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Abstract. We discuss the Cucker-Smale’s (C-S) particle model for flocking,
deriving precise conditions for flocking to occur when pairwise interactions are
sufficiently strong long range. We then derive a Vlasov-type kinetic model for
the C-S particle model and prove it exhibits time-asymptotic flocking behavior
for arbitrary compactly supported initial data. Finally, we introduce a hydro-
dynamic description of flocking based on the C-S Vlasov-type kinetic model
and prove flocking behavior without closure of higher moments.

1. Introduction. Collective self-driven motion of self-propelled particles such as
flocking of birds and mobile agents, schooling of fishes, swarming of bacteria, ap-
pears in many context, e.g., biological organism [3, 8, 9, 10, 18, 19, 22, 25, 26],
mobile network [2, 5, 11, 12] appears in many contexts of biological system, mo-
bile and human network [6, 7]. The flocking dynamics of self-propelled particles is
important to understand the nature of the aforementioned self-propelled particles.
The terminology “flocking” represents the phenomenon in which self-propelled indi-
viduals using only limited environmental information and simple rules, organize into
an ordered motion (see [24], and it was a subject of biologists [3, 19]). The study of
flocking mechanism based on mathematical models was first started from the work
of Viscek et al [26], and was further motivated by the hydrodynamic approach [24].

Our starting point is a particle description, proposed recently by Cucker-Smale
[6, 7], as a new simple dynamical system to explain the emergency of flocking mech-
anism with birds, with language evolution in primitive societies etc. The Cucker-
Smale’s system is different from previous flocking models, e.g., [26], in the sense
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that the collisionless momentum transfer between particles, {(xi(t), vi(t))}N
i=1, is

done through a long-range bi-particle interaction potential, r(x, y) = r(|x − y|)
depending on the distance |x− y|,

d

dt
vi(t) =

λ

N

∑

1≤j≤N

r(xi(t), xj(t))
(
vj(t) − vi(t)

)
.

The Cucker-Smale’s flocking system (in short C-S system) is reviewed in Section 2.
Here we revisit the formation of flocking in C-S dynamics in terms of the fluctu-
ations relative to the center of mass xc(t) := 1/N

∑
xi(t). The dynamics of fluc-

tuations makes transparent the flocking dynamics. Our main result, summarized
in theorem 2.4, improves [6] for slowly decaying interaction potential, r(|x − y|) ∼
|x − y|−2β , 2β ≤ 1. It is shown that flocking emerges in the sense that the follow-
ing two main features occur: (i) the diameter max |xi(t)− xj(t)| remains uniformly
bounded thus defining the “flock”, and (ii) the “flock” is traveling with a bulk mean
velocity which is asymptotically particle-independent, vi(t) ≈ vc := 1/N

∑
vi(0).

When the number of particles is sufficiently large, it is not economical to keep
track of the motion of each particle through the Cucker-Smale’s system. Instead,
one is forced to study the mean field limit of C-S system and we introduce a kinetic
description for flocking, in analogy with the Vlasov equation in plasma and astro-
physics. In Section 3, we present a Vlasov type mean field model, which is derived
from the C-S system using the BBGKY hierarchy in statistical mechanics. The
formal derivation, carried in Section 3, follows by taking the limit of an N -particle
interacting system consisting of self-propelled particles governed by C-S flocking
dynamics. To this end, let f = f(x, v, t) denote the one-particle distribution func-
tion of such particles positioned at (x, t) ∈ R

d × R+ with a velocity v ∈ R
d: the

dynamics of the distribution function f is determined by

∂tf + v · ∇xf + λ∇v ·Q(f, f) = 0,

where λ is a positive constant, and Q(f, f) is the interaction term

Q(f, f)(x, v, t) :=

∫

R2d

r(x, y)(v∗ − v)f(x, v, t)f(y, v∗, t)dv∗dy,

dictated by a prescribed interparticle interaction kernel, r = r(x, y). We refer to
Degond and Motsch [8, 9, 10] for recent kinetic description of Vicsek type model of
flocking. The dynamics of particle trajectories of the proposed kinetic description
of flocking is analyzed in Section 3.2; in Section 3.3 we prove the global existence
of smooth solutions to the kinetic model with arbitrary smooth compactly sup-
ported initial data. In Section 4, we show that the kinetic model reveals the time-
asymptotic flocking behavior when the bounded interparticle interaction rate has a
sufficiently strong long range. Our results are summarized in the main theorem 4.3,
proving the decay of energy fluctuations, Λ[f ](t), around the mean bulk velocity,
uc,

Λ[f ](t) :=

∫

R2d

|v − uc|2f(x, v, t)dvdx, uc(t) =

∫
R2d vf(x, v, t)dvdx∫
R2d f(x, v, t)dvdx

≡ uc(0).

Flocking is proved for the restricted range, 2β < 1/2, realized by the asymptotic
decay estimate, Λ[f ](t) → 0 as t→ ∞.

In Section 5 we turn our attention to the hydrodynamic description of flocking,
furnished by moments of the kinetic distribution function. We study the dynamics
of the resulting system of balanced laws related to the moments of Vlasov model.
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Despite the lack of closure, we present a fundamental estimate which enables to
conclude the flocking mechanism at the macroscopic hydrodynamic scales. Theorem
5.2 states that the energy-related functional, Γ(t)

Γ(t) :=

∫

R2d

(1

2
|u(x) − u(y)|2 + e(x) + e(y)

)
ρ(x)ρ(y)dydx.

decays provided the interparticle interaction, ϕ(s) = inf r(x(s), y(s)) decays slowly
enough so that its primitive, Φ(t), diverges. This in turn in related to the increase
of entropy

d

dt

∫

R2d

f log(f)dxdv ≥ 0,

as particles with increasingly highly correlated velocities flock towards particle-
independent bulk velocity.

2. A particle description of flocking.

2.1. The Cucker-Smale model. In this section, we briefly review the Cucker-
Smale’s flocking system in [6, 7, 23], which manifests the time-asymptotic flocking
behavior of many particle systems. We reinterpret the C-S system in terms of
fluctuations relative to the center of mass coordinates, which enables us to simplify
and sharpen the derivation of sufficient conditions for flocking to occur.

Consider an N -particle interacting system consisting of identical particles with
mass m to be assumed to be unity. Let [xi(t), vi(t)] ∈ R

2d be the phase space
position of an i-particle. The Cucker-Smale dynamical system [6, 7] takes the form

d

dt
xi(t) = vi(t),

d

dt
vi(t) =

λ

N

∑

1≤j≤N

r(xi(t), xj(t))
(
vj(t) − vi(t)

)
. (2.1)

Here λ is a positive constant, and r(x, y) is a symmetric, bi-particle interaction
kernel,

r(x, y) = r(y, x) ≤ A. (2.2)

To discuss the time asymptotic flocking behavior, we will restrict our attention to
interparticle interactions which are non-increasing functions of the distance1,

r(x, y) = r(|x − y|), r(·) is non − increasing. (2.3a)

A prototype example is the interaction kernel with a polynomial decay of order 2β,
[6],

r(|x − y|) ≥ A

(1 + |x− y|2)β
, β ≥ 0. (2.3b)

We note in passing that only a lower-bound of the interaction kernel matters.
For notational simplicity we often omit t-dependence from the particle identifi-

cation, abbreviating xi ≡ xi(t) and vi ≡ vi(t).
Let mj(t), j = 0, 1, 2 denote the moments.

m0 :=

N∑

i=1

1 = N, m1(t) :=

N∑

i=1

vi(t), m2(t) :=

N∑

i=1

|vi(t)|2.

Regarding the dynamics of these moments, we have the following estimate.

1To emphasize this point, we therefore continue to refer to general symmetric kernels, r(x, y) =
r(y, x), whenever translation invariance is not necessary.
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Proposition 2.1. Let (xi(t), vi(t)) be the solution to the C-S system (2.1),(2.2).
Then the following estimates hold.

d

dt
m1(t) = 0. (2.4a)

d

dt
m2(t) = − λ

N

∑

1≤i,j≤N

r(xi, xj)|vj − vi|2. (2.4b)

m2(t) ≥ m2(0)e−2λAt +
|m1(0)|2
m0

(
1 − e−2λAt

)
. (2.4c)

Remark 2.1. Proposition 2.1 tells us that although the kinetic energy m2(t) is
monotonically decreasing, (2.4b), it has the following nonzero lower bound if initial
momentum m1(0) 6= 0,

m2(t) ≥
|m1(0)|2
m0

. (2.5)

Flocking occurs when equality takes place in the Cauchy-Schwarz inequality (2.5).

Proof. Conservation of momentum in (2.4a) follows from the symmetry r(xi, xj) =
r(xj , xi), for

d

dt

( N∑

i=1

vi

)
=

λ

N

∑

1≤i,j≤N

r(xi, xj)(vj − vi) = 0.

Moreover, symmetry also implies

∑

1≤i,j≤N

r(xi, xj)vi · (vi − vj) = −
∑

1≤i,j≤N

r(xi, xj)vj · (vi − vj),

and hence the energy dissipation (2.4b) follows

d

dt

( N∑

i=1

|vi|2
)

= −2λ

N

∑

1≤i,j≤N

r(xi, xj)vi · (vi − vj)

=
2λ

N

∑

1≤i,j≤N

r(xi, xj)vj · (vi − vj) = − λ

N

∑

1≤i,j≤N

r(xi, xj)|vi − vj |2.

Finally, to prove (2.4c), we use the energy dissipation in (2.4b), the fact that
r(xi, xj) ≤ A and the conservation of momentum in (2.4a) to find

d

dt
m2(t) = − λ

N

∑

1≤i,j≤N

r(xi, xj)|vi − vj |2 ≥ − λ

N
A

∑

1≤i,j≤N

|vi − vj |2

= −2λA
(
m2(t) −

|m1(t)|2
N

)
= −2λA

(
m2(t) −

|m1(0)|2
m0

)
.

Gronwall’s lemma yields (2.4c).
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2.2. Asymptotic behavior of fluctuations — flocking. We now turn to study
the time-asymptotic behavior of solutions to C-S system (2.1),(2.3a). To this end,
we introduce a center of mass system (xc(t), vc(t)),

xc(t) :=
1

N

N∑

i=1

xi(t), vc(t) :=
1

N

N∑

i=1

vi(t).

Then, thanks to the conservation of momentum, the velocity vc is constant in t,
and the trajectory of center of mass xc is a straight line:

vc(t) = vc(0), xc(t) = xc(0) + tvc(0).

Observe that the fluctuations around the center of mass,

xi(t) 7→ xi(t) − xc(t), vi(t) 7→ vi(t) − vc(t),

satisfy the same C-S system (2.1),(2.3a): it is here that we take into account the
fact that the interparticle kernel depends on the distance, r(x, y) = r(|x − y|). We
shall show that under appropriate conditions, flocking occurs in the sense that these
fluctuations decay in time. Thus, the time-asymptotic dynamics of C-S solutions
emerges as a linear movement with a fixed velocity dictated by the coordinates of
center of mass.

To proceed, we introduce the two auxiliary functions which measure the fluctu-
ations of the solution around their center of mass,

X(t) :=
∑

1≤i≤N

|xi(t) − xc(t)|2, V (t) :=
∑

1≤i≤N

|vi(t) − vc(0)|2,

subject to initial conditions (X0, V0) = (X(0), V (0)). The flocking behavior will
depend in an essential way on the behavior of the minimal value of the interparticle
interaction at time t,

ϕ(t) := min
1≤i,j≤N

r(xi(t), xj(t)). (2.6)

We begin with the fluctuations of velocities.

Lemma 2.2. [Fluctuations of velocities]. Let (xi(t), vi(t)) be the solution of the
system (2.1),(2.3a). Then we have

V (t) ≤ V0e
−2λΦ(t), Φ(t) :=

∫ t

0

ϕ(τ)dτ.

Proof. We invoke (2.4b) with vi(t) − vc(t) replacing vi(t) to find that

d

dt

N∑

i=1

|vi − vc|2 = − λ

N

∑

1≤i,j≤N

r(xi, xj)|vj − vi|2. (2.7)

Since
∑

i(vi−vc) = 0, we have
∑

1≤i,j≤N |vi−vj |2 = 2NV (t), and the result follows
from Gronwall’s integration of

d

dt
V (t) = − λ

N

∑

1≤i,j≤N

r(xi, xj)|vj − vi|2 ≤ −2λϕ(t)V (t).
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Remark 2.2. Lemma 2.2 implies the sufficient condition for flocking is that the
interparticle interaction potential decays sufficiently slow, so that its primitive, Φ(t),
diverges, i.e.,

if lim
t→∞

Φ(t) ≡
∫ t

0

ϕ(τ)dτ = ∞ then lim
t→∞

|vi(t)−vc| = 0, i = 1, · · · , N. (2.8)

The answer whether ϕ(t) decays sufficiently slow to enforce flocking depends on
the variance of positions xi(t).

Lemma 2.3. [Fluctuations of positions]. Let (xi(t), vi(t)) be the solution of the
system (2.1),(2.3a). Then we have

X(t) ≤ 2X0 + V0
t2

2
, t ≥ 0.

Proof. We use Cauchy-Schwartz’s inequality to see

d

dt

N∑

i=1

|xi − xc|2 =

N∑

i=1

(xi − xc) ·
(
dxi

dt
− dxc

dt

)

=

N∑

i=1

(xi − xc) · (vi − vc) ≤

√√√√
N∑

i=1

|xi − xc|2
√√√√

N∑

i=1

|vi − vc|2.

Using Lemma 2.2 we obtain,
d

dt
X(t) ≤

√
V (t)

√
X(t) ≤

√
V0e

−λΦ(t)
√
X(t), and

the solution of this differential inequality yields

X(t) ≤ 2X0 +
V0

2

[ ∫ t

0

e−λΦ(τ)dτ
]2

≤ 2X0 + V0
t2

2
. (2.9)

As a corollary of Lemma 2.3 we now obtain the desired lower bound for ϕ(t).

Corollary 1. Let (xi(t), vi(t)) be the solutions to (2.1),(2.3a). Then ϕ(t) satisfies

ϕ(t) ≥ r
(√

2X(t)
)
≥ r

(√
4X0 + V0t2

)
.

Proof. We use Lemma 2.3 to see that for each i, j ∈ {1, · · · , N},
|xi − xj |2 ≤ 2(|xi − xc|2 + |xj − xc|2) ≤ 2X(t) ≤ 4X0 + V0t

2.

Since r(·) is non-increasing, we have ϕ(t) = min
1≤i,j≤N

r(xi(t), xj(t)) ≥ r
(√

4X0 + V0t2
)
.

The asymptotic flocking now depends on the specific decay of the interparticle
interaction r(·). As an example, consider the C-S system with the 2β interaction
(2.1),(2.3b), where

ϕ(t) ≥ A

(1 + 4X0 + V0t2)β
≥ Aκ1

(1 + t)2β
, κ1 :=

(
max{1 + 4X0, V0}

)−β

. (2.10)

We conclude that the divergence of Φ(t) =
∫ t
ϕ(τ)dτ and hence, by (2.8) that

flocking occurs, for 2β < 1. This recovers the Cucker-Smale result [6, 7]. Below we
improve the Cucker-Smale result proving unconditional flocking result for β = 1/2.
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Theorem 2.4. Let (xi(t), vi(t)) be the solutions to (2.1),(2.3b) with V0 > 0. Then
the following holds.

(i) There exist a positive constant, C2 (depending only on κ1, A and β as specified
in (2.12) below), such that

|xi(t) − xc| <∼ |xi(0) − xc| + C2. (2.11a)

(ii) There exists constants, κi > 0, i = 1, 2, such that

|vi(t) − vc| <∼
√
V0 ×






e−λAκ2t, β ∈ [0, 1
2 ), κ2 := (1 + 4X0 + 8C2

2 )−β ,

(1 + t)−λAκ1 , β = 1
2 , κ1 =

(
max{1 + 4X0, V0}

)−β

.

(2.11b)

Remark 2.3. Theorem 2.4 shows the two main features of flocking occur with
the 2β-interaction potential, 2β ≤ 1, namely, the diameter max |xi(t) − xj(t)| re-
mains uniformly bounded thus defining the traveling “flock” with velocity which is
asymptotically particle-independent, vi(t) ≈ vc.

Proof. We begin with the case 0 ≤ β < 1
2 . To get the optimal exponential conver-

gence rate, we employ a bootstrapping argument in three steps.

Step 1. We first obtain a weak integrable decay rate for |vi − vc|. Using (2.10) we
find

−
∫ t

0

ϕ(τ)dτ ≤ −Aκ1

∫ t

0

(1 + τ)−2βdτ <∼ C1

(
1 − (1 + t)1−2β

)
, 0 ≤ β <

1

2
.

(2.12a)

The above estimate together with Lemma 2.2 yield V (t) <∼ V0e
−2C1(1+t)1−2β

.

Step 2. Next, we improve lemma 2.3, observing that for β < 1/2, the position
X(t) remains uniformly bounded in time. Indeed, we have,

xi(t) = xi(0) +

∫ t

0

vi(τ)dτ, xc(t) = xc(0) +

∫ t

0

vcdτ.

Time integrability of |vi(t) − vc(t)| then yields (2.11a),

|xi(t) − xc(t)| ≤ |xi(0) − xc(0)| +
∫ t

0

|vi(τ) − vc|dτ

<∼ |xi(0) − xc(0)| +
∫ ∞

0

e−C1(1+t)1−2β

dt ≤ |xi(0) − xc(0)| + C2,

where

C2
<∼

∫ ∞

0

e−C1(1+t)1−2β

dt <∞, 0 < β <
1

2
. (2.12b)

Step 3. The uniform bound of X(t) implies an improved estimate for the interpar-
ticle interaction ϕ(t): corollary 1 implies

ϕ(t) ≥ r(
√

2X0) ≥ A(1 + 4X0 + 8C2
2 )−β = Aκ2,

which in turn, using lemma 2.2, yields the optimal exponential convergence rate
(2.11b)

|vi(t) − vc(t)|2 < V (t) ≤ V0e
−2λΦ(t) <∼ e−2λAκ2t.
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It remains to deal with the case β = 1
2 . Here, we have

−2λΦ(t) ≤ −2λA
(

max{1 + 4X0, V0}
)− 1

2

∫ t

0

(1 + τ)−1dτ = −2λAκ1 ln(1 + t),

which in turn implies (2.11b), V (t) ≤ V0e
−2λΦ(t) ≤ V0(1 + t)−2λAκ1 .

Remarks.

1. Consider the borderline case β = 1
2 with initial configuration satisfying

λκ1 > 1, i.e.,
√

max{1 + 4X0, V0} < λ;

then the same bootstrapping argument used for β ∈ [0, 1
2 ) gives the exponen-

tial convergence:

|vi(t) − vc| ≤
√
V0e

−Aκ̃2t.

2. Flocking occurs even if β > 1
2 , but only for special initial configurations.

Sufficient flocking conditions for such initial profiles is presented in [6].

3. From particle to kinetic description of flocking.

3.1. Derivation of a mean-field model. We assume that the number of particles
involved in the C-S model (2.1),(2.2) is large enough that it becomes meaningful to
observe the N -particle distribution function,

fN = fN(x1, v1, . . . , xN , vN , t), (xi, vi) ∈ R
d × R

d, i = 1, 2, . . . , N. (3.1a)

Since particles are indistinguishable, the probability density fN = fN(·) is sym-
metric in its phase-space arguments,

fN (· · · , xi, vi, · · ·xj , vj , · · · , t) = fN (· · · , xj , vj , · · ·xi, vi, · · · , t), (3.1b)

so we can ‘probe’ fN by any of its N pairs of phase-variables. Let fN (·, ·, t) denote
the marginal distribution2

fN(x1, v1, t) :=

∫

R2d(N−1)

fN (x1, v1, x−, v−, t)dx−dv−,

(x−, v−) := (x2, v2, · · · , xN , vN ).

The formal derivation of a kinetic description for the C-S particle system (2.1),(2.2)
is carried out below using the BBGKY hierarchy, e.g., [4, 20, 21], based on the Li-
ouville equation, [16]

∂tf
N +

N∑

i=1

vi · ∇xi
fN +

λ

N

N∑

i=1

∇vi
·
( N∑

j=1

r(xi, xj)(vj − vi)f
N

)
= 0. (3.2)

To this end, one study the marginal distribution fN(x1, v1, t) by integration of
(3.2) with respect to dx−dv− = dv2dx2 · · ·dvNdxN (to simplify the notations, we
now suppress the time-dependence whenever it is clear by the context, denoting
fN(x1, v1, · · · , xN , vN , t) = fN(x1, v1, · · · , xN , vN )). Since fN (·, ·) is rapidly de-
caying at infinity, the transport term in (3.2) amounts to

∫

R2d(N−1)

N∑

i=1

vi · ∇xi
fNdx−dv− = v1 · ∇x1f

N(x1, v1). (3.3)

2To simplify notations, we use the same fN to denote the marginal distribution of 2d + 1
varibales which is distinguished from its underlying distribution fN depending on 2Nd+1 variables.
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The corresponding integration of the forcing term in (3.2), yields

λ

N

N∑

i=1

∫

R2d(N−1)

N∑

j=1

∇vi
·
(
r(xi, xj)(vj − vi)f

N
)
dx−dv−

=
λ

N

∫

R2d(N−1)

∑

2≤j≤N

∇v1 ·
(
r(x1, xj)(vj − v1)f

N
)
dx−dv−.

But the symmetry of fN , (3.1b), implies that the integrals being summed above
are the same for j = 2, 3 . . . , N . Consequently, it will suffice to consider j = 2:

λ

N

N∑

i=1

∫

R2d(N−1)

N∑

j=1

∇vi
·
(
r(xi, xj)(vj − vi)f

N
)
dx−dv−

=
λ

N
(N − 1)

∫

R2d(N−1)

r(x1, x2)∇v1 ·
(
(v2 − v1)f

N
)
dx2dv2 · · · dxNdvN

=

(
λ− λ

N

)
∇v1 ·

(∫

R2d

r(x1, x2)(v2 − v1)g
Ndx2dv2

)
. (3.4)

Here gN is the two-particle marginal function

gN (x1, v1, x2, v2, t) :=

∫

R2d(N−2)

fNdx3dv3 · · · dxNdvN .

Thus, in view of (3.3) and (3.4), marginal integration of (3.2) over (x−, v−) implies
that the one-particle density function, fN (x1, v1, t), satisfies

∂tf
N + v1 · ∇x1f

N +

(
λ− λ

N

)
∇v1 ·

( ∫

R2d

r(x1, x2)(v2 − v1)g
Ndx2dv2

)
= 0.

We now take the mean-field limit N → ∞: we end up with the one- and two-particle
limiting densities, f := limN→∞ fN(x1, v1) and g := limN→∞ gN (x1, v1, x2, v2),
which satisfy

∂tf + v1 · ∇x1f + λ∇v1 ·
( ∫

R2d

r(x1, x2)(v2 − v1)gdx2dv2 = 0
)
. (3.5)

To close the above equation we make the “molecular chaos” assumption about the
independence of the two-point particle distribution,

g(x1, v1, x2, v2, t) = f(x1, v1, t)f(x2, v2, t);

Relabel, (x1, v1) 7→ (x, v) and (x2, v2) 7→ (y, v∗). We conclude that the one-particle
distribution function f(x, v, t) satisfies the Vlasov-type mean-field model,

∂tf + v · ∇xf + λ∇v ·Q(f, f) = 0, (3.6a)

Q(f, f)(x, v, t) :=

∫

R2d

r(x, y)(v∗ − v)f(x, v, t)f(y, v∗, t)dv∗dy. (3.6b)

Here, Q(f, f) is the quadratic interaction which can be expressed in the equivalent
form

Q(f, f)(x, v, t) = fL[f ], L[f ](x, v, t) :=

∫

R2d

r(x, y)(v∗ − v)f(y, v∗, t)dv∗dy.

(3.6c)
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3.2. A priori estimates. We begin our study with a series of a priori estimates
on the solution of the mean-field model (3.6), and the growth rate of the x and
v-support of f . We first set the linear and quadratic functions

ψ0(ξ) := ξ, ψi(ξ) := ξi i = 1, . . . , d, and ψd+1(ξ) := |ξ|2.
Let f be a classical solution to (3.6) with a rapid decay in phase space R

2d. A
straightforward integration of (3.6) yields

d

dt

∫

R2d

ψi(v)f(x, v)dvdx = λ

∫

R2d

∇vψi(v) ·Q(f, f)dvdx, (3.7a)

d

dt

∫

R2d

ψi(x)f(x, v)dvdx =

∫

R2d

∇x

(
ψi(x) · v

)
f(x, v)dvdx. (3.7b)

Using (3.7) we obtain

Proposition 3.1. Let f be a classical solutions decaying fast enough at infinity in
phase space. Then following macroscopic quantities associated with f , satisfy

d

dt

∫

R2d

vf(x, v)dxdv = 0; (3.8a)

d

dt

∫

R2d

|v|2f(x, v)dxdv = −λ
∫

R4d

r(x, y)|v − v∗|2f(x, v)f(y, v∗)dv∗dydvdx; (3.8b)

d

dt

∫

R2d

fp(x, v)dvdx = −dλ(p− 1)

∫

R4d

r(x, y)f(y, v∗)f
p(x, v)dv∗dvdydx. (3.8c)

Proof. Equality (3.8a) follows from (3.7a) with ψi(v) = vi,∫

R2d

∇vψi(v) ·Q(f, f)dvdx =

∫

R4d

r(x, y)(v∗i − vi)f(y, v∗)f(x, v)dv∗dydvdx = 0.

The last integral vanishes due to antisymmetry of the integrand, realized by the
interchange of variables (x, v) ↔ (y, v∗). The statement of (3.8b) follows from
(3.7a) with ψd+1(v) = |v|2, and observing that

∫

R2d

∇vψd+1(v) ·Q(f, f)dvdx = 2

∫

R2d

v ·Q(f, f)dvdx

= 2

∫

R4d

r(x, y)v · (v∗ − v)f(y, v∗)f(x, v)dv∗dydvdx

= −2

∫

R4d

r(x, y)v∗ · (v∗ − v)f(y, v∗)f(x, v)dv∗dydvdx

= −
∫

R4d

r(x, y)|v − v∗|2f(x, v)f(y, v∗)dv∗dydvdx.

Finally, we note the two identities, fp−1v · ∇xf ≡ 1
pv · ∇xf

p, and

fp−1∇v ·Q(f, f) ≡ ∇v ·
(L[f ]fp

p

)
+

(
1 − 1

p

)(
∇v · L[f ]

)
fp, Q(f, f) = fL[f ].

Integration of (3.6) against fp−1 then yields

d

dt

∫

R2d

fpdvdx = −p
∫

R2d

fp−1
(
v · ∇xf + λ∇v ·Q(f, f)

)
dvdx

= −λ(p− 1)

∫

R2d

(
∇v · L[f ]

)
fpdvdx

= −dλ(p− 1)

∫

R4d

r(x, y)f(y, v∗)f
p(x, v)dv∗dvdydx.
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Let f be a classical kinetic solution of (3.6). The statement of (3.8c) shows that
its L1(dxdv)norm, the total macroscopic mass is conserved in time (while according
to (3.8c), higher Lp(dxdv)-norms of f decay in time),

M0(t) :=

∫

R2d

f(x, v, t)dxdv ≡ M0. (3.9a)

Similarly, (3.8a) tells us that the total macroscopic momentum is conserved in
time,

M1(t) :=

∫

R2d

vf(x, v, t)dxdv ≡ M1. (3.9b)

Finally, (3.8b) tells us that the total amount of macroscopic energy is non-increasing
in time,

M2(t) :=

∫

R2d

|v|2f(x, v, t)dvdx ≤ M2(0). (3.9c)

Here, M0 := M0(0), M1 := M1(0) and 1
2M2(0) denote, respectively, the initial

amounts of mass, momentum and energy at t = 0. Next, we turn to the following
a priori bound on the kinetic velocity.

Lemma 3.2. Let [x(t), v(t)] be the particle trajectory issued from (x, v) ∈ supp(x,v)f0
at time 0. Then the i-component of velocity trajectory, vi(t) = vi(t; 0, x, v), i =
1, · · · , d, satisfies vi(t) ∈ (vℓ, vr) where,

vℓ := vi(0)e−λAM0t − J0

M0
(1 − e−λAM0t),

vr := vi(0)e−λM0Φ(t) + λAJ0

∫ t

0

e−λM0(Φ(t)−Φ(s))ds.

Here, Φ(t) :=
∫ t

0
ϕ(s)ds, M0 = ‖f0‖L1

x,v
is the initial total mass and J0 :=√

M0M2.

Proof. For given (x, v) ∈ suppx,vf0, we set x(s) ≡ x(s; 0, x, v) and v(s) ≡ v(s; 0, x, v).
Note that for each i = 1, · · · , d, we have

Li[f(x(t), v(t), t)] =

∫

R2d

r(x(t), y)(v∗i(t) − vi)f(y, v∗)dv∗dy (3.10)

= vi(t) +

∫

R2d

r(x(t), y)v∗if(y, v∗)dv∗dy −
(∫

R2d

r(x(t), y)f(y, v∗)dv∗dy
)
.

Lower and upper bounds for the kinetic velocities are obtained in terms of the
estimates,

ϕ(t)M0 ≤
∫

R2d

r(x(t), y)f(y, v∗)dv∗dy ≤ AM0,

∣∣∣
∫

R2

r(x, y)v∗f(y, v∗)dv∗dy
∣∣∣ ≤ A

√
‖f0‖L1

x,v

√
‖|v|2f0‖L1

x,v
= AJ0.

It then follows from (3.10) that

−λAM0vi(s) − λAJ0 ≤ d

dt
vi(t) = λLi[f(x(t), v(t), t)] ≤ −λϕ(t)M0vi(t) + λAJ0,

and the desired result follows by Gronwall’s integration.
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Remark 3.1. Let Ω(t) denote the v-projection of suppf(·, t),
Ω(t) := {v ∈ R

d : ∃ (x, v) ∈ R
2d such that f(x, v, t) 6= 0}. (3.11)

Lemma 3.2 shows that if f0(x, ·) is compactly supported, then suppf(x, ·, t) remains
finite, with a weak growth estimate for the velocity trajectory,

|vi(t)| ≤ max
{
η0 +

J0

M0
, η0 + λJ0t

}
≤ η0 +

J0

M0
+ λJ0t, η0 := max

v∈Ω(0)
|v|. (3.12)

3.3. Global existence of classical solutions. In this section we develop a global
existence theory for classical solutions of the Vlasov-type flocking equation,

∂tf + v · ∇xf + λ∇v ·
(
fL[f ]

)
= 0, x, v ∈ R

d, t > 0, (3.13a)

L[f ](x, v, t) =

∫

R2d

r(x, y)(v∗ − v)f(y, v∗, t)dv∗dy, r(x, y) =
A

(1 + |x− y|2)β
,

(3.13b)

subject to initial datum

f(x, v, 0) = f0(x, v). (3.13c)

We begin by noting that the kinetic solution f remains uniformly bounded. To
this end, rewrite the mean-field model (3.13) in a ’non-conservative’ form,

∂tf + v · ∇xf + λL[f ] · ∇vf = −λf∇v · L[f ], x, v ∈ R
d, t > 0. (3.14)

Consider the particle trajectories, [x(t), v(t)] ≡ [x(t; t0, x0, v0), v(t; t0, x0, v0)], pass-
ing through (x0, v0) ∈ R

d × R
d at time t0 ∈ R+,

d

dt
x(t) = v(t),

d

dt
v(t) = λL[f(x(t), v(t), t)]. (3.15)

Noting that −∇v · L[f ] = d
∫

R2d r(x, y)f(y, v∗, t)dv∗dy, we find

‖∇v · L[f ]‖L∞

x,v
≤ dA‖f‖L1

x,v
= dAM0,

which implies that the following inequality holds along the particle trajectories,

d

dt
f(x(t), v(t), t) ≤ λdAM0f(x(t), v(t), t).

It follows that as long as initial data f0 has a finite mass, there will be no finite
time blow-up for f(·, t),

‖f(t)‖L∞

x,v
≤ eλdAM0t‖f0‖L∞

x,v
. (3.16)

Next, we turn to study the smoothness of f(·, t). Since the local existence theory
will be followed from the standard fixed point argument, e.g., [4], we only obtain a
priori C1-norm bound of f to conclude a global existence of classical solutions.

Theorem 3.3. Consider the flocking kinetic model (3.13). Suppose that the initial
datum f0 ∈ (C1 ∩W 1,∞)(R2d) satisfies

1. Initial datum is compactly supported in the phase space, supp(x,v)f0(·) is
bounded, and in particular, Ω(0) ⊂ Bη0(0).

2. Initial datum is C1-regular and bounded:
∑

0≤|α|+|β|≤1

‖∇α
x∇β

vf0‖L∞

x,v
<∞.
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Then, for any T ∈ (0,∞), there exists a unique classical solution f ∈ C1(R2d ×
[0, T )).

Proof. We express the non-conservative kinetic model (3.14) in terms of the non-
linear transport operator ∂t + v · ∇x + λL[f ] · ∇v,

T f = −λf∇v · L[f ], T := ∂t + v · ∇x + λL[f ] · ∇v. (3.18)

We claim that there exist (possibly different) positive constants,
C = C(d, λ,M0, J0) > 0, such that

|T (f)| ≤ C|f |, (3.19a)

|T (∂xi
f)| ≤ C

(
|f | + (η(t) + 1)|∇vf | + |∂xi

f |
)
, η(t) := max

v∈Ω(t)
|v|, (3.19b)

|T (∂vi
f)| ≤ C

(
|∂xi

f | + |∇vf |
)
. (3.19c)

To verify these inequalities, observe that by (3.18)

T (f) = −λf∇v · L[f ] = λd

∫

R2d

r(x, y)f(y, v∗, t)dv∗dy

and (3.19a) follows with C := λdAM0 ≥ λ‖∇v · L[f ](t)‖L∞

x,v
.

Next, differentiating (3.18) we obtain

T (∂xi
f) = −λ(∂xi

L[f ]) · ∇vf − λ(∂xi
∇v · L[f ])f − λ(∇v · L[f ])∂xi

f.

Straightforward calculation yields

∂xi
L[f ] = −

∫

R2d

2βA(xi − yi)

(1 + |x− y|2)β+1
(v∗ − v)f(y, v∗, t)dv∗dy,

and since the variation of the relevant kinetic velocities at time t does not exceed
|v − v∗| ≤ 2η(t), we find ‖∂xi

L[f ](t)‖ ≤ 4βAη(t)M0; similarly, for

∂xi
∇v · L[f ] =

∫

R2d

2βAd(xi − yi)

(1 + |x− y|2)β+1
f(y, v∗, t)dv∗dy,

we have

‖∂xi
∇v · L[f ](t)‖L∞

x,v
≤ 2βdAM0.

We conclude that (3.19b) holds with, say, C = λdAM0(1 + 2β + 4βη(t)).

Finally, we differentiate (3.18) with respect to vi (noting that ∂vi
∇v · L[f ] = 0)

T (∂vi
f) = −λ∂xi

f − λ(∂vi
L[f ]) · ∇vf − λ(∇v · L[f ])∂vi

f ;

Straightforward calculation then yields,

∂vi
L[f ] = −

∫

R2d

r(x, y)f(y, v∗, t)dv∗dy 7→ ‖∂vi
L[f ](t)‖L∞

x,v
≤ M0,

and (3.19c) follows with C = λ+ λ(d + 1)AM0.
Now, let F(t) measure the W 1,∞-norm of f(·, t)

F(t) :=
∑

0≤|α|+|β|≤1

‖∇α
x∇β

vf(t)‖L∞

x,v
.

The inequalities (3.19) imply

d

dt
F(t) <∼

(
η(t) + 1

)
F(t).
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Lemma 3.2 (see remark 3.1), tells us that η(t) <∼ η0 + t, and we end up with the
energy bound

F(t) ≤ F(0)eC(t+t2), C = C(η0,M0, J0, β, d, A).

Equipped with this a priori W 1,∞ estimate, standard continuation principle yields
a global extension of local classical solutions.

Remarks.

1. The above a priori estimate need not be optimal. Since we used a rough
estimate (3.12) for the size of Ω(t),

max
v∈Ω(t)

|v| <∼ η0 + t,

we end with the quadratic exponential growth, eC(t+t2). An optimal bound,
however, could be eCt. Of course, one cannot expect a uniform bound for C1-
norm, because the one-particle distribution function may grow exponentially
along the particle trajectory (see (3.16)).

2. The global existence of classical solution can be improved for more general
kernels.

3. For related works on kinetic granular type dissipative systems, we refer to
[13, 14, 15].

4. Time-asymptotic behavior of kinetic flocking. In this section, we present
the time-asymptotic flocking behavior of the kinetic model for flocking (3.13). As in
the case with particle description discussed in Section 2, we will show that the veloc-
ity of particles will be contracted to the mean bulk velocity uc, which corresponds
to the velocity at the center of mass:

uc(t) :=
1

M0

∫

R2d

vf(x, v, t)dvdx, uc(t) ≡ uc(0).

We recall that the energy decay in (3.8b)

d

dt
M2(t) ≤ 0. (4.1)

We note that unlike granular flows, for example, e.g. [4], the energy decay (4.1)
does not drive the energy to zero: if the initial momentum M1 6= 0, then the
kinetic energy M2(t) has a nonzero lower bound, in analogy with the discrete case,
consult remark 2.1. Indeed, since the total mass and momentum are conserved,
Mi(t) ≡ Mi, i = 0, 1, (3.8b) implies

d

dt
M2(t)

≥ −A
∫

R2d

|v − v∗|2f(x, v)f(y, v∗)dv∗dydvdx = −2AM0M2(t) + 2A|M1|2,

and Gronwall’s lemma yields the following kinetic analog of (2.4c),(2.5)

M2(t) ≥ M2(0)e−2AM0t +
|M1|2
M0

(1 − e−2AM0t) ≥ |M1|2
M0

. (4.2)

Thus, energy decay by itself does not assert flocking. As in the particle de-
scription, the emergence of the time-asymptotic flocking behavior depends on the
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sufficiently slow decay rate of the interparticle interaction ϕ(s) = r(x(s), y(s)). To
this end, we let Σ denote the x-projection of suppf(·, t)

Σ(t) := {x ∈ R
d : ∃ (x, v) ∈ R

2d such that f(x, v, t) 6= 0}, (4.3)

and denote its initial size, ζ0 := maxx∈Σ0 |x|.

Lemma 4.1. Let f be a global classical solution to (3.13). Then, there exists a
κ3 > 0 such that ϕ(t) = inf(x,y)∈Σ(t) r(x, y) satisfies

ϕ(t) ≥ Aκ−β
3 (1 + t2 + t4)−β . (4.4)

The constant κ3 is given by

κ3 := max
{

1 + 12ζ2
0 , 12

(
η0 +

J0

M0

)2

, 3λ2J2
0

}
.

Proof. Let (x, v) ∈ suppx,vf0. It follows from remark 3.1 that

|vi(t)| ≤ η0 +
J0

M0
+ λJ0t, (4.5)

and hence

|xi(t; 0, x, v)| ≤ |xi| +
∫ t

0

|vi(s; 0, x, v)|ds ≤ ζ0 +
(
η0 +

J0

M0

)
t+

λJ0t
2

2
.

This gives an estimate on the size of x-support Σ(t) of f . For x, y ∈ Σ(t),

ζ(t) ≤ 1 + |x− y|2 ≤ 1 + 2(|x|2 + |y|2)
≤ 1 + 4

[
ζ0 +

(
η0 +

J0

M0

)
t+

λJ0t
2

2

]2

≤ 1 + 12ζ2
0 + 12

(
η0 +

J0

M0

)2

t2 + 3λ2J2
0 t

4

≤ κ3(1 + t2 + t4),

and (4.4) follows, ϕ(t) ≥ r(ζ(t)).

Let v− uc denote the fluctuation (or peculiar) kinetic velocity. We will quantify
the emergence of the time-asymptotic flocking behavior in term of the corresponding
energy fluctuation

Λ[f(t)] :=

∫

R4d

|v − uc|2f(x, v, t)dvdx. (4.6)

The time-evolution estimate of Λ[f(t)], will depends on the decay rate of ϕ(t).
Let f be a classical solution of (3.13) with compact support in x and v. Direct

calculation implies

d

dt
Λ[f(t)] =

∫

R2d

|v − uc|2∂tf(x, v)dvdx

= −
∫

R2d

|v − uc|2v · ∇xfdvdx− λ

∫

R2d

|v − uc|2∇v ·Q(f, f)dvdx

=: I1 + I2.

The first term on the right vanishes by the divergence theorem

I1 = −
∫

R2d

|v − uc|2v · ∇xfdvdx = −
∫

R2d

divx

(
|v − uc|2vf

)
dvdx = 0.
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The second term is simplified as follows.

I2 = 2λ

∫

R2d

(v − uc) ·Q(f, f)dvdx

= −2λ

∫
r(x, y)(v − uc) · (v − v∗)f(y, v∗)f(x, v)dv∗dvdydx

= −2λ

∫
r(x, y)v · (v − v∗)f(y, v∗)f(x, v)dv∗dvdydx

= −λ
∫
r(x, y)|v − v∗|2f(y, v∗)f(x, v)dv∗dvdydx.

We summarize the last three equalities in the following lemma.

Lemma 4.2. Let f be a classical solution of (3.13) subject to compactly supported
initial conditions f0. Then, the decay of the energy functional Λ[f(t)] in (4.6) is
governed by

d

dt
Λ[f(t)] = −λ

∫
r(x, y)|v − v∗|2f(y, v∗)f(x, v)dv∗dvdydx. (4.7)

Equipped with lemma 4.2 we can state the main result of this section.

Theorem 4.3. Let f be the classical kinetic solution constructed in Theorem 3.3.
Then, the decay of its energy fluctuation around the mean bulk velocity uc, is given
by

Λ[f(t)] <∼ Λ[f0] ×





C3e
−κ4t1−4β

, 0 ≤ β < 1
4 ,

(1 + t)−κ5 , β = 1
4 .

(4.8)

The constants involved are κ4 = 1/(3κ3)
β(1 − 4β) > 0 and κ5 = 2λA/ 4

√
3κ3 > 0.

Proof. Lemma 4.2 implies

d

dt
Λ[f(t)] = −λ

∫

R4d

r(x, y)|v − v∗|2f(y, v∗)f(x, v)dv∗dvdydx

≤ −λϕ(t)

∫

R4d

|v − v∗|2f(y, v∗)f(x, v)dv∗dvdydx. = −2λϕ(t)M0Λ[f(t)].

As before, the identity |v−v∗|2 = |v−uc|2 + |v∗−uc|2 +2(v−uc) · (v∗−uc) induces
the corresponding decomposition of the integrand on the right. Noting that

∫

R2d

(v − uc)f(x, v, t)dvdx = 0.

We conclude
d

dt
Λ[f(t)] ≤ −2λϕ(t)M0Λ[f(t)]

and Gronwall’s integration yields

Λ[f(t)] ≤ Λ[f0]e
−2λΦ(t), Φ(t) =

∫ t

0

ϕ(s)ds. (4.9)

We distinguish between two cases.

Case 1 [0 ≤ β < 1
4 ]. According to Lemma 4.1

ϕ(t) ≥ Aκ−β
3 (1 + t2 + t4)−β ≥ A(3κ4)

−βt−4β , t ≥ 1.
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We compute for t ≥ 1,

−Φ(t) <∼ −
∫ t

1

ϕ(τ)dτ ≤ − A

(3κ4)β(1 − 4β)
(t1−4β − 1)

which yields the first part of (4.8).

Case 2 [β = 1
4 ]. For t ≥ 1 we have

exp
(
− 2λAΦ(t)

)
≤ exp

(
− 2λ ln t

(3κ4)1/4

)
<∼ (1 + t)

− 2λA
4
√

3κ4 ,

and the second part of (4.8) follows.

5. From kinetic to hydrodynamic description of flocking. In this section we
discuss the hydrodynamic description for flocking, which is formally obtained by
taking moments of the kinetic model (3.13) .

∂tf + v · ∇xf) + λ∇v ·Q(f, f) = 0, x, v ∈ R
d, t > 0, (5.1a)

Q(f, f)(x, v, t) =

∫

R2d

r(x, y)(v∗ − v)f(x, v, t)f(y, v∗, t)dv∗dy. (5.1b)

We first set hydrodynamic variables: the mass ρ :=
∫

Rd fdv, the momentum,

ρu :=
∫

Rd vfdv, and the energy, ρE := 1/2
∫

Rd |v|2fdv, which is the sum of kinetic
and internal energies (corresponding to the first two terms in the decomposition of
kinetic velocities |v|2 = |u|2 + |v − u|2 + 2(v − u) · u)

ρE = ρe+
1

2
ρ|u|2, ρe :=

1

2

∫
|v − u(x)|2f(x, v, t)dv. (5.2)

For notational simplicity, we suppress time-dependence, denoting ρ(x) ≡ ρ(x, t),
u(x) ≡ u(x, t) and E(x) = E(x, t) when the context is clear.

We compute the v-moments of (5.1): multiply (5.1) against 1, v and |v|2/2 and
integrate over the velocity space R

d. We end up with the system of equations,

∂tρ+ ∇x · (ρu) = 0, (5.3a)

∂t(ρu) + ∇x ·
(
ρu⊗ u+ P

)
= S(1), (5.3b)

∂t(ρE) + ∇x ·
(
ρEu+ Pu+ q

)
= S(2). (5.3c)

Here, S(j), j = 1, 2, are the nonlocal source terms given by

S(1)(x, t) := −λ
∫

Rd

r(x, y)(u(x) − u(y))ρ(x)ρ(y)dy, (5.3d)

S(2)(x, t) := −λ
∫

Rd

r(x, y)
[
E(x) + E(y) − u(x) · u(y)

]
ρ(x)ρ(y)dy, (5.3e)

and P = (pij), q = (qi) denote, respectively, the stress tensor and heat flux vector,

pij :=

∫

Rd

(vi − ui)(vj − uj)fdv, qi :=

∫

Rd

(vi − ui)|v − u|2fdv. (5.3f)

Remark 5.1. The total mass of the source term S(1) vanishes: exchange of variables
x↔ y yields

∫

Rd

S(1)(x, t)dx = −λ
∫

R2d

r(x, y)(u(x) − u(y))ρ(x)ρ(y)dxdy = 0. (5.4a)
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The source term S(2) is non-positive: using (5.2) we find

S(2)(x, t) = −λ
∫

Rd

r(x, y)
[1

2
|u(x) − u(y)|2 + e(x) + e(y)

]
ρ(x)ρ(y)dy ≤ 0. (5.4b)

We conclude that the total mass and momentum,
∫
ρ(x, t)dx and

∫
ρ(x, t)u(x, t)dx,

are conserved in time. The total energy, however,

E(t) =

∫

Rd

ρ(x, t)E(x, t)dc =
1

2

∫

R2d

|v|2f(x, v, t)dvdx,

is dissipating, which is responsible for the formation of time-asymptotic flocking
behavior. We turn to quantify this decay. We first write the total energy as the sum
of total kinetic and potential energies corresponding to (5.2), E(t) = Ek(t) + Ep(t),
where

Ek(t) :=
1

2

∫

Rd

ρ(x, t)|u(x, t)|2dx, Ep(t) :=
1

2

∫

R2d

|v − u(x, t)|2fdvdx.

Lemma 5.1. The time evolution of the total, kinetic and internal energies is gov-
erned by

d

dt
E(t) = −λ

∫

R2d

r(x, y)
[1

2
|u(x) − u(y)|2 + e(x) + e(y)

]
ρ(x)ρ(y)dydx; (5.5a)

d

dt
Ep(t) = −λ

∫

R2d

r(x, y)
(
e(x) + e(y) − u(x) · u(y)

)
ρ(x)ρ(y)dydx

−2

∫

Rd

(∇x · u)ρedx; (5.5b)

d

dt
Ek(t) = −λ

2

∫

R2d

r(x, y)
(
|u(x)|2 + |u(y)|2

)
ρ(x)ρ(y)dxdy

+2

∫

Rd

(∇x · u)ρedx. (5.5c)

Proof. The equality (5.5a) follows from integration of (5.3c) and invoking (5.4b).
For the decay rate of the total internal energy Ep(t) in (5.5b), we calculate

d

dt
Ep(t) =

∫

R2d

∂t

( |v − u|2
2

)
fdvdx+

∫

R2d

|v − u|2
2

∂tfdvdx =: K1 + K2.

We estimate Ki separately. The first term, K1 vanishes, for

K1 =

∫

R2d

(u − v) · ∂tufdvdx =

∫

R2d

u · ∂tufdvdx−
∫

R2d

∂tu · (vf)dvdx

=

∫

Rd

u · ∂tuρdx−
∫

Rd

∂tu · (ρu)dx = 0.

For the second term, K2, we use the kinetic model to find

K2 =
1

2

∫

R2d

|v − u|2∂tfdvdx = −1

2

∫

R2d

|v − u|2
(
v · ∇xf + λ∇v ·Q(f, f)

)
dvdx

= −1

2

∫

R2d

|v − u|2v · ∇xfdvdx+ λ

∫

R2d

(v − u) ·Q(f, f)dvdx =: K21 + λK22.

The term K21 amounts to

K21 = −1

2

∫

R2d

|v − u|2v · ∇xfdvdx =
1

2

∫

R2d

(
∇x|v − u|2

)
· (vf)dvdx

= −
∫

R2d

(v − u) ·
(
(∇x · u)vf

)
dvdx = −2

∫

Rd

(∇x · u)(ρe)dx.
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A lengthy calculation shows that the remaining term, K22, equals

K22 =

∫

R4d

r(x, y)(v − u(x)) · (v∗ − v)f(x, v)f(y, v∗)dv∗dvdydx

=

∫

R4d

r(x, y)v · (v∗ − v)f(x, v)f(y, v∗)dv∗dvdydx

−
∫

R4d

r(x, y)u(x) · (v∗ − v)f(x, v)f(y, v∗)dv∗dvdydx

= −1

2

∫

R4d

r(x, y)|v − v∗|2f(x, v)f(y, v∗)dv∗dvdydx

+
1

2

∫

R2d

r(x, y)
(
|u(x) − u(y)|2

)
ρ(x)ρ(y)dydx

= −
∫

R2d

r(x, y)
(
E(x) + E(y) − 1

2
|u(x) − u(y)|2

)
ρ(x)ρ(y)dydx

= −
∫

R2d

r(x, y)
(
e(x) + e(y) + u(x) · u(y)

)
ρ(x)ρ(y)dydx

Finally (5.5c) follows by subtracting (5.5b) from (5.5a).

Next, we present a fundamental estimate for the flocking behavior to the system
(5.3). We set

Γ(t) :=

∫

R2d

(1

2
|u(x) − u(y)|2 + e(x) + e(y)

)
ρ(x)ρ(y)dydx. (5.6)

The functional Γ(t) can be expressed in terms of the moments Mi in (3.9) (corre-
sponding to the splitting of its integrand 1

2 |u(x)−u(y)|2 +e(x)+e(y) ≡ ρ(x)E(x)+
ρ(y)E(y) − u(x) · u(y)),

Γ(t) ≡ 2E(t)M0 − |M1|2, E(t) =
1

2
M2(t).

Since Mi, i = 0, 1 are constants, this reveals that Γ(t) is essentially the total energy.
We arrive at the main theorem of this section.

Theorem 5.2. Assume (ρ, u, e) is a smooth solution of the system (5.3), (ρ, u, e) ∈
C1(Rd × [0, T )). Then we have

Γ(t) ≤ Γ(0)e−2M0λΦ(t), Φ(t) =

∫ t

0

ϕ(s)ds, ϕ(s) := inf
(x0,y0)

r
(
x(s), y(s)

)
ds.

Here, M0 is the initial total mass, M0 = ‖ρ0‖L1 and the infimum is taken over all
particle trajectories, (x0, y0) 7→ (x(s), y(s)).

Proof. We use (5.5a) and the relation Γ(t) = 2E(t)M0 − |M1|2 to find

d

dt
Γ(t) = −λM0

∫
R2d r(x, y)

(
|u(x) − u(y)|2 + 2e(x) + 2e(y)

)
ρ(x)ρ(y)dydx(5.7)

≤ −λM0ϕ(t)
∫

R2d

(
|u(x) − u(y)|2 + 2e(x) + 2e(y)

)
ρ(x)ρ(y)dydx

= −2λM0ϕ(t)Γ(t).

Gronwall’s inequality then yields the desired result.

We conclude that whenever the interparticle interaction, ϕ(s) = inf r(x(s), y(s))
decays slowly enough so that its primitive, Φ(t), diverges, then flocking occurs,
ρ(x)ρ(y)|u(x, t) − u(y, t)| → 0, in agreement with the flocking behavior of the C-S
particle model, consult remark 2.2. It is remarkable that the emergence of flocking
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is deduced here independently of the constitutive relation for P . In this context we
observe that energy dissipation, driven by the negative source term S(2) in (5.3c)
vanishes as t→ ∞. Indeed, theorem 5.2 tells us that by (5.4b),

|S(2)| ≤ AΓ(t) → 0.

6. Epilogue: flocking dissipation and entropy. We have seen that the self-
propelled flocking dynamics is driven by energy dissipation. The dissipation mech-
anism reveals itself through energy decay in the particle description (2.7), in the
kinetic description (3.8b) and equivalently, in the hydrodynamic description (5.7).
Observe that,

Γ(t) = M2M0 − |M1|2 ≥ 0. (6.8)

The right of (6.8) is the usual Cauchy-Schwartz inequality
∣∣∣
∫

R2d

vf(x, v)dvdx
∣∣∣
2

≤
∫

R2d

|v|2f(x, v)dvdx ×
∫

R2d

f(x, v)dvdx.

Thus, by theorem 5.2, Φ(t) → ∞ implies time asymptotic flocking by letting Γ(t) →
0 which in turn, enforces an approximate Cauchy-Schwartz equality. It then follows
that v approaches the bulk velocity, v → uc as t→ ∞. We refer to this mechanism
as flocking dissipation. It is intimately related to the entropy increase in the kinetic
model (3.6). To this end we compute

d

dt

∫

R2d

f log(f)dxdv = −λ
∫

R4d

r(x, y)∇v log(f) · (v − v∗)ff∗dv∗dvdydx

= −λ
∫

R4d

r(x, y)∇vf · (v − v∗)f∗dv∗dvdydx

= λ

∫

R4d

r(x, y)ff∗dv∗dvdydx = λ

∫

R4d

r(x, y)ρ(x)ρ(y)dydx.

This is a reversedH-theorem. Entropy increases due to the “improbable” statistical
behavior of particles with increasingly highly correlated velocities, as they flock
towards particle-independent bulk velocity.
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[18] J. K. Parrish, S. V. Viscido and D. Grünbaum, Self-orgainzed fish schools: an examination

of emergent properties, The Biological Bulletin, 202 (2002), 296–305.
[19] B. L. Partridge, The structure and function of fish schools, Sci. Am., 246 (1982), 114.
[20] G. Russo and P. Smereka, Kinetic theory for bubbly flow. II. Fluid dynamic limit, SIAM J.

Appl. Math., 56 (1996), 358–371.
[21] G. Russo and P. Smereka, Kinetic theory for bubbly flow. I. Collisionless case, SIAM J. Appl.

Math., 56 (1996), 327–357.
[22] E. Shaw, Schooling fishes, American Scientist, 66 (1978), 116.
[23] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68

(2007/8), 694–719.
[24] J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical

Review E., 58 (1998), 4828–4858.
[25] C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model

for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174.
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