Geometric control of kinetic pathways: Characterizing equilibrium in epitaxial growth
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Using a kinetic model of epitaxial growth, we describe how geometry controls kinetic pathways
through which external deposition influences the state of a vicinal surface. Three key, experimentally
adjustable parameters, the local step angle 6, Péclet number P, and single bond detachment rate d,
determine the state of the surface. By scaling arguments in P, we find three steady state regimes:
In one regime, detailed balance approximately holds, so that the system is near equilibrium. In the
other two regimes, geometric effects compete with deposition as the system is driven progressively
out of equilibrium. Our analytical results are in excellent agreement with those of kinetic Monte

Carlo simulations.

PACS number(s):

Epitaxial growth involves a competition between
certain atomistic processes that disrupt detailed balance
(DB) and others that tend to restore equilibrium [1].
In many systems, changing the local geometry activates
kinetic pathways, thereby controlling how easily equi-
librium can be reached. For example, the rates of some
chemical reactions are increased by atomic defects that
break the planar symmetry on platinum surfaces [2, 3].

In epitaxial systems, changes to the large scale mor-
phology are driven in part by processes analogous to
chemical reactions, namely, bond formation and break-
ing associated with attachment and detachment of atoms
at step edges. [4, 5]. From this perspective, it is natu-
ral to ask: when is a crystal surface near equilibrium,
and what role does the microscopic step geometry play
in determining how far the system is from equilibrium?

Our goal in this Letter is to provide a criterion, in the
context of a tractable model, that indicates when an epi-
taxial system is near equilibrium, as opposed to other
kinetic steady states. Specifically, we address two tasks:
(i) we define the state of the system (equilibrium or not)
by means of analytical expressions for the kink density
(number of atomic defects per unit length of a step);
and (ii) we show how experimentally adjustable param-
eters, e.g. the local step angle # and the Péclet number
P x F/D., can control what state the system is in (F is
the external deposition rate, and D, is a diffusivity asso-
ciated with atomic motion at a step). In particular, we
show how increasing 6 favors a return to equilibrium by
creating additional kinks for adatoms to attach to.
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FIG. 1. Schematic of step geometry. The symbols ¢ and
kr (ki) are the densities of edge adatoms and right (left) facing
kinks, respectively. The local step angle is 6.

Our work is motivated by the issue of how accurately
experimental surface systems can be described by near-
equilibrium theories based on the celebrated Burton-
Cabrera-Frank (BCF) model [5-8]. By starting with a
more general kinetic model, which contains information
about kinks, we aim to provide some insight into the con-
ditions necessary for the validity of BCF-type theories.

We adopt a modified version of the mean field, step-
edge model in [9, 10], which describes surfaces in and out
of equilibrium see also [11] for related works). Features of
our model are depicted in Fig. 1, which shows two steps
separated by a terrace on a typical crystal surface [4, 5].
The steps have atomic height a, and atoms are deposited
on the surface at rate F. Adsorbed atoms (adatoms)
diffuse on terraces, and may attach to and detach from
step edges [5]. For our present purposes, it suffices to
study a single step on a simple cubic lattice. At a step
edge, we distinguish between edge, kink, and boundary
adatoms, which have one, two and three nearest in-plane
neighbors, respectively. The densities of edge and kink
adatoms are ¢ and k. Kinks can be right or left facing,
with densities k, and k; (cf. Fig. 1).
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FIG. 2. Top down view of the processes by which a step
moves locally. The symbol Q4 (€_) denotes the upper (lower)
terrace at a step edge. Starting from the top and going
clockwise, the coordination numbers for these processes are
c1 = c2 = c3 = 2; cf. Egs. (2) and (3).

Morphological changes to the surface occur via step
motion, which in turn results from atomistic processes
that create and destroy kinks [4]. Specifically, to advance
a step locally, an edge adatom must either (i) attach to an
existing kink, (ii) form a left-right kink pair by attaching
to another edge adatom, or (iii) annihilate a right-left
kink pair (cf. Fig. 2) [9, 10]. The reverse processes cause
steps to retreat.

We identify equilibrium as the state in which detailed
balance (DB) holds for all atomistic processes causing
step motion [12, 13]. By detailed balance, we mean that
the net rate of any process (the product of a single par-
ticle transition rate and the density of atoms eligible to
make that transition) equals the net rate of its reverse
process [9, 14]. The kink density plays a central role in
determining when the system is near equilibrium, since
k connects kinetic processes to the local step geometry.

Therefore, we begin our analysis by writing

ke +k =k, k, —k =a 'tan, (1)

Assuming that steps are straight on average, we take 6
to be spatially constant along the step edge. We also
take the edge adatom (¢) and kink (k) densities to be
spatially constant, so that they obey

Oip = FL + c1(a?Dyk — a™ ' D ¢k), (2)
Otk = coa"Y(De¢®— Dk k) +cs(a™3Dy— Dok ky), (3)

where L is the average terrace width, and D., Dy, and
Dy are the diffusivities of edge, kink, and boundary
adatoms [9, 10]. The constants ¢, co, and c3 are co-
ordination numbers measuring the number of pathways
by which edge adatoms and kinks can be created or
destroyed (cf. Fig. 2).

Equations (2) and (3) are simplified versions of the
evolution equations given in [9, 10]. The right-hand side
of Eq. (2) states that (i) all deposited adatoms move to
a step edge (via the term FL), (ii) atoms detach from
kink sites with probability k at a rate Dy, and (iii) edge
adatoms attach to kink sites with probability ¢k at a rate
D.. The term ¢; in Eq. (2) indicates that the processes of
adatom detachment-attachment at a kink site occur by
¢y different pathways. Equation (3) and the coefficients
¢y and c¢3 can be interpreted similarly (cf. Fig. 2).

We assume that the diffusion coefficients [15] are
Dy = Drexp(—E¢/kpT), (4)

where D7 is the diffusion coefficient for adatoms on a ter-
race, £ = e, k, or b for edge, kink, or boundary adatoms,
and Ey = ngFEyond; Ebond is the energy of a single atomic
bond, and n, is the number of nearest in-plane neighbors
of a given adatom type [4, 9]. Note that ny = 1,2 or 3 for
{ =-e,k, or b. We also define the single bond detachment
rate d = Dk/De = Db/Dk = eXp(fEbond/k'BT).

We look for steady states by setting the time deriva-
tives equal to zero in Egs. (2) and (3), so that

P = ¢ (a®¢k — adk), (5)
coa®(dk Ky — ¢%) = c3(d® — a® Pk, ky). (6)

The parameter P = aLF/(D./a?) represents a compe-
tition between two atomistic processes; the numerator,
aLF, is the flux of deposited adatoms arriving at a step
edge, which drives the system out of equilibrium, since it
violates DB [14]. The denominator, D./a?, is the rate
at which edge adatoms diffuse (i.e., hop) along a step
edge. This diffusion is the fastest process by which the
system may re-equilibrate. Hence, P should help control
how close the system is to equilibrium. In this study we
assume that P < 1 and d < 1, which corresponds to a
regime in which the adatom density ¢ is low.

We begin by considering the case F' =0 (i.e., P = 0),
so that Egs. (5) and (6) imply ¢ = d/a and k.k; = d/a®.
Then, by Eq. (1),

k= a"'(tan? 0 + 4d)'/2. (7)

This is an equilibrium solution, since it satisfies DB; i.e.,
Dkk = aDe(bk, Degf)Q = Dkkrkl, and Db = CLBDe(bkrkl
(cf. Egs. (2) and (3)).

In Eq. (7), the terms in parentheses reveal two distinct
sources of kinks. The term a2tan?60 = (k. — k;)?
corresponds to geometric kinks; these arise solely from
the non-zero step angle and all face the same direction
(for example, if 6 > 0, then k, > k;, and geometric kinks
are right facing). The term 4d is associated with thermal
kinks, which are created when adatoms detach from
kinks or edges and attach to each other. Thermal kinks
always come in left-right pairs and do not contribute to
the average step angle. When the single bond energy
becomes large (d — 0), detachment processes rarely
occur, and the equilibrium kink density is given by the
geometric kink density (k — |tan8|/a).

For nonzero P, it is convenient to rescale variables,
letting | = ak/d'/?, ¢ = P/d*/?, and 1 = tan()/d"/?.
Algebraic manipulations of Egs. (5) and (6) then yield

C% [03 + 62] 4 + clcgql?’ — C? [03 + 02] (4 + 7/]2)[2
A [C3¢2 + 862] gl — 4eag® = 0. (8)
This fourth-order algebraic equation for { (i.e., for k) can

be solved exactly, but we resort to approximations that
are more useful for physical interpretation. There are



three distinct regimes in which the solution to Eq. (8)
may be simplified: (i) ¢ < (1+2)Y?; (ii) 14+92)/? <«
q < (1+42)3/2; and (i) (1 +¢?)3/2 < ¢. Note that
regime (ii) only exists if 1 < |¢|, so that it could be
rewritten as (ii’) || < ¢ < [¢|>. The kink density
k solving Eq. (8) is found approximately in these three
regimes to be

k~ a"!(tan? 0 + 4d)"/2,
k~a ' tan6)|,

~ a"Mde P/(caes)]?,

P < d(d+tan?0)Y/? (9)
d|tanf| < P < |tan6® (10)
(d+tan?6)%/? < P. (11)

In Eq. (9), the kink density is approximately equal to
the value given by Eq. (7); corrections to Eq. (9) are
of order P. We call this the “near-equilibrium” (NE)
regime, since DB is approximately satisfied; indeed the
dominant balance in Eq. (5) is a?¢k ~ adk > P.

Equation (11) corresponds to a state in which infor-
mation about the step angle 6 is lost; the kink density
is entirely determined by the Péclet number. Since the
presence of P in Eq. (11) implies that deposition deter-
mines the kink density, we call this regime the “flux dom-
inated steady state” (FDSS). DB is lost in this kinetic
steady state. The flux to the edge is balanced by flux of
edge adatoms to kinks. The creation of kink pairs from
two edge adatoms is balanced by the hopping of an edge
adatom to fill in a single missing atom in the edge (a kink
pair), as illustrated in Fig. 2; i.e., Egs. (5) and (6) imply

c1a’gk =~ P, (12)
c2¢? & cgadk, k. (13)

In the intermediate regime governed by Eq. (10), which
we call the “angle-dominated steady state” (ADSS), kinks
are predominantly geometric. For example, if § > 0, then
k. > ki, so that k, ~ a~![tanf|. A higher order cor-
rection yields k; ~ a~tca P/(cic3 tan? §). This correction
term for the ADSS is determined by the dominant kinetic
balances, Egs. (12) and (13) as in the FDSS.

Although the ADSS does not satisfy DB, it may be
interpreted as an extension of the NE regime: the ADSS
amounts to an increase (relative to the NE regime) of
the range of d and P values for which the kink density is
approximately independent of the deposition rate. As d
decreases (keeping P, 6 # 0 fixed) in the NE regime, the
system transitions continuously from NE to the ADSS
(cf. Fig. 3). If instead P and d are held fixed, increasing
6 can eliminate the flux dependence of k (cf. Fig. 4).

The ADSS kink density is controlled by the step an-
gle alone (and not P or d) because geometric kinks in-
hibit the formation of left-right kink pairs. This can be
seen by considering the length @ = a/tanf and time
t = @?/D,, which are the average length between geomet-
ric kinks and the average time for a single edge adatom
to traverse the distance a. Rewriting the ADSS condition
P < |tan3 0| (cf. Eq. (10)) in the form < (aLF)~! and
noting that 1 < |¢| is equivalent to t < a?/Dy, < a?/Dy
suggests that an edge adatom attaches to an adjacent ge-
ometric kink long before another edge adatom is created

e e = e = e - M K-

0.1} <X

; ’-$.-X.--x--x--x---x—--x—--x--—x--
| IB“'-'SO L

| L | L L
10? 10* . 10° 10°
FIG. 3. KMC-simulated kink densities (symbols with error
bars) versus Egs. (9) and (10) (solid and dash-dot lines, re-
spectively). The slanted dashed line indicates the approxi-
mate boundary between the NE and ADSS regimes; it is the
solution to P = d|tan|. We fixed P = 107 ° for these sim-

ulations. The ADSS kink density exhibits the same behavior
as the NE kink density taken in the limit d — 0.

within a distance a by either deposition or detachment.
Thus, in the ADSS, geometric kinks shield edge adatoms
from each other, so that left-right pairs rarely form.

In order to test our analytical results, we performed
kinetic Monte Carlo (kMC) simulations of a cubic, solid-
on-solid surface model. Details of the algorithm may be
found in [16, 17]. The main idea is to move adatoms with
probabilities proportional to their diffusion rates, given
by Eq. (4). We modeled the surface on a 500 a x 200 a
rectangular grid, whose sides were parallel to the z and y
axes of the crystal (cf. Fig. 1). The surface was initialized
to have four steps separated by terraces 50 atomic lengths
wide. The x axis corresponded to 6§ = 0 (cf. Fig. 1).
Nonzero step angle was incorporated by applying screw
periodic boundary conditions along lines making an angle
0 with the z-axis; realizable values of 6 for this simulation
were those satisfying tan§ = j/500 for some integer j.

We compare simulated kink densities with the ana-
lytic predictions from Eqs. (9)-(11), as a function of d in
Fig. 3 and as a function of P in Fig. 4. Both figures show
excellent agreement between the model predictions and
the results from kMC simulations in all three regimes.
This is true even for kink densities k of size up to 0.4,
which is somewhat surprising, since we do not expect our
mean-field model to be valid when any density becomes
comparable to unity (i.e., adatom and kink correlations
could significantly alter the form of Eqgs. (2) and (3)).
Morever, Fig. 3 confirms our conclusion that the ADSS
exhibits NE behavior, since it shows that the NE kink
density approaches the ADSS kink density as d becomes
small. Also, Fig. 4 confirms that the kink density is ap-
proximately independent of the step angle in the FDSS
regime (i.e., to the right of the red bar on each curve).

Our model does not take into account island forma-
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FIG. 4. [Color Online] Analytic (solid lines) and kMC (sym-
bols) kink densities as functions of P. Analytic densities were
found by numerically solving Eq. (8). The kink densities col-
lapse to a single curve as P increases. For each 6, blue and red
vertical lines indicate the locations of the NE to ADSS and
ADSS to FDSS transitions, going left to right. We omit NE
kMC data for 8 = 0; significantly larger simulations are re-
quired to suppress fluctuations in this data. We set d = 10~°
and disabled island nucleation in these simulations.

tion; this process will decrease the magnitude of P (via
FL), since not all of the deposited adatoms will diffuse
to a step edge. More generally, we ignore the effects that
terrace inhomogeneities (e.g. islands) have on a step.
We believe that our analytical results, Eqgs. (9)—(11),
are experimentally testable by means of molecular

beam epitaxy (MBE) and in situ scanning-tunneling
microscopy (STM). For example, certain STM designs
permit atomic resolution imaging of Si(111) surfaces
during growth [18, 19]. Since diffusion rates are func-
tions of temperature [4], and the deposition rate can
be controlled during MBE, P and d correspond to
experimentally adjustable parameters. Therefore, we
expect that it should be possible to experimentally
observe the active kinetic processes implied by the
dominant balances in Eqgs. (5) and (6).

In conclusion, we presented a mean field model of epi-
taxial growth to demonstrate how varying the step angle
#, deposition rate F' oc P, and single bound detachment
rate d, determine whether a vicinal surface is in equilib-
rium or in a non-equilibrium steady state. We showed
that the system has three steady-state regimes. In one
regime, the system obeys detailed balance and is near
equilibrium. In the other two regimes, the behavior of
the system is determined by 6 and P, respectively. Our
analysis is in excellent agreement with kMC simulations
in all three regimes. We hope that our characterization of
active kinetic processes in surface systems can be further
explored by STM measurements during growth.
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