Island Dynamics Model for Mound Formation: The Effect of a Step-Edge Barrier
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We formulate and implement a generalized island dynamics model of epitaxial growth based on
the level-set technique to include the effect of an additional energy barrier for the attachment and
detachment of atoms at step edges. For this, we invoke a mixed, Robin-type, boundary condition
for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic
expression for the requisite equilibrium adatom concentration at the island boundary. The only
inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion
equation with such a mixed boundary condition. Our simulation results demonstrate that mounds
form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier

increases.

PACS numbers: 81.15.Aa, 81.15.Hi, 68.35.Ct, 68.43.Jk

I. INTRODUCTION

Epitaxial growth is of fundamental technological im-
portance, as many modern optoelectronic devices are fab-
ricated by this process. The various stages of epitaxial
growth form a classic problem in multiscale modeling. On
the one hand, the crystal surface morphology that devel-
ops is ultimately determined by the mobilities and corre-
sponding kinetic rates of individual atoms. By definition,
this consideration sets a relevant microscopic length scale
of a few Angstroms, and a typical time scale, as deter-
mined by surface diffusion in terms of a hop from one
crystal lattice site to a neighboring one, of the order of
1079 seconds. On the other hand, morphological features
of surfaces and devices span length scales of the order of
hundreds of nanometers and larger, and are grown in
the laboratory within time intervals of seconds to hours.
Hence, the description of epitaxial growth usually gives
rise to a hierarchy of models, ranging from atomistic the-
ories such as kinetic Monte Carlo methods, which in prin-
ciple can account for every possible microscopic process,
to continuum models, which may emerge from the coarse
graining of individual atoms or atomic layers or atomic
defects.

A significant mass transport process on crystal sur-
faces is the diffusion of adsorbed atoms (adatoms). If
there are no surface defects, basic processes during epi-
taxy are the nucleation, growth, and coalescence of two-
dimensional islands. Thus, close to equilibrium, ho-
moepitaxial growth proceeds layer by layer. However,
growth is far from equilibrium for many homoepitaxial
systems, and, in fact, growth can become unstable and
result in the formation of mounds. This kind of insta-
bility has been observed experimentally in many systems
such as Cu [1, 2], Fe [3], Ag [4] and Pt [5].
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FIG. 1: Schematic representation of the step-edge barrier
in the case with isotropic diffusion (when diffusion rates are
scalars). The top panel shows the potential energy surface,
and the bottom panel illustrates the corresponding diffusion
rates near the step edge (side view).

In this paper, we formulate and numerically implement
a generalized model for the dynamics of islands on crys-
tal surfaces. The model is enriched with a condition at
the island boundary that accounts for a kinetic asymme-
try in the attachment and detachment of atoms at step
edges (surface line defects) relative to the diffusion of
adatoms on nanoscale terraces. We also express analyt-
ically an element of the prescribed boundary condition,
namely, the equilibrium concentration of adatoms at the
step edge. The numerical simulations that we carry out
within this approach clearly demonstrate how mounds
form and steepen.

The key ingredient of our generalized model is the step-
edge (Ehrlich-Schwoebel, ES) energy barrier [6, 7], which
is known to be the main microscopic process underly-



ing the formation of mounds. This effect is illustrated
schematically in Fig. 1. By the ES barrier, an atom lo-
cated next to the step-edge is more likely to diffuse to
the adjacent site on the same terrace, with diffusion rate
D, than diffuse downwards, to the lower terrace, with
diffusion rate D’; thus, D’ < D. Similarly, an additional
barrier may exist on the lower terrace, with diffusion rate
D”. The additional step-edge barrier corresponding to
D’ causes an uphill current and the formation of mounds,
as has been shown by continuum models [8] and atom-
istic kinetic Monte Carlo (KMC) simulations [9]. Since
this phenomenon is purely kinetic, it is often stated that
mound formation is a far-from-equilibrium phenomenon.
One of our goals here is to capture this out-of-equilibrium
effect within the island dynamics model.

Our present work forms a nontrivial extension of a pre-
vious island dynamics model for epitaxial growth. In
particular, over the last 15 years, we have developed an
approach that employs the level-set technique in order
to capture the kinetic processes governing island dynam-
ics [10-14]. The model has a two-scale character, as it
retains atomistic details in the growth direction (and,
thus, resolves each atomic layer), but is continuous in
the lateral directions (see Sec IT). The parameters of this
model are determined by microscopic kinetic rates. In
principle, kinetic processes such as surface diffusion, edge
diffusion, detachment from step-edges can be included in
the model.

Because of the above features, the island dynam-
ics model offers certain advantages over continuum ap-
proaches, e.g., [8], which cannot have atomic resolution,
as well as atomistic KMC simulations, which are lim-
ited in their capability to describe macroscopic behav-
ior of surface structures. Hence, the present approach
is deemed as suitable for capturing nanoscale features of
the surface morphological evolution.

In this paper we aim to describe how the effect of the
ES barrier can be incorporated into the island dynam-
ics model via a sufficiently general, Robin-type boundary
condition for the adatom diffusion equation on each ter-
race, and study some of the consequences. Our numerics
show that this additional barrier indeed leads to mound
formation within the island dynamics model. For a com-
plete treatment, we also provide a rigorous derivation of
an analytic formula for the equilibrium adatom concen-
tration near the step-edge in the presence of a micro-
scopic step-edge barrier. In this formula, all parameters
are expressed in terms of atomistic kinetic rates.

The remainder of the paper is organized as follows. In
Sec. II, we describe the basic ingredients of our model
and a corresponding numerical scheme that incorporates
the Robin-type boundary condition for the adatom flux.
Section III presents an analytic formula for the equilib-
rium adatom concentration, peq, at the island boundary.
In Sec. IV, we discuss our numerical results with focus on
the prediction of mound formation. Finally, Sec. V sum-
marizes our approach and outlines some open questions.
Appendix A provides the (somewhat technical) deriva-

tion of peq on the basis of a kinetic model coupling step
flow with kinks and adatoms.

II. ISLAND DYNAMICS MODEL

This section is divided into three parts. In the first part
(Sec. ITA), we outline the key ingredients of the island
dynamics model, particularly the Robin-type boundary
condition with a step-edge barrier. In the second part
(Sec. IIB), we describe a numerical scheme that incor-
porates the above boundary condition into the level-set
framework. In the third part (Sec. II C), we provide a few
details on the implementation of the numerical scheme.

A. Formulation: Equations of motion

The core of our approach is an island dynamics model
together with a level-set method for its simulation [10-
14]. Individual adatoms are not resolved explicitly within
this model. Coarse-graining is invoked in the lateral di-
rections, but atomistic detail is retained in the growth
direction. Thus, the model is ideally suited to describe
the evolution of nanoscale structures. The starting point
is the main idea of the level-set method: For islands of
height ¢, their boundaries are described by I'y = {x :
¢(x) = £}, where ¢ is the level-set function which evolves
according to

O Vel =0. 1)
All physical information for the island dynamics is cap-
tured by the velocity, v, normal to the island boundary.
This variable is given by

v, = (DVp~ —DVp")-n, (2)

where p(x,t) is the adatom concentration on the terrace,
D is the diffusion tensor, —DVp* is the adatom flux re-
stricted to the island boundary in the upper (+) or lower
(—) terrace, and n is the outward unit normal to the
boundary. Thus, Eq. (2) is a mass conservation state-
ment.

Within a mean-field approach, the adatom concentra-
tion, p(x,t), is obtained by solving the diffusion equation

dp dN p

o =F+V-(DVp)—2 yr +V'(kBTDVEad> , (3)
where F' is the external deposition flux and the last
term is the thermodynamic drift (kgT is the Boltz-
mann energy). For simplicity, a cubic lattice with
x- and y-directed diffusion is assumed, such that the
diagonal entries of D are D® (x) and D™ (x). Note,
however, that a different surface geometry or diagonal
diffusion can be included in the model. The term
dN/dt = o1 ([(D®(x) + DWW (x))/2]p*(x)) is the nucle-
ation rate, where o; is a capture number [15, 16] and ()



denotes the average taken over all lattice sites. Stochas-
tic elements for island nucleation [11] and the thermal
dissociation of small islands [13] have been included and
validated by comparison to KMC simulations [11, 13].

A few remarks on the thermodynamic drift of Eq. (3)
are in order. A spatially varying, anisotropic poten-
tial energy surface is allowed, i.e., there are: (i) a
spatially-varying adsorption energy, F.q(x), and (ii) an
anisotropic spatially varying transition energy, Firans(X).
The differences Eirans(x) — Faq(x) define energy barriers
for the diffusivities D(*)(x) and D) (x) (which signify
surface kinetics; cf. Fig. 1). The spatial variation of
E.q(x) leads to a thermodynamic drift since adatoms
prefer sites of lower E,q. Thus, kinetic and thermody-
namic effects are properly accounted for by the model.

Equation (3) needs to be supplemented with bound-
ary conditions at the islands’ boundaries. In the absence
of a step-edge barrier, the boundary condition is of the
Dirichlet type, viz., [17]

pi = Peq (4)

at the island boundary, where poq is an equilibrium
adatom density at the step-edge. In contrast, in the
presence of a step-edge barrier, a more general boundary
condition is needed. Thus, we impose the Robin-type
boundary condition

(D-D)n-Vp" =n-D(p* —pgn, (5

which must replace Eq. (4) on the upper terrace (+).
In Eq. (5), D’ is the diffusion tensor for diffusion across
the step-edge and n - D’'n denotes the diagonal entry for
D’ for the direction normal to the boundary. We hence-
forth assume isotropic diffusion everywhere and thus set
D = DI and D’ = D’I where I is the unit tensor (unit
matrix). Then, boundary condition (5) simplifies to [18]

/
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(,0+ - peq) =0, (6)
where D' < D. A similar boundary condition applies to
the lower terrace (—) relative to the step-edge, where D’
is replaced by D”. We note in passing that as D’ 1 D,
condition (6) reduces to p™ = peq, as it should [17].

It is worth stressing that the quantity p.q entering
Eq. (6) is not known a priori but can be determined from
atomistic processes in the presence of a step-edge barrier.
In our approach, this peq is derived from a kinetic model
(see Sec. IIT and Appendix A).

B. Numerical scheme

The difficulty in solving diffusion equation (3) with
boundary condition (6) and its counterpart at the lower
terrace comes from the fact that points of the boundary
typically do not coincide with numerical grid points, and
that standard numerical approaches such as the ghost-
fluid approach [19-21] cannot be used when a differential
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FIG. 2: (Color online) Schematic of a grid including a com-
putational cell, C; ;, cut by an interface curve, I'. 4+ corre-
sponds to the upper (+) or lower (—) terrace, and I' is the
island boundary.

relation (and not just a value or a jump for the solution)
is specified at the boundary. We have recently overcome
this difficulty and have developed a finite-volume ap-
proach [22] to solve diffusion equation (3) with a bound-
ary condition of the form (6). In the following, we de-
scribe the basic idea of our approach.

Consider a cut cell C; ;, as depicted in Fig. 2. First,
we write Eq. (3) in integral form:

dp
2 _v.(Dv
/C[at (DVp)

where

dQ:/ Gao, (7)
Cj,yjﬁQf

_ dN p
G=F 2% +V (MD(VEad)> .

We then apply an implicit scheme in time, expressing
Eq. (7) as

/ L= p"tld0 = / (ﬁpn - Até”) s
Ciyj naQ-— Ci,j naQ-—
(8)

where G is an approximation of G, £ is a second-order
central-difference approximation of the linear operator

L* = <Ii A2tV~(DV)) :

and p"™ denotes the value of the solution p at time t = ¢".
Equation (8) is a discretized-in-time version of Eq. (7).

The main difficulty in approximating Eq. (8) is the
evaluation of the term

At
/ [I - —V- (DV)} p"ThdQ
Ci,j nao— 2



in such a way as to impose Robin boundary condition (6).

Referring to Fig. 2, which depicts the general case of a

cell C; ; cut by the interface I, the term [, - p" ™! dQ
2,7

can be approximated as
/ P dQ = p?jl [Area of (C;; N Q7)] .
Cin naQ-— ’

The respective approximation of the term fc‘ no- V-
2,7
(DV)p" 1 dQ is achieved by first applying the divergence
theorem and thus rewriting the requisite surface integral
in an equivalent form involving line integrals:

/ DVp"t . ndl = / DVp" ™t . ndl
9(Ci,; NQ7) aC;; N~

+ / DVp"*t! . ndl .
Ci ;NI
9)

The first term on the right-hand side of Eq. (9) is ap-
proximated by a standard finite difference scheme:

n+1 n+1

Pty — Py
v n+1 ndl = 1+1,7 »J L. )
/ac,iyj na- p AI 'LJF%J

n+1 n+1
_Pij TPy
Ax =3
n+1 n+1
+pi,j+1 — Pij I
Ay ij+3
n+1 n+1
Py T Pig-1
Ay ij—%

(10)

where p?jl is the value of the solution p at some point
in C; ; at time t"*!, Li+12 (vesp., Lj+q1/2) denotes the
length of the face in O~ between ¢ and ¢ =1 (resp., j and
j £ 1), as depicted in Fig. 2 (right part of the cell). On
the other hand, the second term on the right-hand side of
Eq. (9), which amounts to the flux normal the boundary
T, explicitly invokes the Robin boundary condition (6):

D'
A\ 1 n+1
/c..mr p+ 'ndl:/c,,mF_D—D/(pi’j _Peq)dl~

The requisite integrals are approximated by the meth-
ods of Min and Gibou [23, 24]. In [22], it was rigorously
shown that the solution is accurate to second order in the
mesh size and leads to a symmetric linear system that
can be efficiently inverted with a preconditioned conju-
gate gradient method [25].

C. Some implementation details

In addition to the ES barrier, a few physical correc-
tions were implemented in our code to account for very
thin regions in which there may be only one or two grid
points per layer in each direction. This scenario is not a

problem in the absence of a step-edge barrier (when we
have a Dirichlet boundary condition for p), because we
prescribe the adatom density at the step-edge to be equal
to the equilibrium adatom density, peq. In this case, even
with just a single grid point on a narrow terrace, we can
still calculate the gradients of p because peq is prescribed.
In contrast, with a step-edge barrier, when Robin condi-
tion (6) is imposed, we do not have an explicit value of
p prescribed at the boundary. Then, we need at least
three grid nodes per terrace in each direction in order to
calculate the gradients of p, which determine the normal
velocity of the step-edge according to Eq. (2).

In typical simulations with a large step-edge barrier,
i.e., when D' <« D, very thin terraces are often visi-
ble and multiple layers are often developed between two
neighboring grid nodes. To capture the correct physical
behavior, we apply the following approximation: When
we have fewer than three grid nodes on a narrow terrace,
we assume that all flux deposited onto that small area
will be added to the boundary, instead of calculating the
flux into the boundary from gradients of p [cf. Eq. (2)].
More precisely, we assume that half of the mass is added
to the lower terrace, and the other half to the upper ter-
race.

The second physical approximation that we utilize is
concerned with areas in which a jump of multiple terrace
levels occurs within two neighboring grid nodes. When
we have this situation, we divide the calculated veloc-
ity contribution by the difference in height between grid
nodes. Essentially, we are enforcing conservation of mass
by assuming that equal amounts of flux are deposited
onto each layer.

Finally, we note that in our present numerical simula-
tions we use VE,q = 0 (no thermodynamic drift), in the
presence of isotropic diffusion. The results are discussed
in Sec. IV.

III. EQUILIBRIUM ADATOM DENSITY, pcq

In this section, we provide a formula for the peq of
Eq. (6) in the presence of a step-edge barrier. This for-
mula stems from a terrace-step-kink (T'SK) model, which
couples step flow with the motion of kinks and adatoms
along step-edges and retains atomistic information in the
requisite kinetic rates [26]. Our detailed, somewhat gen-
eral, calculation of p.q can be found in Appendix A.
Here, we simplify the derived expression for peq by re-
stricting attention to parameters used in the simulations
that will be presented in this paper.

First, we briefly describe the setting of the TSK
model [26]. The geometry consists of a periodic sequence
of steps with atomic height a separated by distance L
as they move along a fundamental crystallographic axis.
Atoms hop on each terrace and attach/detach to/from
step-edges. Atomistic kinetic rates are invoked to de-
scribe the related transitions. Here, we use the notation
introduced in [26]. In particular, Dt = D is the terrace



(T) adatom diffusion coefficient, D = D’ amounts to
transitions from the upper (+) terrace to the step-edge
(E) and Dy = D" refers to transitions from the lower
(—) terrace to the edge; D = @ is the rate for the tran-
sition from the step-edge to the lower terrace and D
is the transition rate from the edge to the upper, terrace
and by detailed balance DET = 9©D'/D"; Dgx = Dg
corresponds to hopping from the step-edge (E) to kinks
(K); D}FK = D’ refers to transitions from the upper ter-
race (T) to kinks (K) and D5y = D" describes transi-
tions from the lower terrace to kinks; and Dgg = Dg,
Diy = D' and D5z = D" correspond to transitions
from the step-edge (E) or terrace (T) to the bulk (B) of
atoms. The constant Dpg is the step-edge diffusion coef-
ficient. Note that DETDEE = forED]gT, as dictated by
detailed balance [26].

From the TSK model, it can generally be shown that
(see Appendix A)

FL 1
Peq = C {

2/3
2 ¢y1DEk + C(szD%_K + CwSDEK):|

_ 1/3
" [CthEB + Clena Dy + Ch3DTB):| /
CngEK + C(CgQD:}:K + ngD%K) ’

(11)

where

a ( DET Dgr

A
Dr Dy ) 4'Cf+Cf—ngr

a Df Dig Dig Drg’
L(C” Dr "Dy ) ="y Dy
(12)

and A = DD = DiyDpr. The constants cpi, cuj,
cg; and cp; (j = 1, 2, 3) are coordination numbers for
related transition paths within a mean field description
(see Appendix A), with values cpy = ¢y =1, cp1 =
Cw2 = 2, Cw3 = 1, cg1 = cg3 = 2, cg2 = 4, cp1 = 2,
Ch2 — 3, Ch3 — 1 [26]

The use of the above numerical values and the param-
eters D, Dy, D', D", © into Egs. (11) and (12) yields
C=9/D", and

2/3
Peq R 9-2/3,-2p2/3 2 { Dr

© D" |2Dg + (2D'/D" + 1)D
2Dg + (3D'/D" + 1)@] 1/

1
2D + (4D'/D" +2)D (13)
where P, = FLa®/Dg is the edge Péclet number. Equa-
tion (13) can be further simplified by elimination of the
step-edge barrier in the lower terrace, setting D" ~ D.

IV. NUMERICAL RESULTS AND DISCUSSION

The main results of our model are shown in Fig. 3.
These are snapshots of typical island dynamics simu-
lations after the deposition of approximately 32 mono-
layers for different values of the step-edge barrier, i.e.,

0 @ 1w 1w to w0
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D’/D=0.1

FIG. 3: (Color online) Island morphology after the deposi-
tion of 32 atomic layers for different values of D'/D. (a)
D'/D = 0.95 (nearly no step-edge barrier); (b) D’/D = 0.3;
(c) D'/D = 0.1; and (d) D’'/D = 0.01 (large step-edge bar-
rier). The steepening of mounds for decreasing values of D’ /D
(increasing step-edge barrier) is evident.

different values of D’'/D. We assume that there is no
step-edge barrier for atoms that attach to the step-edge
from the lower terrace, and thus set D” = D. Further-
more, we assume that F,q is a constant everywhere (thus,
VE,.q = 0). All simulations were carried out with a set
of typical growth parameters, and we chose a deposition
rate F = 1.0 MLs™!, a diffusion rate D = 10% s7!, an
adatom detachment rate ® = 10 s~!, a lattice size of 132
lattice sites, and a numerical resolution of 192 grid points
in each spatial direction. We obtained qualitatively sim-
ilar results for different growth parameters.

When there is no step-edge barrier (or a small step-
edge barrier), growth proceeds essentially layer by layer,
and there are only a few exposed layers present [cf.
Fig. 3(a)]. As the step-edge barrier increases (D'/D =
0.3 and D'/D = 0.1, in Figs. 3(b) and (c), respectively],
growth starts becoming unstable, and more and more
layers are exposed. In Fig. 3(d) we have a substantial
step-edge barrier (D'/D = 0.01), and we observe steep
mounds with over 20 exposed layers in our simulations.

The transition from layer-by-layer growth to unstable
growth and the formation of mounds can also be viewed
in Fig. 4, where we show the time evolution of the surface
roughness, w, for the above four different values of D'/D.
The surface roughness is defined by w = \/{(h; — (h))?),
where h; is the height at lattice site ¢ and the average
() is taken over all lattice sites. Evidently, when D’/D
is close to unity [cf. Fig. 4(a)], the roughness oscillates,
which is a typical signature of layer-by-layer growth. As
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FIG. 4: Time evolution of the surface roughness, w = [{(h; —
(R))*)]/2, for different values of D'/D. (a) D'/D = 0.95
(small step-edge barrier); (b) D'/D = 0.3; (c) D’'/D = 0.1;
and (d) D'/D = 0.01 (large step-edge barrier). As the step-
edge barrier increases, w increases considerably and oscilla-
tions of w as a function of time die out.

D’/D decreases, the oscillations of w as a function of
time (or, coverage) die out. Indeed, no such oscillations
of w are visible in our simulations for D'/D = 0.1 and
D'/D = 0.01 [cf. Figs. 4(c), (d)]. Notably, as D'/D
decreases, the surface roughness increases substantially.

Our treatment of island dynamics is amenable to ex-
tensions in order to model mound formation in more re-
alistic settings. In laboratory experiments, it is often
observed that the mounds get steeper as they form, until
they reach a final slope. This slope selection has been
explained via (atomistic) KMC simulations [9], as well
as by continuum step dynamics models [27] through a
mechanism called downward funneling. By this mecha-
nism, atoms that are deposited close to a step-edge are
more likely to be incorporated into the lower terrace:
they are “funneled” toward the lower terrace. As long as
the upper terrace is large, this effect is small. However,
as the upper terrace gets narrower (which happens when
the mound gets steeper), the relative importance of this
effect increases, and eventually this effective downward
flux balances the effective upward flux due to a step-edge
barrier.

In our simulations we have not incorporated downward
funneling, and as a result, we do not observe a slope se-
lection. In fact, the mounds shown in Fig. 3 steepen con-
tinuously, until they reach a slope that is determined by
the numerical resolution of our simulation. In principle,
it is possible to incorporate downward funneling in our
approach. This additional effect is the subject of work
in progress. Another effect missing from our island dy-

namics model is that of elastic step-step interactions. In
particular, the inclusion of step-step interactions in our
model and the study of their influence on slope selection
are currently under investigation.

V. SUMMARY AND OUTLOOK

In this paper, we substantially improved and numeri-
cally simulated an island dynamics model, combined with
a level-set approach, in order to study mound formation
and evolution on crystal surfaces. In particular, we in-
cluded and implemented an additional step-edge barrier
by applying a general, Robin-type boundary condition for
the adatom flux normal to the step-edge. We also intro-
duced a stable, second-order accurate numerical scheme
that enables us to solve the adatom diffusion equation
with such a boundary condition on a fixed grid with mov-
ing interfaces.

The Robin-type boundary condition of our generalized
model contains the equilibrium adatom density, peq, at
the step-edge as a key parameter. Here, we presented
an analytic formula for peq, which we rigorously derived
from an atomistic, kinetic model of epitaxial growth that
couples step flow with the motion of kinks and diffusion
of adatoms. This formula expresses peq in terms of atom-
istic transition rates.

The inclusion of a step-edge barrier in the model leads
to the formation of mounds. Our numerical simulations
demonstrate how mounds form and steepen as a result
of the increase of the step-edge barrier. In order to ob-
tain the experimentally observed selection of slopes of the
mounds, additional physics needs to be included in the
model. This will be part of our future work.
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APPENDIX A: KINETIC DERIVATION OF pcq

In this appendix, we determine the p.q entering Robin
boundary condition (6), in the presence of a step-edge
barrier, by starting with the kinetic formulation of [26].
Our derivation forms a nontrivial modification of an ear-
lier calculation of p.q where effects of step-edge barriers
are left out [26].

In the spirit of [26], we focus on the kinetic steady
state of a periodic array of steps with atomic height a
separated by distance L as they move at velocity v along
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FIG. 5: Schematic of microscopic processes near a straight
step edge according to the terrace-step-kink model of [26].
The relevant kinetic, transition rates are shown by use of ar-
rows. 4+ denotes the upper (+) or lower (—) terrace.

a fundamental crystallographic (say, z-) direction. Sup-
pose the steps are descending in the positive z-direction.
We consider homogeneous, isotropic terrace diffusion of
constant scalar diffusion coefficient D, with VE,q = 0
in the absence of nucleation (dN/dt = 0). The diffusion
equation for the adatom density, p, on each terrace reads

Op
ot

In the kinetic steady state, the adatom density is a trav-
eling wave, p = po(x — vt) where o(&) is smooth. Thus,
Eq. (A1) is solved by 0(¢) = ¢1e7%/PT — (F/v)¢ + ¢y
where 0 < £ < L, £ = x — vt, and ¢; and ¢y are integra-
tion constants to be determined. By periodicity of the
step train, the adatom densities at each step-edge on the
upper (+) and lower (—) terrace are:

= F + Dy V?p. (A1)

pr = o(L) = cre”"H/PT —
p— = 0(0) =c1 + co,

(F/v)L + ca,
(A2)

by which we can express ¢; and cq in terms of py and p_,
e.g., co = (1—e PPy (p, —p_ e vL/Pr L FLJv).

We need to determine p4 = peq,+ in terms of the req-
uisite atomistic kinetic rates. For this purpose, we will
invoke the edge-adatom density, ¢, and kink density, k&,
which are constants in the kinetic steady state. The rele-
vant microscopic processes and transition rates are shown
in Fig. 5.

First, we relate p4 to ¢. Denoting fi the mass fluxes
toward the step-edge in the normal direction, we impose
the kinetic relation [26] f_ = vp_ + D (0¢0)- = vea —
DrF/v at £ = 0, where 0¢ = 0/0§. By global mass

conservation, f, 4+ f- = LF. By solving the last two
equations for f, and f_ and using Eq. (A2), we obtain

fo= v(py — p_e VL/PTYy L FL _ DrF
T 1 —evL/Dr v’

(A3)

with fi = Fl— f_ and v = a®>(f_ + f4+) = a*FL.

To relate p+ to ¢, we now apply the mean field ap-
proximation [26] fi = cj+(Digaps — DEpd)a—2, where
Diy, and D, are diffusion coefficients for the transition
of atoms hopping from the upper (+) or lower (—) terrace
(T) to the edge (E) and vice versa, and cy4 are associated
coordination numbers. By combining the mean field re-
lation for fy with Eq. (A3) and fy = FL— f_, we derive
a system of equations for p; and p_ (given ¢):

v v —vL /Dt
- _ D= -1
1— e—vL/DT P+ <1 _ e—q)L/DT + Cf—Lrrad )p—

DrF FL o
== " —wpr cp—Dpppa?, (A4)
—’UL/DT
Lo v ve
<Cf+-DTEa +16UL/DT>p+_ 1767"’L/DTP7
DTF e—vL/DT B
= " — FLW + CerD;ETQSCL 2 (A5)

The solution of this system yields p+ in terms of ¢. We
simplify the resulting formulas by assuming small con-
vection, i.e., vL /Dy < 1 so that 1 — e /P ~ oL/ Dr,

along with
a Cf+ Cf_
pep(F i) Bt

where P.o = a®FL/DZ, is the edge Péclet number with
reference to the upper (+) or lower (—) terrace; in many
physical situations of interest, P..+ < 1. Consequently,

+
DTE Cr+Cf—

Egs. (A4) and (A5) give
pr~Cra o, (A6)
where
a DET Dgr TE DIZEET
C L(Cf+DrI‘+cf_D +cf+cf_D DT
+ = — E—
a D”T‘E Dy DTE DTE
I (Cf+ Dr +cy— Dr ) +cppcp—— Dr Dr
(AT)

At this stage, we should point out that Egs. (A6)
and (A7) can be further simplified. By the principle of
detailed balance, the rates D and D satisfy [26]

DETD%E = D’JFFEDQT' (A8)
It follows that Cy = C_ = C. Thus, we establish that
Pt = P— R Peq Ca_lqﬁ, (AQ)

where C is given by Eq. (A7) independent of subscript.
It remains to compute ¢.



Next, we determine a relation between ¢ and the kink
density, k. Apply the geometric law [26] a?FL = v =
awk, where w is the kink mean velocity. This w satisfies
the mean field equation w = wy + wy + w3, where w, =
cw1(Dex¢ — Dxpa™t), we = cyo(Digaps — Difra™t),
and w3 = cu3(Dgap— — DgTa_l). In these mean field
laws, Dgk, DkE, D%K and D%T are diffusion coefficients
for transitions from an edge (E) to a kink (K) and vice
versa, and from the upper or lower terrace (T) to a kink
and vice versa. Furthermore, ¢,; (j =1, 2, 3) are coor-

dination numbers for these transitions. Accordingly, we
find

al'L

~ cu1 DEx @ + w2 Difcapy + cwsDigap—, (A10)

by neglecting the effects of Dkg and D}%T' Equa-
tions (A9) and (A10) yield a relation between ¢ and k:

ko =~ aFL[CwlDEK + C(ngDr}_K + ngDEK)]_l. (All)

Another relation for ¢ and & is obtained via the trans-
port law for kinks [26], 0:k + Os[w(k, — k)] = 2(g — h)
where k, (k;) is the density of right- (left-) facing kinks,
k. = k; = k/2 for straight edges along the x-axis, g is the
net gain in kink pairs due to nucleation/breakup, and h
is the net loss of kink pairs (s: edge arc length). For con-
stant k, we must impose g = h; and replace the source
terms g and h by known mean field expressions [26].

In particular, we write g = g1+g2+g3 and h = hi1+ho+
hs with the following mean field laws for g; and h; [26]:
g1 = cg1(Dpxd? — Dxpkoki)a™, g2 = cgo(Dfgapso —
Ditkoky)a™t, and g3 = cg3(Dygap—é — Dypkik))a™;
in addition, hy = cp1(Depok.k; — Dpra™3), hy =
chg(D¥Bap+krkl — DET(L—?’), hs = Chg(DEBap,krkl —
DgTa_?’), where Dgg, Dgg, D%B and D%T are suitable
diffusion coefficients for atom transitions from the edge
(E) to the bulk (B) and vice versa, and from the terrace
(T) to the bulk and vice versa. Furthermore, cg; and cy;
are associated coordination numbers. Therefore, setting

g = h leads to an algebraic equation for ¢, k and py:

cngEK¢2 + cgaDfcapid + cggDerap,QS)a_l

= (CthEB¢ + ChQDqJ:Ba,O+ + Cth%Bap,)k’z. (A12)
In our derivation of the last relation, we neglected terms
proportional to Dk, D}%T, Dgpg and D%T. The combi-
nation of Egs. (A9) and (A12) yields

1 cnDes + C(eneDig + chsDrg)

~ ak®.  (A13
4 ¢g1 Dpx + C(cga Dy + ¢g3 D1y ) (A13)

¢

The last stage of our calculation involves the solution
of the system of Eqs. (A11) and (A13) for ¢ and k. Thus,
we obtain

FL 1
oo

2/3
2 cy1DExk + C(cwe Dy + CW3DTK):|

|:Ch1DEB + C(ChQD::FB + Ch3DTB):| 1/3
Cg1DEK + C(CQQD:I"\_K + Cg3DV;K)

(A14)
and

L [ AFL ]1/3
cw1Dex + C(cwe Dy + cwsDiy)

" {CngEK + Cleg2 Dy + cg3 D)
¢n1 Deg + C(cn2 D + cna D)

} " (A15)

Equations (A9) and (A14) lead to the desired formula for
Peq> Eq. (11)

In the special case without a step-edge barrier, we
set Di, = DI = DF; = Dy and Di; = Dgx =
DEB = DE [26] Then, we have C = DE/DT7 and
Egs. (A9), (A14) and (A15) give peq ~ (Dg/Dr)a™'¢,
¢ = (3/16)1/35=2/3q=1 P2/* and k = (16/15)/3a1P}/?,
where P, = FLa®/Dg = P., = P._ (edge Péclet num-
ber); cf. Egs. (7.3)—(7.5) in [26].
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