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Abstract

The passage from discrete schemes for surface line defects (steps) to nonlinear
macroscopic laws for crystals is studied via formal asymptotics in one space di-
mension. Our goal is to illustrate by explicit computations the emergence from step
equations of continuum-scale power series expansions for the slope near the edges of
large, flat surface regions (facets). We consider evaporation-condensation kinetics;
and surface diffusion via the Burton, Cabrera and Frank (BCF) model where ad-
sorbed atoms diffuse on terraces and attach-detach at steps. Nearest-neighbor step
interactions are included. The setting is a monotone train of N steps separating two
semi-infinite facets at fixed heights. We show how boundary conditions for the con-
tinuum slope and flux, and expansions in the height variable near facets, may emerge
from the algebraic structure of discrete schemes as N → ∞. Our technique relies on
use of self-similar solutions for discrete slopes; conversion of discrete schemes to sum
equations; and their reduction to nonlinear integral equations for the continuum-
scale slope. Approximate solutions to the continuum equations near facet edges are
constructed by direct iterations. For elastic-dipole step interactions, the continuum
slope is found in agreement with a previous hypothesis of “local equilibrium”.
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1 Introduction

The connection of many-particle schemes to nonlinear partial differential equa-
tions (PDEs) has been the subject of extensive studies in non-equilibrium
statistical mechanics. This perspective has been explored in various physical
contexts; for discussions, see, e.g. [33, 38].

In epitaxial phenomena, “particles” are interacting line defects (steps) of
atomic size that move on crystal surfaces by mass conservation [19]. At the
nanoscale, the motion of steps is described by large systems of differential
equations for step positions. At the macroscale, this description is often re-
duced conveniently to nonlinear PDEs for macroscopic variables, e.g., for the
surface height and slope profiles [7, 15, 20, 24, 28, 30, 34, 41].

The PDEs are believed to be valid away from macroscopically flat surface
regions known as “facets”. Spohn [39] treated edges of facets as free bound-
aries, where in principle boundary conditions for the associated PDEs must be
imposed. Such conditions are often formulated within the continuum frame-
work [2, 11, 22, 36, 37, 39, 40] rather than derived directly from steps. The in-
corporation of facets into continuum evolution laws is a rich, yet largely un-
explored, problem [1, 6, 15, 23].

In this paper we address aspects of the question: what are the boundary condi-
tions and near-facet expansions for continuum-scale variables consistent with
step motion? We focus on two semi-infinite facets separated by a monotone
train of N steps interacting entropically and as elastic dipoles in one space
dimension (1D). This setting captures features of a finite crystal. From a con-
tinuum viewpoint our main results may not be overall surprising: in surface
diffusion, the large-scale slope and flux vanish at facet edges. Our technique
shows what local behavior (in space) of the slope emerges from the structure
of discrete schemes for crystal steps.

The same system is studied in [11] for diffusion limited (DL) kinetics via scaling
arguments and numerics for step equations as well as for the PDE describing
the slope profile. In this work, a self-similarity ansatz is used and verified
numerically. However, in [11] the continuum surface slope and flux are assumed
to vanish at facet edges, with the slope behaving as O(x̄1/2) for small distances
x̄ from the facet edge. These speculations have led to numerical solutions for
the continuum slope in excellent agreement with the step simulation data [11].

Here, motivated by the analysis of Al Hajj Shehadeh, Kohn and Weare (AKW)
[1], we aim to shed some light on the studies in [11] by adopting a two-scale
perspective. First, we use self-similar solutions for finite N to connect the dis-
crete schemes to a continuum description for the slope as a function of height
away from facets. The discrete schemes are converted to sum equations, which
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approach integral equations (see Propositions 1-3, Section 3); the latter reveal
power series expansions in the height variable. Second, we propose extensions
such as multipole nearest-neighbor step interactions and special kinetics of ex-
tremal steps. We treat evaporation-condensation and surface diffusion in the
absence of external material deposition; in fact, the evaporation case is exactly
solvable under self-similarity and is invoked for comparisons.

1.1 Microscale: Burton-Cabrera-Frank (BCF) model

It is of interest to review elements of epitaxy for crystals; for extensive reviews,
see, e.g., [9, 14, 26, 31, 32]. The morphological evolution of crystal surfaces is
driven by the motion of atomic steps separating nanoscale terraces, as was
first predicted by Burton, Cabrera and Frank (“BCF”) [4]. Three basic ingre-
dients of the BCF model for surface diffusion are: (i) motion of steps by mass
conservation; (ii) diffusion of adsorbed atoms (“adatoms”) on terraces; and
(iii) attachment and detachment of atoms at steps.

Another transport process included here is evaporation-condensation: atoms
are exchanged between step edges and the surrounding vapor. We neglect
atom desorption on terraces and diffusion along step edges [19]; and leave
out material deposition from above. Hence, the surface is expected to relax
by lowering its energy. Furthermore, we consider entropic and elastic-dipole
nearest-neighbor step interactions [19,21,27]; see Section 4.1 for an extension.

1.2 Macroscopic limit and previous works

The BCF framework is our starting point. In the macroscopic limit the step
size approaches zero while the step density is kept fixed. Our analysis is formal,
i.e., it invokes simplifying assumptions (which may be provable) and avoids
rigor. For instance, starting with a monotone step train (at t = 0), we assume
that the discrete slopes, mj(t) (j: step number, t: time), and continuum-scale
slope, m(h, t) (h: height), are positive on the sloping surface for t > 0 and the
continuum limit makes sense. We posit self-similarity for finite N ; presumably,
this is reached for long enough times [1,11] in various kinetic regimes, but this
property is not proved here. The persistence of semi-infinite facets during
evolution is hypothesized.

This formal approach enables us to explore modifications of the energetics and
kinetics of the step model. Our arguments indicate how microscale mechanisms
can control the slope behavior at the macroscale.

Our work has been inspired by AKW [1]. These authors study rigorously
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the relaxation of the same step configuration by employing the l2-steepest
descent of a discrete energy functional under attachment-detachment limited
(ADL) kinetics. In this case, the dominant process is the exchange of atoms
at step edges. Notably, AKW invoke ordinary differential equations (ODEs)
for discrete slopes at the nanoscale, and a PDE for the surface slope as a
function of height at the macroscale. In [1], the positivity of discrete slopes
and convergence of the discrete self-similar solution to a continuum self-similar
one with zero slope at facet edges are proved; the condition of zero flux emerges
as a “natural boundary condition” from the steepest descent. An analogous
method for DL kinetics appears elusive at the moment.

Israeli, Jeong, Kandel and Weeks [17] study self-similar slope profiles under
evaporation-condensation and surface diffusion with ADL kinetics for three 1D
step geometries. Their step trains are semi-infinite and thus differ from the
finite step train studied here and in [1]. For this reason, direct comparisons to
results of [17] are not compelling. By contrast to our setting, the self-similar
slopes in [1] do not decay with time. In the same work [17], the condition of zero
slope at the facet edge along with a power series expansion of a certain form
for the slope are imposed at the outset. Because of the different boundaries
involved, their scaling exponent (in the self-similarity variable) and form of
the power series for evaporation-condensation are different from ours.

We adopt the use of the height as an independent variable [1], which is a con-
venient Lagrangian coordinate of motion [10,11]. An advantage of this choice
in the present setting, where facets are at fixed heights, is the elimination of
free boundaries, as pointed out by AKW. We invoke equations for the discrete
slopes, following AKW as well as Israeli and Kandel [15, 16].

1.3 Goals and paper organization

Our intention with the present work is twofold. First, we aim to illustrate
explicitly how boundary conditions for the continuum-scale slope and flux,
and power series expansions in the space coordinate for the slope, are plausibly
related to the algebraic structure of the discrete laws. In surface diffusion, this
structure consists of three difference schemes: (i) the step velocity in terms of
flux; (ii) the flux in terms of step chemical potential (a thermodynamic force);
and (ii) the step chemical potential in terms of the discrete slope cubed for
elastic-dipole step interactions. Our method addresses DL and ADL kinetics.

Our second goal is to test the hypothesis of “local equilibrium”, often applied
for facet edges within continuum [11,22]. By this hypothesis, the surface slope
vanishes as the square root of the distance from edges of zero-slope facets,
if steps interact as elastic dipoles. This behavior is speculated by analogy
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Fig. 1. Geometry in 1D (cross section): the step height is a; the step position is xj;
and the semi-infinite facets are located at heights h = 0 (top) and h = H (bottom).

with equilibrium crystal shapes on the basis of a surface free energy density
proportional to the slope cubed [3,13,18]. A different local behavior is pointed
out in [17] for evaporation-condensation kinetics.

The remainder of the paper is organized as follows. In Section 2, we formulate
ODEs for discrete slopes. In Section 3, we study the emergence from discrete
schemes of continuum-scale expansions for the slope near facets. In Section 4,
we discuss possible extensions. Section 5 summarizes our results.

Units. We use nondimensional quantities via scaling of coordinates and other
variables. The atomic area, terrace diffusivity, Boltzmann energy (kBT ) and
step-step interaction strength are set equal to unity, since the respective di-
mensional parameters can be consolidated into a time scale.

2 Formulation: Step motion laws

The step geometry is shown in Fig. 1. The system consists of N + 1 steps at
positions x = xj(t) where j = 0, . . . , N and t ≥ 0. The steps have constant
size a, and separate two semi-infinite plateaus at fixed heights, h = 0 for
x < x0(t) and h = H ≫ a for x > xN (t); cf. [1, 11].

Set x̃ = x/H and h̃ = h/H and drop the tildes; thus, (N + 1)ǫ = 1 (where
N ≫ 1 and ǫ≪ 1), 0 6 h 6 1 and a is replaced by ǫ = a/H . Following AKW,
we employ mj as dependent variables. Further, we assume that the discrete
step slopes, mj , are positive for all t > 0, given that mj > 0 at t = 0:

mj(t) :=
ǫ

xj+1(t) − xj(t)
> 0 , j = 0, 1, . . . , N − 1 . (1)

Next, we describe thermodynamic elements of step motion, which permeate
both evaporation-condensation and surface diffusion processes. For entropic
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and elastic-dipole step interactions, the energy of the step train is [19, 21, 27]

EN =
1

2

N−1∑

i=0


 ǫ

xi+1 − xi




2

=
1

2

N−1∑

i=0

m2
i . (2)

The chemical potential of the jth step is [19]

µj =
δEN
δxj

= ǫ−1




 ǫ

xj+1 − xj




3

−

 ǫ

xj − xj−1




3
 = ǫ−1(m3

j −m3
j−1) (3a)

if j = 1, . . . , N − 1; for the extremal steps at x = x0, xN we have

µ0 = ǫ−1m3
0 , µN = −ǫ−1m3

N−1 . (3b)

In order to prescribe the step velocity law, we first have to specify the dominant
mass transport mechanism. In evaporation-condensation, the step velocity,
vj , is driven by the step chemical potential [19, 39]. By contrast, in surface
diffusion, vj is driven by differences of adatom fluxes across step edges.

2.1 Evaporation-condensation process

For a specific version of this process, the step velocity law reads [19, 39, 40]

vj(t) =
dxj(t)

dt
= ẋj(t) = −(µj − µ0) (j = 0, 1, . . . , N) , (4)

where µ0 is the chemical potential of the surrounding vapor; set µ0 = 0 since
only vj+1 − vj will matter. In (4), we use a constant mobility; see [32, 39, 40]
for variants of (4). In view of (3), we wind up with the discrete scheme

ṁ0 =−ǫ−1m2
0 (ẋ1 − ẋ0) = ǫ−2m2

0(m
3
1 − 2m3

0) , (5a)

ṁj = ǫ−2m2
j(m

3
j+1 − 2m3

j +m3
j−1) , j = 1, . . . , N − 2 , (5b)

ṁN−1 = ǫ−2m2
N−1(m

3
N−2 − 2m3

N−1) . (5c)

Equations (5) are consolidated into the law

ǫ−2m2
j (m

3
j+1 − 2m3

j +m3
j−1) = ṁj , j = 0, . . . , N − 1 , (6a)

along with the termination conditions

m−1 = 0 = mN . (6b)
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Heuristically, we can eliminate time via the (particular) self-similar solution

mj(t) = P (t)Mj (dMj/dt ≡ 0 , Mj 6= 0) . (7)

This choice is compatible with the structure of discrete equations (6). By (6),
we have ṗ/p5 = −C = const. and set C = 1 for later algebraic convenience;
thus, P (t) = (4t+K)−1/4. So, Mj satisfy the second-order difference scheme

M3
j+1 − 2M3

j +M3
j−1 = − ǫ2

Mj

, j = 0, . . . , N − 1 (Mj > 0) , (8a)

M−1 = 0 = MN . (8b)

In Section 3.1, we show how the discrete termination conditions (8b) give rise
to a vanishing continuum-scale slope as j → ∞ with h = (j+1)ǫ = O(1) ≪ 1.
The (local) behavior of the slope near facets is manifested accordingly.

2.2 Surface diffusion process

The step velocity law is

vj = ẋj = ǫ−1[ϕj−1(xj) − ϕj(xj)] , j = 1, . . . , N − 1 ; (9)

ϕj(x) = −∂xρj(x) is the adatom flux on the jth terrace, {xj < x < xj+1}
(where the diffusivity is set to unity). The adatom density ρj(x) satisfies
∂2
xρj = ∂tρj ≈ 0 in the quasisteady regime [19], where steps move slower

than adatoms diffuse. We have ρj(x) = Ajx + Bj in {xj < x < xj+1},
j = 0, . . . , N − 1, and the atom attachment-detachment conditions

−ϕj = 2κ (ρj − ρeq
j )
∣∣∣
xj

, ϕj = 2κ (ρj − ρeq
j+1)

∣∣∣
xj+1

, (10)

where 2κ is a kinetic rate for the exchange of atoms at a step edge, the factor of
2 is included for later algebraic convenience, and ρeq

j = 1+µj is an equilibrium
density (by kBT = 1) [19]. By enforcement of (10), we compute Aj:

ϕj(x) = −Aj = − κ

1 + κ(xj+1 − xj)
(µj+1−µj) , j = 0, . . . , N−1 . (11a)

Equation (9) needs to be extended to j = 0, N . By taking into account ρj(x)
for j = −1, x < x0 and j = N, x > xN , where there are no steps and ρj(x)
must be bounded in x, we find the plateau fluxes

ϕ−1(x) = 0 x < x0 , ϕN(x) = 0 x > xN . (11b)
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Next, we combine (9) and (11) with (3) to obtain a system of ODEs for mj :

ṁ0

m2
0

= −ǫ−4


 κǫ

m1 + κǫ
m1(m

3
2 − 2m3

1 +m3
0)−

2κǫ

m0 + κǫ
m0(m

3
1 − 2m3

0)


 , (12a)

ṁ1

m2
1

=−ǫ−4


 κǫ

m2 + κǫ
m2(m

3
3 − 2m3

2 +m3
1) −

2κǫ

m1 + κǫ

×m1(m
3
2 − 2m3

1 +m3
0) +

κǫ

m0 + κǫ
m0(m

3
1 − 2m3

0)


 , (12b)

ṁj

m2
j

=−ǫ−4


 κǫ

mj+1 + κǫ
mj+1(m

3
j+2 − 2m3

j+1 +m3
j ) −

2κǫ

mj + κǫ
mj(m

3
j+1

− 2m3
j +m3

j−1) +
κǫ

mj−1 + κǫ
mj−1(m

3
j − 2m3

j−1 +m3
j−2)


 ,

j = 2, . . . , N − 3 , (12c)

ṁN−2

m2
N−2

=−ǫ−4


 κǫ

mN−3 + κǫ
mN−3(m

3
N−4 − 2m3

N−3 +m3
N−2)

− 2κǫ

mN−2 + κǫ
mN−2(m

3
N−3 − 2m3

N−2 +m3
N−1)

+
κǫ

mN−1 + κǫ
mN−1(m

3
N−2 − 2m3

N−1)


 , (12d)

ṁN−1

m2
N−1

=−ǫ−4


 κǫ

mN−2 + κǫ
mN−2(m

3
N−3 − 2m3

N−2 +m3
N−1)

− 2κǫ

mN−1 + κǫ
mN−1(m

3
N−2 − 2m3

N−1)


 . (12e)

Equations (12) are simplified in two regimes: (i) ADL kinetics [1], where mj ≫
κǫ for all j; and (ii) DL kinetics [11], where κǫ≫ mj.
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ADL kinetics. Equations (12) are reduced to the ODEs

ṁj

m2
j

= −ǫ−4(m3
j+2 − 4m3

j+1 + 6m3
j − 4m3

j−1 +m3
j−2) , (13a)

for j = 0, . . . , N − 1, along with the conditions

m−1 = 0 = mN , m3
0 − 2m3

−1 +m3
−2 = 0 = m3

N−1 − 2m3
N +m3

N+1 . (13b)

In (13a), we have set κǫ = 1 by appropriately rescaling time.

In particular, by the ansatz mj(t) = P (t)Mj , we find P (t) = (Ct + K)−1/4

and set C = 4, assuming Mj > 0. This solution is approached for long enough
times [1]. Consequently, Mj satisfies the fourth-order difference scheme

M3
j+2 − 4M3

j+1 + 6M3
j − 4M3

j−1 +M3
j−2 =

ǫ4

Mj

, j = 0, . . . , N − 1, (14a)

M−1 = 0 = MN , M3
0 − 2M3

−1 +M3
−2 = 0 = M3

N−1 − 2M3
N +M3

N+1 . (14b)

DL kinetics. With recourse to (12) we obtain the ODEs

ṁj

m2
j

=−ǫ−4[mj+1(m
3
j+2 − 2m3

j+1 +m3
j ) − 2mj(m

3
j+1 − 2m3

j +m3
j−1)

+mj−1(m
3
j − 2m3

j−1 +m3
j−2)] , j = 0, . . . , N − 1 , (15a)

where
m−1 = 0 = mN , m−2 , mN+1 : finite ; (15b)

so, m−1(m
3
0 − 2m3

−1 +m3
−2) = 0 = mN (m3

N−1 − 2m3
N +m3

N+1).

Now suppose mj(t) = P (t)Mj. By (15) we have ṗ/p6 = −C < 0 and find
P (t) = (5Ct+K)−1/5; set C = 1. The ensuing difference equation for Mj is

Mj+1(M
3
j+2 − 2M3

j+1 +M3
j ) − 2Mj(M

3
j+1 − 2M3

j +M3
j−1)

+Mj−1(M
3
j − 2M3

j−1 +M3
j−2) =

ǫ4

Mj
, j = 0, . . . , N − 1 , (16a)

with Mj > 0 for j ∈ {0, 1, . . . , N − 1} and conditions

M−1 = 0 = MN and M−2 , MN+1 : finite . (16b)

It is tempting to presume that conditions (13b), (15b) imply automatically a
zero continuum-scale slope and flux at the facet edge. The study of how discrete
conditions (16b) induce asymptotically respective power series expansions to
continuum solutions near facets is the subject of Section 3.2.
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3 Limit of discrete scheme and near-facet expansions

In this section we derive expansions for the continuum-scale slope near facet
edges directly from discrete schemes for steps. The idea is to convert the
discrete schemes to sum equations; and show that, in the limit ǫ ↓ 0 with
h = (j + 1)ǫ = O(1) and (N + 1)ǫ = 1, the sum equations become integral
equations which indicate via iterations the slope behavior as h ↓ 0 and h ↑ 1.

In the limit ǫ ↓ 0, we assume that the discrete slopes, mj , approach the surface
slope in an appropriate weak sense [25]. In principle, given a sequence {uj}N−1

j=0

(e.g., u = m), we posit a continuous u(h, t), h ∈ (0, 1), such that for every
(smooth) test function ϑ(h) with ϑj := ϑ((j + 1)ǫ) and t > 0 we have

ǫ
N−1∑

j=0

ϑjuj(t) = (N + 1)−1
N−1∑

j=0

ϑjuj(t) −−−→
N→∞

∫ 1

0
ϑ(h) u(h, t) dh . (17)

We write uj(·) ⇀ u(h, ·) to imply the weak limit (17). Further, we assume
convergence of the related sums and integrals in order to simplify derivations,
thus relaxing rigor.

Regarding the behavior of m(h, t) near facets, the order of limits should be
emphasized. First, we let ǫ ↓ 0 with fixed h; next, we allow h ↓ 0 or h ↑ 1.

3.1 Evaporation-condensation kinetics

Consider slopes under self-similarity, mj(t) = (4Ct+K)−1/4Mj , and set C = 1;
more generally, a constant C 6= 1 would enter the resulting integral equation
for m(h) as a prefactor of the integral term. The analysis is not essentially
different if we consider C 6= 1. Start with (8). This case helps validate our
approach; the reasons become more clear below. By ψj := M3

j , the relevant
difference scheme reads

ψj+1 − 2ψj + ψj−1 = fj = − ǫ2

ψ
1/3
j

, ψ−1 = 0 = ψN , (18)

where ψj > 0 and j = 0, 1, . . . , N − 1.

Proposition 1. (A continuum limit in evaporation-condensation) In the limit
ǫ ↓ 0, discrete scheme (18) reduces to the integral equation

ψ(h) = m(h)3 = C1h−
∫ h

0

h− z

m(z)
dz 0 < h < 1 ; (19)
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thus, limh↓0m(h) = 0. The constant C1 is

C1 =
∫ 1

0

1 − z

ψ(z)1/3
dz =

∫ 1

0

1 − z

m(z)
dz , (20)

which implies limh↑1m(h) = 0. By (19), a sufficiently differentiable m(h) sat-
isfies the ODE m(m3)hh = −1 for 0 < h < 1.

By abusing notation, we use the symbol m(h) for the space-dependent part
of the self-similar slope; i.e., m(h, t) = P (t)m(h). Assume that the integral in
(19) converges and a solution exists in an appropriate sense.

Proof. By (18), we express ψj in terms of a finite sum over fj, exploiting the
structure of the difference equations. To this aim, we write

ψj =
1

j!

djΨ(s)

dsj

∣∣∣∣∣∣
s=0

=
1

2πi

∮

Γ

Ψ(ζ)

ζj+1
dζ (i2 = −1) , j = 0, . . . , N − 1 , (21)

by applying the Cauchy integral formula, where Γ is a contour enclosing 0 and
Ψ(s) is the generating function (polynomial) defined by

Ψ(s) =
N−1∑

j=0

ψjs
j s ∈ C . (22)

This Ψ(s) is computed via (18); see Appendix A.1 for details. The result is

Ψ(s) =
ψ0 + ψN−1s

N+1 + sF (s)

(1 − s)2
, F (s) =

N−1∑

j=0

fjs
j , (23)

where ψ0, ψN−1 are such that s = 1 is a removable singularity of Ψ(s):

ψ0 =
−NF (1) + F ′(1)

N + 1
, ψN−1 = −F (1) + F ′(1)

N + 1
. (24)

The prime denotes the derivative of F (s). By (21), we find (see Appendix A.1)

ψj = (1+j)ψ0+
j−1∑

p=0

(j−p)fp = (1+j)ψ0−
j−1∑

p=0

ǫ [(j+1)ǫ−(p+1)ǫ]ψ−1/3
p . (25)

This is the desired sum equation for ψj .

Let us now focus on the limit of (25) as ǫ ↓ 0 with (j + 1)ǫ = h = O(1). With
regard to the computation of ψ0 by (24), note that

(N +1)ψ0 =
N−1∑

j=0

[(N +1)ǫ− (j+1)ǫ]ψ
−1/3
j ǫ −→

ǫ↓0

∫ 1

0
(1− h)ψ(h)−1/3 dh , (26)
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assuming that the respective sum and integral are convergent; thus,

lim
ǫ↓0

(ǫ−1ψ0) =: C1 =
∫ 1

0

1 − h

ψ(h)1/3
dh =

∫ 1

0

1 − h

m(h)
dh . (27)

Let z = (p+ 1)ǫ in (25); then, by ψp ⇀ ψ(z), we have

j−1∑

p=0

[(j + 1)ǫ− (p+ 1)ǫ]ψ−1/3
p ǫ ⇀

∫ h

0
(h− z)ψ(z)−1/3 dz. (28)

This limit is encapsulated in the Euler summation formula; see, e.g., [5]. In
view of (27), we wind up with (19) and (20). The ODE m(m3)hh = −1 ensues
by differentiation (in the usual calculus sense) of the integral equation. This
assertion concludes our formal derivation. 2

Corollary 1. The constant C1 appearing in (19) is positive.

Near-facet expansion. Proposition 1 suggests what the behavior of m near
facet edges should be. Notice that the integral in (19) produces a subdominant
contribution O(h2−α) if m(h) = O(hα) as h ↓ 0 for some 0 6 α < 1. A formal
expansion can be derived by iteration of (19). (We alert the reader that our
construction of a local self-similar solution by iteration is heuristic. A rigorous
analysis lies beyond our present scope.) Set m(h) ∼ m(n)(h) to n+ 1 terms as
h ↓ 0, where

m(n+1)(h)3 = C1h−
∫ h

0

h− z

m(n)(z)
dz ; m(0)(h) = (C1h)

1/3 , (29)

and n = 0, 1, . . .. Thus, we derive the three-term expansion

m(h) = (C1h)
1/3 − 3

10
C−1

1 h− 171

1400
C

−7/3
1 h5/3 + O(h7/3) as h ↓ 0 ; (30)

higher-order terms are produced directly. Our construction satisfies the esti-
mate m(n+1) − m(n) = O(h2n/3+1). Expansion (30) is in agreement with the
corresponding exact, global solution; see discussion in Appendix B.1.

The formal expansion by iteration can be converted to a power series in x−xf,L
where xf,L(t) is the position of the left facet edge. By ẋj = −µj = −ǫ−1(m3

j −
m3
j−1), and the ansatz mj(t) = (4t + K)−1/4Mj , we ascertain that xj(t) ∼

t1/4Xj for large t. Hence, the similarity coordinate is η = xt−1/4 and we set
h = h(η); m(h(η)) = h′(η). By integrating (30), after some algebra we obtain

C
1/3
1 (η − ηf,L) =

3

2
h2/3 +

9

40
C

−4/3
1 h4/3 +

1305

2800
C

−8/3
1 h2 +O(h8/3) as h ↓ 0 ,
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where ηf,L = xf,L(t)t−1/4. By inverting in the limit η̄ = η − ηf,L ↓ 0, we find

m(h(η)) =

(
2

3

)3/2

C
1/2
1

[
3

2
η̄1/2 − 3

8
C−1

1 η̄3/2 − 971

1600
C−2

1 η̄5/2 + O(η̄7/2)

]
. (31)

For the other end point (h ↑ 1), mirror symmetry applies (under h 7→ 1 − h).

Remark 1. Integral equation (19) can result from integrating the ODE (m3)hh =
−1/m via imposing from the outset m → 0 as h ↓ 0 and h ↑ 1. Here, we let
this zero-slope condition emerge by directly resolving the discrete scheme.

Remark 2. It is tempting to extend the above calculation to the full time-
dependent setting, with focus on ODEs (6). Consider mj(t) ⇀ m(h, t). For-
mally, 1/m(h) (under self-similarity) is now replaced by ∂t[m(h, t)−1] in defin-
ing fj. If the integral converges, the relation for m(h, t) now reads

m(h, t)3 = C1(t)h−
∫ h

0
(h− z) ∂t[m(z, t)−1] dz t > 0 ; (32)

C1(t) is given by the t-dependent counterpart of (20). Alternatively, differ-
entiate to get the PDE ∂tm = m2∂2

h(m
3) [40]. Caution should be exercised

though: in principle, (32) may not be amenable to iterations in the sense de-
scribed above, unless t is sufficiently large. So, it is not advisable to iterate
(32) to study transients of the slope near the facet edge.

Remark 3. This discussion suggests that, for a class of initial data,

m(h(x, t), t) = O((x− xf(t))
1/2) x→ xf(t) , (33)

at the left- and right-facet edge position, xf(t), for sufficiently long times. No-
tably, this behavior is in agreement with the condition of local equilibrium at
facet edges [3,18]. Furthermore, the integral equation formulation indicates the
form of the expansion for m(h, t) and readily provides the leading-order term.
For the derivation of higher-order terms (to arbitrary order), it is algebraically
convenient to use the respective PDE (or ODE for self-similar slopes). The
starting point is the power series expansion

∑∞
n=1An(x − xf(t))

n/2, in accord
with the iterations of (19); see also Section 3.2. This form is to be contrasted
with the series used in [17] for a geometry having a single semi-infinite facet,
where the self-similar solution for the continuum slope does not decay in time.

3.2 Surface diffusion

Our analysis for evaporation-condensation can be extended to surface diffu-
sion with a few (mostly technical) modifications. For DL kinetics, we split
the fourth-order discrete scheme into two second-order schemes. This case is

13



discussed in some detail. We present fewer details for ADL kinetics where the
fourth-order scheme is treated without analogous splitting.

3.2.1 DL kinetics

We first focus on the self-similarity ansatz mj(t) = (5t+K)−1/5Mj observed
in [11], and set ψj = M3

j . The fourth-order scheme (16) is split as

ψj+1 − 2ψj + ψj−1 = −ǫ
2ϕj

ψ
1/3
j

, ϕj+1 − 2ϕj + ϕj−1 = − ǫ2

ψ
1/3
j

; (34a)

ψ−1 = 0 = ψN , ϕ−1 = 0 = ϕN ; j = 0, 1, . . . , N − 1 . (34b)

Recall that ϕj is the adatom flux on the jth terrace, where xj < x < xj+1.

Proposition 2. (A continuum limit in DL kinetics) In the limit ǫ ↓ 0, discrete
scheme (34) reduces to the integral equation

ψ(h) = m(h)3 = C1h−C2

∫ h

0

z(h− z)

m(z)
dz+

∫ h

0

∫ z

0

(h− z)(z − ζ)

m(z)m(ζ)
dζ dz , (35)

for 0 < h < 1; thus, limh↓0m(h) = 0 = limh↓0 ϕ(h) (ϕ: flux). The constants C1,
C2 are subject to respective conditions at h = 1: limh↑1m(h) = 0 = limh↑1 ϕ(h).
By (35), any sufficiently differentiable m(h) satisfies m[m(m3)hh]hh = 1.

In fact, (34) reduces to a pair of integral relations, which yield (35). The
primary continuum variables are the slope, m(h), and flux, ϕ(h); see (38),(39).
Assume that the integrals in (35) converge and a solution exists appropriately.

Proof. We proceed along the lines of Section 3.1; recall formulas (21) and (22)
regarding ψj in terms of Ψ(s). Our strategy is to express each of the second-
order difference equations (34a) as a sum equation, treating their right-hand
sides as forcing terms, fj (see Appendix A.1). The first one of (34a) leads to

ψj = (1 + j)ψ0 −
j−1∑

p=0

[(j + 1)ǫ− (p+ 1)ǫ]
ϕp

ψ
1/3
p

ǫ , (36a)

after applying the first pair of conditions (34b); the coefficient ψ0 is given by

(N + 1)ψ0 =
N−1∑

j=0

[(N + 1)ǫ− (j + 1)ǫ]
ϕj

ψ
1/3
j

ǫ . (36b)

The second one of equations (34a) with the last pair of conditions (34b) yield

ϕj = (1 + j)ϕ0 −
j−1∑

p=0

(j + 1)ǫ− (p+ 1)ǫ

ψ
1/3
p

ǫ , (37a)
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where, by analogy with (36b),

(N + 1)ϕ0 =
N−1∑

j=0

[(N + 1)ǫ− (j + 1)ǫ]ψ
−1/3
j ǫ . (37b)

Now let ǫ ↓ 0 with (N + 1)ǫ = 1 and (j + 1)ǫ = h = O(1). By (36), we have

ψj ⇀ ψ(h) = m(h)3 = C1h−
∫ h

0
(h− z)

ϕ(z)

m(z)
dz 0 < h < 1 ; (38a)

C1 := lim
ǫ↓0

(ǫ−1ψ0) =
∫ 1

0
(1 − z)

ϕ(z)

m(z)
dz . (38b)

By (37), the analogous limit for ϕj is

ϕj ⇀ ϕ(h) = C2h−
∫ h

0

h− z

m(z)
dz 0 < h < 1 ; (39a)

C2 := lim
ǫ↓0

(ǫ−1ϕ0) =
∫ 1

0

1 − z

m(z)
dz . (39b)

By the definitions of C1 and C2, we infer limh↑1m(h) = 0 = limh↑1 ϕ(h). The
combination of (38a) and (39a) recovers (35). Differentiations of the integral
equations entail m(m3)hh = −ϕ, mϕhh = −1, by which m(m(m3)hh)hh = 1.2

Corollary 2. The constants C1, C2 in (35) are positive. Further, for 0 < h <
1, the flux ϕ(h) is positive; thus, (a twice continuously differentiable) m(h)3

is concave.

The first statement in Corollary 2 follows from the definitions of C1, C2 and
the assumed positivity of slope. Note that

C1 =
∫ 1

0

1 − z

m(z)



∫ z

0

ζ(1 − z)

m(ζ)
dζ +

∫ 1

z

z(1 − ζ)

m(ζ)
dζ


dz .

The positivity of ϕ(h) = −m(m3)hh follows from (39). 2

Near-facet expansion. We notice that if m(h) = O(hα) as h ↓ 0 for some
0 6 α < 1, the integral terms in (35) generate subdominant contributions of
orders (from left to right) O(h3−α) and O(h4−2α). This observation motivates
an iteration scheme for (35), or the system of (38a) and (39a). Successive local
approximations of m(h) as h ↓ 0 can be constructed via the scheme

m(n+1)(h)3 =C1h−
∫ h

0
(h− z)

ϕ(n)(z)

m(n)(z)
dz , m(0)(h) = (C1h)

1/3 ;

ϕ(n+1)(h) =C2h−
∫ h

0

h− z

m(n)(z)
dz , ϕ(0)(h) = C2h , (40)
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wherem ∼ m(n), ϕ ∼ ϕ(n) to n+1 terms; n = 0, 1, . . . . The above construction
produces a formal expansion of m(h) in ascending powers of h. The first three
terms are evaluated in Appendix B.2; the result reads

m(h) = (C1h)
1/3 − 3

40

C2

C1

h2 +
27

700
C

−4/3
1 h8/3 + O(h11/3) h ↓ 0 . (41)

Note the powers of h entering (41), i.e., 1/3 (leading order), 2 (first correction)
and 8/3, in comparison to the powers 1/3, 1, 5/3 appearing in (30).

In the present setting of self-similarity, we have h = h(η) and m(h(η)) =
h′(η) where η = xt−1/5 [11]. By integration and inversion of (41), we find an
expansion of m(h(η)) in the vicinity of the facet edge, as η̄ = η − ηf,l ↓ 0:

m(h(η)) =

(
2

3

)1/2

C
1/2
1 η̄1/2 − 8

315
C2η̄

3 +
8

945
η̄4 + O(η̄11/2) . (42)

Note the absence of the powers 1, 3/2, 2, 5/2; cf. equation (A5) in [11]. Like-
wise, by symmetry we can write an expansion for m(h) as h ↑ 1. The above
procedure suggests expanding the slope in integer powers of η̄1/2 [11].

Remark 4. Integral equation (35) can result from integrating the slope ODE
m[m(m3)hh]hh = 1 under the conditions m→ 0 and ϕ→ 0 as h ↓ 0 and h ↑ 1.
Our technique exemplifies the passage to the continuum limit via the integral
equation so that these conditions emerge directly from the difference scheme.

Remark 5. It is tempting to extend the results of Proposition 2 to the time-
dependent setting (without self-similarity), where mj(t) ⇀ m(h, t). The emer-
gent pair of integral relations for m(h, t) and the continuum flux, ϕ(h, t), is

m(h, t)3 =C1(t)h−
∫ h

0
(h− z)

ϕ(z, t)

m(z, t)
dz ,

ϕ(h, t)=C2(t)h−
∫ h

0
(h− z) ∂t[m(z, t)−1] dz, 0 < h < 1 , t > 0 , (43)

provided the integrals converge; C1(t), C2(t) are subject to the vanishing of
m and ϕ as h ↑ 1. In principle, it may not be legitimate to iterate (43) as
above (under self-similarity) in order to obtain an expansion for m(h, t) near
a facet edge, unless t is sufficiently large. By differentiation of (43), we obtain
the familiar PDE ∂tm = −m2∂2

h(m∂
2
hm

3) [11, 22].

Remark 6. By (43), the slope is m(h(x, t), t) = O((x − xf(t))
1/2) as x →

xf(t) (position of a facet edge) for sufficiently long times, consistent with the
hypothesis of local equilibrium invoked in earlier continuum theories, e.g.,
in [22]. Further iterations are suggestive of the nature of the expansion for
m(h, t) in the vicinity of large facet edges. To compute coefficients of the
expansion, it is algebraically convenient to make the substitution m(h, t) =
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∑∞
n=1An(t)(x−xf(t))

n/2 into the PDE for m(h, t); then, the values A2 = A3 =
A4 = A5 = 0 are recovered by dominant balance [11].

3.2.2 ADL kinetics

Next, we focus on fourth-order scheme (13), which is also the subject of [1]. By
the similarity solution mj(t) = (4t+ K)−1/4Mj , proved in [1], and ψj = M3

j ,
the related difference equations read

ψj+2 − 4ψj+1 + 6ψj − 4ψj−1 + ψj−2 = fj = ǫ4ψ
−1/3
j , (44a)

for j = 0, 1, . . . , N − 1, along with the conditions

ψ−1 = 0 = ψN , ψ0 − 2ψ−1 + ψ−2 = 0 = ψN−1 − 2ψN + ψN+1 ; (44b)

recall that ϕj = −(ψj+1 − 2ψj + ψj−1) is the jth-terrace adatom flux. There
are at least two routes to studying (44): either split it into two second-order
schemes by using ϕj as an auxiliary variable, or leave the fourth-order scheme
intact and use only ψj . We choose the latter way here.

Proposition 3. (A continuum limit in ADL kinetics) In the limit ǫ ↓ 0,
discrete scheme (44) reduces to the integral equation

ψ(h) = m(h)3 = C1h− C3h
3 +

1

6

∫ h

0

(h− z)3

m(z)
dz , 0 < h < 1 ; (45)

thus, limh↓0m(h) = 0 = limh↓0 ϕ(h) (ϕ: flux). The constants C1, C3 are subject
to respective conditions at h = 1: limh↑1m(h) = 0 = limh↑1 ϕ(h). By (45), (a
sufficiently differentiable) m(h) satisfies m(m3)hhhh = 1; cf. [1].

By our usual practice, we assume that the integral in (45) converges and a
solution exists in some appropriate sense.

Proof. We treat the fj in (44) as a given forcing term and solve for ψj using
(21) and (22), with recourse to a generating polynomial Ψ(s); see Appendix
A.2 for details. After some algebra, the variables ψj are found to be

ψj =
1

6

[
(ψ1 − 2ψ0)j

2(j + 3) + 2(ψ0 + ψ1)j + 6ψ0

+ ǫ4
j−2∑

p=0

(j − p− 1)(j − p)(j − p+ 1)ψ−1/3
p

]
, j = 0, . . . , N − 1, (46)

where

ψ1 − 2ψ0 =
−NF (1) + F ′(1)

N + 1
, (47a)
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2(N + 1)(ψ1 + ψ0) =N(2N − 1)F (1) + (2N2 − 5N + 2)F ′(1)

− 3(N − 1)F ′′(1) + F ′′′(1) , (47b)

ψ0 =
N(2N + 1)F (1) +N(2N − 5)F ′(1) − 3(N − 1)F ′′(1) + F ′′′(1)

6(N + 1)
. (47c)

Recall F (s) =
∑N−1
j=0 fjs

j. The prime in (47) denotes the derivative in s.

Now let N → ∞, and ǫ ↓ 0 with (N + 1)ǫ = 1. By formulas (47), we find

ψ1 − 2ψ0

ǫ3
−→
ǫ↓0

−
∫ 1

0

1 − z

m(z)
dz , (48a)

ψ0 + ψ1

ǫ
−→
ǫ↓0

1

2

∫ 1

0

1 − z − (1 − z)3

m(z)
dz , (48b)

ψ0 = O(ǫ) → 0 . (48c)

For fixed height h = (j + 1)ǫ (with j → ∞), we let ψj ⇀ ψ(h), thus reducing
sum equation (46) to integral equation (45) with

C1 := lim
ǫ↓0

ψ0 + ψ1

3ǫ
=

1

6

∫ 1

0

1 − z − (1 − z)3

m(z)
dz , (49a)

C3 := − lim
ǫ↓0

ψ1 − 2ψ0

6ǫ3
=

1

6

∫ 1

0

1 − z

m(z)
dz , (49b)

and neglect of ψ0. The resulting continuum-scale slope m(h) vanishes as h ↓ 0.
In addition, ϕj ⇀ ϕ(h) with limh↓0 ϕ(h) = 0, as verified directly by (45).
Equations (49) imply that the slope and flux also vanish at the other end
point, as h ↑ 1. The differentiation of (45) furnishes the ODE m(m3)hhhh = 1
where ϕ(h) = −(m3)hh. 2

Corollary 3. The constants C1, C3 entering (45) are positive. Further, the
large-scale flux, ϕ(h) = −(m3)hh, is positive for 0 < h < 1.

Corollary 3 declares the concavity of ψ(h) = m(h)3 proved by AKW [1].

In the spirit of Sections 3.1 and 3.2.1, a formal expansion for the slope near
facet edges can plausibly be derived by iterations of (45). The ensuing slope
behavior is m(h) = (C1h)

1/3 + O(h7/3) as h ↓ 0; so, the leading-order term is
compatible with local equilibrium. Hence, with η = xt−1/4, we have (cf. (42))

m(h(η)) =

(
2

3

)1/2

C
1/2
1 η̄1/2 +O(η̄7/2) as η̄ → 0; η̄ = t−1/4(x− xf(t)) . (50)

Further details of these computations are left to the interested reader.
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Remark 7. The derivation can be extended to the full time dependent setting,
where mj(t) ⇀ m(h, t). The integral relation consistent with step laws is

m(h, t)3 = C1(t)h− C3(t)h
3 +

1

6

∫ h

0
(h− z)3 ∂t[m(z, t)−1] dz , (51)

where 0 < h < 1 and t > 0. The PDE reads ∂tm = −m2∂4
hm

3 [1].

4 Extensions

In this section we discuss two possible extensions of our formulation. First, we
address different laws of nearest-neighbor step interactions; in this case, the
slope behavior, i.e., the exponent 1/2 (see Remarks 3 and 6), at facet edges is
modified accordingly. Second, we propose a “toy model” where the kinetics of
attachment-detachment for extremal steps are different from the kinetics for
other steps. Our discussion aims to indicate the role that individual steps may
play in the derivation of boundary conditions in the continuum setting.

Another plausible extension concerns the presence of an Ehrlich-Schwoebel
barrier, by which the attachment-detachment law for all steps is characterized
by different kinetic rates, say κu and κd, for up- and down-steps [8,35]. In this
case, the effective kinetic rate for the adatom flux is the harmonic average of
κu and κd [24]. Our analysis remains essentially intact, leading to the same
form of continuum laws. This case is not discussed any further.

4.1 Multipole nearest-neighbor step interactions

In this section, we discuss continuum-scale implications of the step energy [24]

EN ({xj}Nj=0) =
1

α

N−1∑

i=0


 ǫ

xi+1 − xi



α

=
1

α

N−1∑

i=0

mα
i α > 1 , (52)

which in principle includes step multipole interactions for integer α > 2 [27];
α = 2 for dipole step interactions. The jth-step chemical potential is

µj =
δEN
δxj

= ǫ−1 (mα+1
j −mα+1

j−1 ) , j = 1, . . . , N − 1 ; (53)

in addition, µ0 = ǫ−1mα+1
0 and µN = −ǫ−1 mα+1

N−1. Formulas for the adatom
flux and step velocity ensue from Section 2 via m3

j 7→ mα+1
j in µj.

For instance, in DL kinetics the discrete scheme for steps now reads
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ṁj

m2
j

=−ǫ−4[mj+1(m
α+1
j+2 − 2mα+1

j+1 +mα+1
j ) − 2mj(m

α+1
j+1 − 2mα+1

j +mα+1
j−1 )

+mj−1(m
α+1
j − 2mα+1

j−1 +mα+1
j−2 )] , j = 0, . . . , N − 1 ; (54a)

m−1 = 0 = mN , m−2, mN+1 : finite . (54b)

Thus, the discrete self-similar slopes read mj(t) = [(α+ 3)t+K]−
1

α+3Mj .

To proceed along the lines of Section 3, let ψj = Mα+1
j ; or, more generally,

ψj(t) = mj(t)
α+1. Our manipulations for ψj remain intact. The analogue of

Proposition 2 contains the relation (cf. (35))

m(h)α+1 = C1h− C2

∫ h

0

z(h− z)

m(z)
dz +

∫ h

0

∫ z

0

(h− z)(z − ζ)

m(z)m(ζ)
dζ dz , (55)

where C1 and C2 are subject to the vanishing of slope and flux at h = 1.

Iterations of (55) yield a formal expansion of the slope near the facet edge
(h = 0). Accordingly, we obtain m(h(x, t), t) = O((x−xf(t))

1/α) as x→ xf(t),
the position of a facet edge, for sufficiently long times. This behavior manifests
the intimate connection of step interaction law and near-facet expansion at
equilibrium [3].

4.2 Special kinetics of extremal step

In this section we explore the following scenario. Suppose the attachment-
detachment law for extremal steps (j = 0, N) involve kinetic rates, say κL

for j = 0 and κR for j = N , which may be different from κ. So, according to
linear kinetics, the fluxes impinging on these steps are

−ϕ0 = 2κL(ρ0 − ρeq
0 ) x = x0 ; ϕN−1 = 2κR(ρN−1 − ρeq

N ) x = xN . (56)

At the remaining steps, the fluxes have rate 2κ. We study whether κL or κR can
possibly distort nontrivially the previous boundary conditions in the macro-
scopic limit, assuming this limit is well defined. Without loss of generality, set
κR = κ 6= κL and define β = κL/κ > 0; hence, we restrict attention to the left
facet edge (h = 0). It is tempting to claim that, in the limit ǫ ↓ 0, the detail of
(56) disappears and we recover a continuum-scale boundary condition of zero
slope and flux. We discuss formally why this claim is consistent with steps if
β = O(1). The situation is subtler if β = O(ǫγ), γ > 0.

The 0-th terrace adatom flux is ϕ0 = −ǫ−1 (κ̄ǫ)m0 (ρeq
1 −ρeq

0 )/(κ̄ǫ+m0) where
κ̄ = (κ−1 + κ−1

L )−1. We focus on ADL kinetics, where surface processes are
limited by atom attachment-detachment at steps, and scale time by κǫ (as in
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Section 2.2). The motion laws for the discrete slopes are described by (13a)
along with the partially modified termination conditions

m3
−1 + (1 − β)(m3

1 − 2m3
0) = 0 = m3

N , (57a)

m3
0 − 2m3

−1 +m3
−2 = 0 = m3

N−1 − 2m3
N +m3

N+1 . (57b)

Equations (57b) state that the auxiliary discrete fluxes vanish, in accord with
(13b); hence, we expect that the boundary conditions for the continuum-scale
flux are intact. By contrast, (57a) indicates a nonzero m−1, which in turn
suggests the possibility of a nonzero continuum-scale slope as h ↓ 0. (Note,
however, that in view of (57a) the mirror symmetry of the system is removed.)

We proceed to convert (13a) to sum equations via generating polynomials
from Appendix A.2; let ψj = m3

j . After some algebra, we find (cf. (46))

ψj =
1

6

{
β(ψ1 − 2ψ0)j

2(j + 3) + 2[ψ0 + ψ1 − 2(β − 1)(ψ1 − 2ψ0)]j + 6ψ0

+ ǫ4
j−2∑

p=0

(j − p− 1)(j − p)(j − p+ 1)(d/dt)ψj(t)
−1/3

}
, (58)

where, with F (s) = ǫ4
∑N−1
j=0 sj(d/dt)ψj(t)

−1/3, the requisite coefficients are

β(ψ1 − 2ψ0) =
−NF (1) + F ′(1)

N + 1
,

2(N + 1)[ψ0 + ψ1 − 2(β − 1)(ψ1 − 2ψ0)] =

(
2N2 −N + 6

β − 1

β

N

N + 1

)
F (1)

+

(
2N2 − 5N + 2 − 6

β − 1

β

1

N + 1

)
F ′(1) − 3(N − 1)F ′′(1) + F ′′′(1) ,

6(N + 1)ψ0 =

(
2N2 +N − 6N

β − 1

β

N

N + 1

)
F (1) +

(
2N2 − 5N

+ 6
β − 1

β

N

N + 1

)
F ′(1) − 3(N − 1)F ′′(1) + F ′′′(1) .

Note the term ψ0 entering the right-hand side of (58). The question arises as
to whether ψ0 = O(1) as ǫ ↓ 0 by manipulation of β.

Consider the limit of (58) as N → ∞ with ǫ(N + 1) = 1. By inspection
of the preceding formulas and repetition of the procedure of Section 3.2.2,
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we infer that any contribution of β is negligible if β = O(1). In this case,
the macroscopic laws are identical to those for β = 1 (Section 3.2.2); so, the
slope and flux vanish at the facet edges. These conditions appear to persist
provided β > O(N−3). In particular, the flux vanishes at h = 0, 1 for any
β > 0 (provided the continuum limit is meaningful). A possibility for nonzero
slope as h ↓ 0 may arise if β = O(N−3).

Entertaining the scenario of a small, extreme β, suppose β = β̆/N3, β̆ =
O(1) > 0, while the macroscopic limit makes sense, e.g., N4−nF ′(n)(1) →∫ 1
0 z

n−1∂t[m(z, t)−1] dz = O(1) as N → ∞; n = 1, 2, 3, 4 and F ′(n)(s) denotes
the nth-order derivative of F (s). By dominant balance we wind up with

m(h, t)3 = C0(t) + C1(t)h− C3(t)h
3 +

1

6

∫ h

0
(h− z)3 ∂t[m(z, t)−1] dz ; (59)

cf. (51). The coefficients C0(t), C1(t), C3(t) are found to be

C0(t) = lim
ǫ↓0

ψ0(t) = β̆−1
∫ 1

0
(1 − z)∂t[m(z, t)−1] dz ,

which signifies the nonzero value of the continuum slope as h ↓ 0, and

C1(t) = lim
ǫ↓0

ψ1(t) + ψ0(t) − 2(β − 1)[ψ1(t) − 2ψ0(t)]

3ǫ

=
1

6

∫ 1

0
[(1 − 6β̆−1)(1 − z) − (1 − z)3]∂t[m(z, t)−1] dz ,

C3(t) = − lim
ǫ↓0

β[ψ1(t) − 2ψ0(t)]

6ǫ3
=

1

6

∫ 1

0
(1 − z) ∂t[m(z, t)−1] dz .

Note that if β̆ ≫ 1, (59) reduces to the macroscopic limit of Section 3.2.2.

A sufficiently small β forces the microscale flux at the top step to become small;
thus, the motion of the extremal step tends to be frozen and the density of
steps increases in the vicinity of the left facet edge. Interestingly, our heuristic
analysis indicates the critical scaling O(N−3) for β.

5 Conclusion and discussion

Inspired by a recent analysis of ADL kinetics for a finite crystal [1], we derived
formal expansions for the continuum surface slope in the vicinity of semi-
infinite crystal facets located at fixed heights. Our starting point was a system
of nonlinear ODEs for discrete slopes in 1D according to the BCF model.
Each of the steps interacts with its nearest neighbors through elastic-dipole
and entropic repulsions. The ODEs were converted to a difference scheme and
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sum equations via a discrete self-similar solution. In the macroscopic limit, the
sum equations are reduced to integral relations which unveil via iterations the
local behavior of the continuum slope (and flux) near facets. Our approach is
not limited by the kinetics: evaporation-condensation as well as DL and ADL
kinetics in surface diffusion are treated formally on the same grounds.

We studied two possible extensions of this approach. First, we considered
multipole nearest-neighbor step interactions. For step interactions decaying
as w−α with the terrace width w, where α ≥ 2, the slope vanishes as O(x̄1/α)
with the distance x̄ from the facet edge, in agreement with notions of local
equilibrium. Second, we studied implications of special kinetics at extremal
steps, assuming the macroscopic limit is meaningful.

Our setting, motivated by [1, 11], provides an explicit example of a step flow
model consistent with the continuum theory. The conditions of zero slope and
flux (e.g., in DL kinetics) are compatible with those afforded by a gradient-
flow-type formulation; see, e.g., Odisharia [29], Spohn [39], and Shenoy and
Freund [36]. Our work provides a linkage of the underlying particle structure
to the local behavior of continuum-scale variables near the facet boundary.

Our approach bears limitations. The self-similar solution studied here cap-
tures the long-time evolution of the slope; the transient near-facet behavior
requires a subtler analysis. The derived integral equations have not been stud-
ied rigorously; so, issues of existence and uniqueness of solutions were not
touched upon. In the same vein, the legitimacy of applying iterations was not
addressed, although an exactly solvable case (in evaporation-condensation via
self-similarity) was pointed out. Self-similar solutions were applied but not
proved to exist, be unique or stable.

In our setting the facets are semi-infinite, 1D and located at fixed heights.
This assumption simplifies (the more realistic) situations where facets are
finite, have curved boundaries and time-varying height [15,23]. In such cases,
individual steps collapsing on top of the facets can influence the surface profile
macroscopically [15]. The derivation of near-facet expansions for the slope in
more complicated geometries is the subject of work in progress.
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A On solutions of difference equations

In this appendix, we provide details of basic computations needed in Section
3. In particular, we elaborate on the derivation of (25), (36), (37) and (46)
and the associated coefficients.

A.1 Second-order difference scheme

Consider the difference scheme

ψj+1 − 2ψj + ψj−1 = fj , j = 0, . . . , N − 1 ; ψ−1 = 0 = ψN , (A.1)

where fj can be time dependent but the time is suppressed since it is imma-
terial here. By multiplying (A.1) by sj and summing over j we have

s−1[Ψ(s) − ψ0 + ψNs
N ] − 2Ψ(s) + s[Ψ(s) + ψ−1s

−1 − ψN−1s
N−1] = F (s),

where F (s) is defined in (23). Thus, we obtain

Ψ(s) =
ψ0 − ψ−1s− ψNs

N + ψN−1s
N+1 + sF (s)

(1 − s)2
=

P(s)

(1 − s)2
, (A.2)

which leads to (23) by virtue of the termination conditions. The point s = 1
is a removable singularity provided P(1) = 0 = P ′(1), which yield (24).

The coefficient of sj in Ψ(s) is given by (21). By restricting the contour Γ in
the interior of the unit disk (|ζ | < 1) and eliminating analytic terms, we have

ψj =
1

2πi

∮

Γ

ψ0 + ζF (ζ)

(1 − ζ)2

dζ

ζj+1
, j = 0, . . . , N − 1 . (A.3)

Recalling the binomial expansion (1−ζ)−2 =
∑∞
k=0(1+k)ζk, we find the series

ψ0 + ζF (ζ)

(1 − ζ)2
= ψ0 +

∞∑

l=0

ζ l+1

[
l + 2 +

l∑

p=0

(1 + l − p)fp

]
. (A.4)

The coefficient of ζj is singled out for l = j − 1; thus, by (A.3) we recover
(25). The derivation of (36) and (37) follows from the same procedure.
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A.2 Fourth-order difference scheme

Next, consider the difference scheme (44). The generating polynomial, Ψ(s),
introduced in (22) satisfies

s−2(Ψ − ψ0 − ψ1s + ψNs
N + ψN+1s

N+1) − 4s−1(Ψ − ψ0 + ψNs
N)

+ 6Ψ − 4s(Ψ + ψ−1s
−1 − ψN−1s

N−1) + s2(Ψ + ψ−2s
−2 + ψ−1s

−1

− ψN−1s
N−1 − ψN−2s

N−2) = F (s) =
N−1∑

j=0

fjs
j .

In view of termination conditions (44b), we thus find

Ψ(s) =
P(s)

(1 − s)4
, (A.5a)

where the numerator is

P(s) =ψ0 + (ψ1 − 4ψ0)s+ ψ0s
2 + ψN−1s

N+1 + (ψN−2 − 4ψN−1)s
N+2

+ ψN−1s
N+3 + s2F (s) . (A.5b)

Clearly, the point s = 1 must be a removable singularity in (A.5a); thus, we
should have P(1) = P ′(1) = P ′′(1) = P ′′′(1) = 0, which entail a system of
equations for the parameters ψ0, ψ1, ψN−2, ψN−1:

ψ1 − 2ψ0 + ψN−2 − 2ψN−1 = −F (1) ,

ψ1 − 2ψ0 + (N + 2)(ψN−2 − 2ψN−1) = −2F (1) − F ′(1) ,

2ψ0 + (N + 1)(N + 2)ψN−2 − 2(N2 + 3N + 1)ψN−1 = −2F (1)

− 4F ′(1) − F ′′(1) ,

N(N + 1)(N + 2)ψN−2 − 2(N2 − 1)(N + 3)ψN−1 = −6[F ′(1)

+ F ′′(1)] − F ′′′(1) . (A.6)

The solution of this system leads to formulas (47).

Next, we determine ψj in terms of ψ0, ψ1 with recourse to (21); Γ is a contour
enclosing 0 in the interior of the unit disk. By removing the analytic part of
the integrand, we have (for j = 0, . . . , N − 1)

ψj =
1

2πi

∮

Γ

ψ0 + (ψ1 − 4ψ0)ζ + ψ0ζ
2 + ζ2F (ζ)

(1 − ζ)4

dζ

ζj+1
. (A.7)
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By virtue of the binomial expansion

(1 − ζ)−4 =
1

3!

∞∑

l=0

(l + 1)(l + 2)(l + 3)ζ l |ζ | < 1 ,

the integrand in (A.7) has residue equal to

1

3!

[
ψ0(j + 1)(j + 2)(j + 3) + (ψ1 − 4ψ0)j(j + 1)(j + 2) + ψ0(j − 1)j(j + 1)

+
j−2∑

p=0

(j − 1 − p)(j − p)(j − p+ 1)fp

]
.

By separating distinct powers of j in the first line, we obtain (46).

B Iterations of integral equations

In this appendix, we discuss the integral equations of Section 3, especially
the use of iterations for formally constructing expansions of solutions near
facet edges. The case with evaporation-condensation serves as a paradigm for
validation of the iteration procedure, since a simple exact, global similarity
solution for the slope is derived independently.

B.1 Evaporation-condensation

Iteration scheme. Consider the sequence {m(n)(h)}∞n=0 defined by (29). On the
basis of the proposed scheme, we compute

n = 1 : m(1)(h) =

(
C1h−

9

10
C

−1/3
1 h5/3

)1/3

⇒ m(1)(h) −m(0)(h) = − 3

10
C−1

1 h + O(h5/3) as h ↓ 0 . (B.1)

More generally, the difference δm(n) = m(n) −m(n−1) satisfies

δm(n)[m(n)2 +m(n)m(n−1) +m(n−1)2](h) =
∫ h

0

(h− z)δm(n−1)(z)

m(n−1)(z)m(n−2)(z)
dz (B.2)

for n = 2, . . .; m(n)(h) ∼ (C1h)
1/3 for every n as h ↓ 0. By inspection of (B.1)

and (B.2), we see that δm(n)(h) ∼ anh
bn . For instance, for n = 2 we compute
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a2 = −(9/280)C
−7/3
1 , b2 = 5/3 and

m(2) ∼ m(1)(h) − 9

280
C

−7/3
1 h5/3 =

(
C1h−

9

10
C

−1/3
1 h5/3

)1/3

− 9

280
C

−7/3
1 h5/3 ,

which immediately leads to the three-term expansion (30) for m(h). Higher-
order terms are generated in an analogous fashion, but of course the algebra
becomes increasingly cumbersome with the order, n.

Global similarity solution. It is rather fortuitous that m(h) can be determined
globally [12], thus rendering possible a comparison with expansion (30). By
ψ(h) = m(h)3, the governing ODE is ψ′′ = −ψ−1/3, where the prime denotes
the derivative in h. If ψ(0) = 0 = ψ(1), by symmetry we can restrict ψ(h) in
(0, 1/2) where ψ′(h) > 0 and ψ′(1/2) = 0. The ODE is split into the system

ψ′ = w , w′ = −ψ−1/3 , (B.3)

to which we associate a constant of motion via the “energy”

E(h) = 1
2
w(h)2 + 3

2
ψ(h)2/3; E ′(h) = 0 . (B.4)

Thus, solutions of (B.3) can be parametrized by the constant c = E(h).

Suppose that we look for solutions consistent with integral equation (19). So,
we require that ψ, w solve (B.3) for h ∈ (0, 1/2) under the conditions

ψ(0) = 0 , w(1/2) = 0 . (B.5)

By definition of E and w we compute h(m) by

h =
∫ ψ

0

dξ√
2c− 3ξ2/3

=
c√
3

(
sin−1 m̃− m̃

√
1 − m̃2

)
; m̃ = m

√
3

2c
(B.6)

and 0 ≤ h ≤ 1/2 along with w = dψ/dh > 0. The solution h(m) for 1/2 <
h ≤ 1 is obtained by reflection. In principle, (B.6) (and its reflection) can be
inverted to generate m(h). The constant c can be found by setting h = 1/2 in
(B.6) and using the definition of E(h) and w(1/2) = 0. Thus, we deduce

1

2
=
∫ ψ(1/2)

0

dξ√
2c− 3ξ2/3

, c = 3ψ(1/2)2/3/2 ⇒ c =
√

3/π , (B.7)

and m(1/2) = 3−1/421/2π−1/2.

We proceed to generate a power series of m(h) in h by inversion of (B.6). We
write the Maclaurin expansion

πh =
∞∑

l=1

Γ(1
2

+ l)

l! Γ(1
2
)

4l

4l2 − 1
m̃2l+1 m̃ < 1 ,
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where Γ(z) is the usual Gamma function. The inversion of the last series up
to three terms yields

m̃(h)3 =
3πh

2
− 3

10

(
3πh

2

)5/3

− 3

280

(
3πh

2

)7/3

+ O(h3) as h ↓ 0 . (B.8)

This expansion is in agreement with (30) provided C1 = 31/421/2π−1/2. It is
worthwhile noting that the complete h-expansion produced by inversion of the
exact solution is convergent in a neighborhood of h = 0.

B.2 DL kinetics

Consider scheme (40). Because of the increasingly elaborate algebra, we com-
pute up to three terms for m(h(η)).

m(1)(h)3 = C1h−
∫ h

0

h− z

(C1z)1/3
C2z dz = C1h−

9

40

C2

C
1/3
1

h8/3 , (B.9)

ϕ(1)(h) = C2h−
∫ h

0

h− z

(C1z)1/3
dz = C2h−

9

10
C

−1/3
1 h5/3 ;

⇒ ϕ(1)(h)

m(1)(h)
=

C2

C
1/3
1

h2/3 − 9

10
C

−2/3
1 h4/3 + O(h7/3) h ↓ 0 .

Accordingly, an approximation for m(2)(h) comes from

m(2)(h)3 =C1h−
∫ h

0
(h− z)

ϕ(1)(z)

m(1)(z)

=C1h−
9

40

C2

C
1/3
1

h8/3 +
34

700
C

−2/3
1 h10/3 + O(h13/3) , (B.10)

which leads to (41) where m(h(η)) = h′(η). By integrating in η we find

η̄ =
3

2
C

−1/3
1 h2/3 +

9

280

C2

C
5/3
1

h7/3 − 9

700
C−2

1 h3 + O(h4) h ↓ 0 .

The inversion of this expansion yields

h(η) =

(
2

3

)3/2

C
1/2
1 η̄3/2 − 2

315
C2η̄

4 +
8

4725
η̄5 + O(η̄13/2), (B.11)

which is reduced to (42) through differentiation.
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