is called a frame, if there are non-
zero constants A1 and A2 such that for all x ∈ H,

A1‖x‖2 ≤
N∑

j=1

|〈x, fj〉|2 ≤ A2‖x‖2 .

With each frame, we associate its Grammian G =
(〈fj , fl〉)N

j,l=1, the matrix formed by the inner products of the
frame vectors.

If we can choose A1 = A2 = A in the above chain of
inequalities, then the frame is called A-tight. If, in addition,
there is b > 0 such that ‖fj‖ = b for all j ∈ {1, 2, . . . N},
then we call the family {fj}N

j=1 a uniform A-tight frame.
Such frames are also called equal-norm tight frames.

A family of vectors F is a frame for a finite-dimensional
Hilbert space H if and only if it spans H, because then it
contains a linearly independent, spanning subset, and thus it
is straightforward to verify the norm inequalities in Defini-
tion 2.1.

Any given vector x can be reconstructed from the linear
combination of its frame coefficients {〈x, fj〉}N

j=1 with a dual
frame {gj}N

j=1. A canonical choice for this dual frame is to
take the pseudo-inverse M of the Grammian matrix, meaning
the Hermitian M which has the same range as G, satisfies
GM = MG and GMG = G, and define gj =

∑N
l=1 Mj,lfl,

j ∈ {1, 2, . . . N}. It can then be verified that for any x ∈ H,

x =
N∑

j=1

〈x, fj〉gj .

If F is an A-tight frame, then the canonical dual is simply
given by gj = fj/A, and thus any vector x ∈ H can be
reconstructed according to

x =
1
A

N∑
j=1

〈x, fj〉fj .

This identity is equivalent to the matrix 1
AG being an orthog-

onal rank-d projection. Thus, d = 1
A tr[G] = 1

A

∑N
j=1 ‖fj‖2

implies that all the frame vectors in an A-tight uniform frame
have the same norm

b =

√
Ad

N
.

With a frame F = {fj}N
j=1, we associate the set of rank-one

Hermitian operators S = {fj ⊗ f∗j }N
j=1 on H.

Definition 2.2: Let {fj}N
j=1 be a frame for a Hilbert space

H. Let Sj = fj ⊗ f∗j denote the rank-one Hermitian operator
associated with each fj . Let X be the span of the family S =
{Sj}N

j=1, equipped with the Hilbert-Schmidt inner product.
We say that {Sj}N

j=1 is the operator-valued frame for X
associated with {fj}N

j=1. The Grammian H of S has entries
Hj,k = tr[SjSk] = |〈fj , fk〉|2.

Using the same argument for the operator-valued frame S =
{Sj}N

j=1 as for {fj}N
j=1, we can define the canonical dual

R = {Rj}N
j=1 of S with respect to the Hilbert-Schmidt inner

product. If X is an operator in the span of S, then

X =
N∑

j=1

tr[XSj ]Rj .

Therefore, reconstruction without phase requires that this
identity holds for any rank-one Hermitian X = x⊗x∗, x ∈ H.

III. OPERATOR-VALUED FRAMES WITH MAXIMAL SPAN

In this section, we want to find conditions which guarantee
that X contains all rank-one Hermitian operators. We then say
that the operator-valued frame S has maximal span, and that
the underlying frame F is maximal.

Proposition 3.1: Let {fj}N
j=1 be a frame for a real or

complex Hilbert space H and S the associated operator-valued
frame with span X . The rank of the Grammian H is at most
d(d+1)/2 in the real case or d2 if H is complex. Moreover, the
rank of H is maximal if and only if X contains all rank-one
Hermitian operators on H.

Proof: We note that the space Q spanned by all rank-
one Hermitian operators has dimension d(d+1)/2 or d2 in the
real or complex case, respectively. Since S contains only such
rank-one operators, X ⊂ Q and the rank of H as well as the
dimension of X can be at most d(d+1)/2 or d2, respectively.
Moreover, if the rank of H , and thus the dimension of X , is
maximal, then X = Q.

Corollary 3.2: If F = {fj}N
j=1 is a maximal frame for a

real or complex Hilbert space H, then N ≥ d(d + 1)/2 in the
real case and N ≥ d2 in the complex case

Proof: By the preceding theorem, if the span of the
operator-valued frame S associated with F contains all rank-
one Hermitian operators, then the rank of the Grammian H is
d(d+1)/2 or d2 in the real or complex case, respectively. This
provides the desired lower bound for N , because the rank of
the N ×N matrix H can be at most N .

Now we discuss specific types of maximal frames.
For this purpose, we consider uniform tight frames with the

property that the magnitudes of the inner products between
frame vectors form a small set. If this set has size one, we call
the frame 2-uniform ([26], [7]) or (equal-norm) equiangular
tight frame ([41], [33], [39], [42]). Another type of frame,
for which this set has size two, is obtained from a number of
bases for a Hilbert space which are chosen in such a way that,
between basis vectors belonging to different bases, their inner
products have a fixed magnitude. These frames are referred to
as sets of mutually unbiased bases.

Definition 3.3: A family of vectors F = {fj}N
j=1 is said

to form a 2-uniform or equiangular A-tight frame if it is
uniform and if there is c > 0 such that for all pairs of frame
vectors fj and fk, j 6= k, we have |〈fj , fk〉| = c.

Using that G is a scaled projection, we obtain d =
1
A tr[G] = 1

A2 tr[G2] = 1
A2

∑N
j,k=1 |〈fj , fk〉|2 which, together



with the known value for the diagonal of G, determines the
constant c in Definition 3.3,

c =
A

N

√
d(N − d)
N − 1

.

An observation of Lemmens and Seidel characterizes when
the operator-valued frame associated with an equiangular tight
frame has maximal span.

Proposition 3.4 (Lemmens and Seidel [33]): Let H be a
real or complex Hilbert space, and F = {f1, f2, . . . fN} be
an equiangular tight frame, then F is maximal if and only if
the frame consists of N = d(d + 1)/2 or N = d2 vectors in
the real or complex case, respectively.

Proof: We observe that the Grammian H of the operator-
valued frame S associated with F , with entries Hj,k =
|〈fj , fk〉|2, is of rank N because H = (b2 − c2)I + c2J , the
matrix J containing all 1’s is non-negative and b > c. Thus,
the span of S is maximal if and only if N = d(d + 1)/2 or
N = d2 vectors, depending on whether H is real or complex.

For examples of such frames, see [43], [26], [7], [2], [20].
We describe a simple example for a two-dimensional real or
complex Hilbert space.

Example 3.5: Let {e1, e2} denote the canonical basis for
either R2 or C2.

We first consider the Hilbert space R2. Let R be the rotation
matrix such that R3 = I and R 6= I . Choose f1 = e1, f2 =
Re1 and f3 = R2e1. Then {f1, f2, f3} is a 2-uniform 3/2-
tight frame with |〈fi, fj〉| = 1/2 for i 6= j. This frame is
sometimes called the Mercedes-Benz frame.

For the case of C2, we introduce the unitary Pauli matrices

X =
( 0 1

1 0

)
and Z =

( 1 0
0 −1

)
.

Let f1 = αe1 + βe2 where α =
√

1
2 (1− 1√

3
) and β =

e( 5π
4 )i

√
1
2 (1 + 1√

3
), and let f2 = Xf1, f3 = Zf1, f4 =

XZf1. Then {f1, . . . , f4} is an equal-norm equiangular 2-
tight frame with |〈fi, fj〉| = 1√

3
for all i 6= j.

Mutually unbiased bases form another type of frame which
has an associated operator-valued frame with maximal span.
This type of frame contains vectors from a number of or-
thonormal bases for a Hilbert space which are chosen in such
a way that, between basis vectors belonging to different bases,
their inner products have a fixed magnitude.

Definition 3.6: Let H be a real or complex Hilbert space
of dimension d. A family of vectors {e(j)

k } in H indexed by
k ∈ K = {1, 2, . . . d} and j ∈ J = {1, 2, . . . m} is said to form
m mutually unbiased bases if for all j, j′ ∈ J and k, k′ ∈ K
the magnitude of the inner product between e

(j)
k and e

(j′)
k′ is

given by

|〈e(j)
k , e

(j′)
k 〉| = δk,k′δj,j′ +

1√
d
(1− δj,j′) ,

where Kronecker’s δ symbol is one when its indices are equal
and zero otherwise.

Proposition 3.7 (Delsarte, Goethals and Seidel [17]): Let
H be a real or complex Hilbert space, and F = {f1, f2, . . .

fN} a frame formed by a set of m mutually unbiased bases.
Then the operator-valued frame S associated with F has
maximal span if and only if m = d/2 + 1 in the real case or
m = d + 1 in the complex case.

Proof: The Grammian H of the operator-valued frame
associated with m mutually unbiased bases has the form H =
Im⊗Id +(Jm−Im)⊗Jd/d, where Im and Id are the m×m
and d×d identity matrices, respectively, and Jm and Jd denote
the m×m and d×d matrices containing only 1’s. The kernel
of the Grammian matrix is the space of vectors a ⊗ b such
that Jdb = db and Jma = 0, so it is m − 1-dimensional.
Consequently, the rank of H and thus the dimension of the
span of S is md−m+1. This shows that the maximal rank is
achieved if and only if there are m = d+1 mutually unbiased
bases in a d-dimensional complex Hilbert space H and m =
d
2 + 1 in the real case. For an alternative proof, see [43].

Example 3.8: The simplest example of a set of mutually
unbiased bases in a complex Hilbert space is the standard
basis, together with the basis of eigenvectors of the Pauli

matrices X and Y = iXZ =
(

0 −i
i 0

)
.

This example and others can be found in [4]. If d is prime,
then there exists a maximal set of mutually unbiased bases
called discrete chirps, see [10], [25].

Example 3.9: Let d be a prime number, and ω a primitive
d-th root of unity. Denote the canonical basis of Cd by
{e(1)

k }d
k=1, then for j ∈ {2, 3, . . . d + 1},

e
(j)
k =

1√
d

d∑
l=1

ω−(j−1)l2+kle
(1)
l

defines together with the canonical basis a family of d + 1
mutually unbiased bases called the discrete chirps.
To see that these vectors form bases, we first consider inner
products between vectors of same j. For j = 1, this is clear.
If j > 1,

〈e(j)
k′ , e

(j)
k 〉 =

1
d

d∑
l=1

ωk′l−kl = δk,k′ .

The bases are mutually unbiased because if j 6= j′, and one
of them is equal to one, then |〈e(j′)

k′ , e
(j)
k 〉| = 1/

√
d. If neither

basis index is equal to one, then

〈e(j′)
k′ , e

(j)
k 〉 =

1
d

d∑
l=1

ω−j′l2+jl2+k′l−kl

and by completing the square and using cyclicity

|〈e(j′)
k′ , e

(j)
k 〉| = 1

d

∣∣∣∣∣
d∑

l=1

ωl2

∣∣∣∣∣ .

Now squaring this expression yields

|〈e(j′)
k′ , e

(j)
k 〉|2 =

1
d2

d∑
l,l′=1

ωl2−(l′)2

=
1
d2

d∑
l,l′=1

ω(l+l′)(l−l′) =
1
d

.



Remark 3.10: A similar construction applies when d is a
power of a prime ([43]). If d is not prime, then the maximal
number of mutually unbiased bases is generally unknown
([20]). In the real case, even in the case of prime dimensions,
the construction of maximal sets of mutually unbiased bases
is more difficult ([8]), but at least for d a power of 4 this is
possible, see [16], [9].

Whenever the span of the operator-valued frame associated
with an equiangular tight frame or of mutually unbiased bases
is maximal, we refer to them as maximal equiangular tight
frames or maximal sets of mutually unbiased bases, respec-
tively. From these two types of examples, we can construct a
large class of maximal frames in the complex case.

Theorem 3.11: Let H = H1⊗H2 be a tensor product of two
complex Hilbert spaces, H1 of dimension d1 and H2 of dimen-
sion d2. If F1 = {f1, f2, . . . fN1} and F2 = {h1, h2, . . . hN2}
are frames for H1 and H2, then the tensor product frame
F = {fj ⊗ hl : j ∈ {1, 2, . . . N1}, l ∈ {1, 2, . . . N2}} for H is
maximal if and only if both F1 and F2 are.

Proof: The Grammian H of the operator-valued frame S
associated with F is the Kronecker product of the Grammians
of S1 and S2. Therefore, the rank of H = H1 ⊗ H2 is the
product of the ranks of H1 and H2. If the ranks of H1 and of
H2 are both maximal, then they are rkH1 = d2

1 and rkH2 =
d2
2, and the rank of H is d2

1d
2
2 = (dimH)2. This shows that

the rank of H is maximal if and only if the ranks of H1 and
H2 are.

Tensor products of maximal equiangular tight frames or
mutually unbiased bases yield a more general type of operator-
valued frame S with maximal span, because the entries in the
Grammian H = H1 ⊗H2 assume a larger set of values than
previously. From a practical point of view, such tensor prod-
uct frames are appealing because they allow for distributed
processing. This means, for each fixed f ∈ F1, the family
{f ⊗ hj}N2

j=1 is a maximal frame for the subspace f ⊗ H2

and for each h ∈ F2, {fj ⊗ h}N1
j=1 is a maximal frame for

the subspace H1 ⊗ h. Thus, reconstruction can proceed first
in “local” subspaces, and then on the “global” level of the
entire Hilbert space. Frames for subspaces ([12]), recently also
called fusion frames ([13]), have been studied because of their
relevance in distributed processing ([14]) and because of their
efficient error-correction capabilities, see [6] and [15].

Corollary 3.12: Every complex Hilbert space can be en-
dowed with a frame for which the associated operator-valued
frame has maximal span.

Proof: Since the dimension of H factors into primes,
we can interpret it as a tensor product H =

⊗m
j=1Hj where

the dimension of each Hj is prime. Thus, we can construct
a maximal set of mutually unbiased bases for each Hj . The
tensor product of these maximal frames provides the desired
frame for H.

IV. RECONSTRUCTING A VECTOR FROM ABSOLUTE
VALUES OF ITS FRAME COEFFICIENTS

In this section we present the reconstruction formula which
determines any vector x in a finite-dimensional Hilbert space

H, up to a unimodular constant, from the magnitudes of
its frame coefficients {〈x, fj〉}N

j=1. More precisely, the re-
construction formula characterizes the self-adjoint rank-one
operator x⊗ x∗, from which the vector x can be determined,
up to a unimodular constant, by any non-vanishing row of the
matrix with entries (x ⊗ x∗)i,l = xixl, i, l ∈ {1, 2, . . . d},
representing x⊗ x∗ with respect to an orthonormal basis.

To obtain the reconstruction, we require a frame {fj}N
j=1

for which the associated operator-valued frame has maximal
span.

Theorem 4.1: Let H be a d-dimensional real or complex
Hilbert space and F = {f1, f2, . . . fN} a maximal N/d-tight
frame, such that the associated operator-valued frame S has
maximal span. Let M be the pseudo-inverse of the Grammian
H , so M is self-adjoint, HM = MH , and HMH = H ,
and denote the canonical dual of S as R, containing operators
Rj =

∑N
k=1 Mj,kSk. Given a vector x ∈ H, then

x⊗ x∗ =
N∑

j=1

|〈x, fj〉|2Rj .

Proof: Instead of deriving the claimed identity directly,
we show that both sides coincide after taking their Hilbert-
Schmidt inner product with any operator y ⊗ y∗, y ∈ H.
Inserting the expression for Rj means we have to prove the
identity

|〈x, y〉|2 =
N∑

j,k=1

|〈x, fj〉|2Mj,k|〈fk, y〉|2

for all y ∈ H. Using that x ⊗ x∗ =
∑N

l=1 clfl ⊗ f∗l with
some coefficients {cl} by the maximality of the span of
S and similarly y ⊗ y∗ =

∑N
l′=1 c′l′fl′ ⊗ f∗l′ , the matrix

identity HMH = H yields that both sides are equal to∑N
l,l′=1 clc

′
l′Hl,l′ .

After this general result, we consider the examples of
maximal equiangular frames and of maximal sets of mutually
unbiased bases.

Corollary 4.2: Let H be a complex Hilbert space. If F
is a maximal equiangular N/d-tight frame or a tight frame
formed by a maximal set of mutually unbiased bases, then the
reconstruction identity becomes

x⊗ x∗ =
d(d + 1)

N

N∑
j=1

|〈x, fj〉|2(fj ⊗ f∗j − I/(d + 1)) .

Proof: This result follows from the preceding theorem by
proving that the canonical (Hilbert-Schmidt) dual of {Sj} is
{Rj} with Rj = d(d+1)Sj/N−dI/N. Let 0 < c = |〈fj , fk〉|
for any j 6= k if the frame is equiangular and a non-orthogonal
pair if it consists of mutually unbiased bases. Since the frame
vectors are normalized in either case, it is straightforward to
verify that tr[SjRj ] = d2/N . If j 6= k,

tr[SjRk] =
d(d + 1)

N
|〈fj , fk〉|2 −

d

N
.

If F is equiangular, then |〈fj , fk〉|2 = c2 = (N − d)/d(N −
1) = 1/(d + 1) and consequently tr[SjRk] = 0.



In the case of mutually unbiased bases, we have either
tr[SjRk] = −d/N if the indices j and k belong to two vectors
from the same basis, or |〈fj , fk〉|2 = 1/d and tr[SjRk] =
1/N . Thus, the matrix K with entries Kj,k = tr[SjRk] has
the form K = d(d+1)

N Id+1⊗Id− 1
N ((d+1)Id+1−Jd+1)⊗Jd,

where the first component specifies the basis and the second
refers to the index within each basis. Since N = d(d + 1),
K can be identified as a rank-d2 orthogonal projection with
the same range as H . This shows that in both cases, whether
equiangular tight frame or mutually unbiased bases, {Rj}N

j=1

is the canonical dual of the operator-valued frame {Sj}N
j=1.

It is at first surprising that the reconstruction formula for
maximal equiangular tight frames and for maximal mutually
unbiased bases is identical. The reason for this can be traced
to the fact that these two frame families are both projective
2-designs, see [23], [31], [32] and [29]. The structure of
projective 2-designs and their use for reconstruction without
phase will be left to a future investigation.

V. LOSS OF PHASE AND ERASURES

In this section, we show that a maximal set of mutually
unbiases bases admits the reconstruction from magnitudes of
frame coefficients even if some of these coefficients are lost.
Since we want to reconstruct linearly from the remaining co-
efficients, the operator-valued frame must retain maximal span
after removing elements corresponding to erased coefficients.

Definition 5.1: Let {ej}N
j=1 be a frame for a real or com-

plex Hilbert space H and S = {Sj}N
j=1 the associated

operator-valued frame. We call an erasure of coefficients
indexed with L ⊂ J = {1, 2, . . . N} correctible if the set
{Sj}j∈J\L is a frame for the span of all rank-one Hermitian
operators.

By rank considerations, it is clear that an equiangular tight
frame cannot admit erased coefficients. However, since the
number of frame vectors coming from a maximal family of
mutually unbiased bases is larger than the dimension of the
space spanned by all Hermitian rank-one operators, we expect
that possibly, lost coefficients are correctible. This is indeed
the case for at most one lost coefficient in each basis, as long
as a set of coefficients belonging to at least one basis contains
no losses.

Theorem 5.2: Let H be a real or complex Hilbert space of
dimension d. Let {e(j)

k : k ∈ K, j ∈ J}, K = {1, 2, . . . d}, J =
{1, 2, . . . m}, be a maximal family of m mutually unbiased
bases for H such that the associated operator-valued frame
{S(j)

k }j∈J has maximal span. If for each j ∈ J, Lj ⊂ K is
of size at most one, and for at least one j, Lj = ∅, then
S = {S(j)

k : j ∈ J, k ∈ {1, 2, . . . d} \ Lj} has maximal span.
Conversely, if one set Lj is of size larger than one, or at least
m coefficients are erased, then the erasure is not correctible.

Proof: We recall that the span of the operators {S(j)
k :

j ∈ J, k ∈ K \ Lj} is maximal if and only if the rank of the
Grammian H is.

We first consider at most m − 1 erased coefficients. To
determine the rank of H , we view the equation Ha = 0 as a

block matrix equation with blocks labeled by the basis indices
such that H(j,j) = Idj for diagonal blocks and H(j,l) =
Jdj ,dl

/d for the off-diagonal blocks.
Collecting the entries of the vector a belonging to one

basis index j in a(j), we deduce from a(j) =
∑

l Jdj ,dl
a(l)/d

that all of its entries are identical, a
(j)
k = αj , for each

j ∈ {1, 2, . . . m}.
This means for each solution a of Ha = 0, there is a

corresponding solution H ′α = 0, where each diagonal block
H(j,j) in the matrix H has been replaced by the eigenvalue 1
of a(j) and each off-diagonal block H(j,l) by δl = 1− |Ll|/d
to obtain H ′.

We assume that we have ordered the blocks in such a way
that {δl}m

l=1 is increasing. If at least one Lj is empty, then there
is r ≥ 0 such that δj = 1 for all j > r. Moreover, if the sets
Lj are at most of size one, then for r erasures there are m−r
bases without erasures, meaning the last m−r columns of H ′

contain 1’s. Now taking the difference between consecutive
rows of H ′ gives the equation H ′′α = 0 with

H ′′=


1 δ2 δ3 . . . δr 1 . . . 1

δ1 − 1 1− δ2 0 . . . 0 0 . . . 0
0 δ2 − 1 1− δ3 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 δr − 1 0 . . . 0

. . . . . . . . . . . . 0 0 . . .
0 . . . . . . 0 0 0 . . . 0


Since we assumed δr 6= 1, we conclude αr = 0. Now using
the identity (δj−1−1)αj−1 = (δj−1)αj from rows 2 ≤ j ≤ r,
it can be verified that α1 = α2 = · · · = αr = 0. This means,
H ′′α = 0 if and only if the first r entries of α vanish and∑

j>r αj = 0, which is a space of solutions of dimension
m− r− 1. Consequently, if r erasures occur and each set Lj

contains at most one erasure, then m− r ≥ 1 sets among the
family {Lj} are empty, then the Grammian H is an (md−r)×
(md−r) matrix of rank md−r−(m−r−1) = m(d−1)+1.
In the real case, the rank is (d/2+1)(d−1)+1 = d(d+1)/2,
and in the complex case, (d+1)(d−1)+1 = d2. This means,
the rank of H is maximal.

The remaining case to be examined is that of m or more
erasures, or at least two coefficients belonging to one basis
being erased.

If m or more coefficients are erased, then the Grammian H
of the operator-valued frame S has at most N = m(d−1) rows
and columns, which means its rank is at most (d−1)(d+1) =
d2−1 in the complex case and (d−1)(d/2+1) = d(d+1)/2−1
in the real case, which is not maximal.

To cover the case of at least two coefficients belonging to
one basis are erased, say |L1| > 1, it is enough to consider
|L1| = 2 and Lj = ∅ for all j > 1, because erasing more
coefficients only reduces the rank of H further.

In this case, the matrix H ′′ has the entries H ′
j,1 = δ1 < 1

for all j > 1 and all other entries are 1’s. Therefore, the space
of solutions to H ′α = 0 is m − 2-dimensional. However, H
is an (md − 2) × (md − 2) matrix, which means its rank is
md−2− (m−2) = m(d−1). Now using the same argument



as in the case of m or more erasures, we see that the rank of
H is not maximal.

Corollary 5.3: The preceding theorem implies that if {e(j)
k :

k ∈ K, j ∈ J}, K = {1, 2, . . . d}, J = {1, 2, . . . m}, is a set of
mutually unbiased bases for a real or complex Hilbert space of
dimension d, with an operator-valued frame of maximal span,
then erasures of up to d coefficients in the complex case or
d/2 coefficients in the real case are correctible, as long as no
more than one coefficient is erased in each basis.

VI. CONCLUSION

Maximal equal-norm equiangular tight frames and maximal
sets of mutually unbiased bases provide simple reconstruction
algorithms that only use the magnitudes of frame coefficients.
We have linked the reason for the existence of these algo-
rithms to the associated rank-one operator valued frames with
maximal span. In addition, we have seen that using mutually
unbiased bases provides an error-correction mechanism for up
to one erasure per basis, as long as at least one basis remains
without any erased coefficients.
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