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The Burton-Cabrera-Frank (BCF) model for the flow of line defects (steps) on crystal surfaces
has offered useful insights into nanostructure evolution. This model has rested on phenomenological
grounds. Our goal is to show via scaling arguments the emergence of the BCF theory for non-
interacting steps from a stochastic atomistic scheme of a simplified kinetic solid-on-solid model
in one spatial dimension. Our main assumptions are: adsorbed atoms (adatoms) form a dilute
system, and elastic effects of the crystal lattice are absent. The step edge is treated as a front that
propagates via probabilistic rules for atom attachment and detachment at the step. We formally
derive a quasistatic step flow description by averaging out the stochastic scheme when terrace
diffusion, adatom desorption and deposition from above are present.

PACS numbers: 81.15.Aa, 68.43.Jk, 47.11.St

I. INTRODUCTION

The design and fabrication of optoelectronic devices
rely on understanding how crystalline features evolve
across several length scales, from a few nanometers to
hundreds of microns. At low enough temperatures,
below the roughening transition, crystal surface struc-
tures evolve through the collective motion of line defects,
steps [1, 2]. The motion of individual steps is a mesoscale
phenomenon: On the one hand, it manifests defects of
atomic size; on the other hand, steps appear to move in
a continuum fashion by exchanging mass with nanoscale
regions, terraces. For the description of crystal surface
dynamics in a wide range of length and time scales, it
is thus useful to explore the validity and applicability of
mesoscale models for step flow. These models capture
atomistic features in the direction vertical to the high-
symmetry plane of the crystal, while retaining the ad-
vantages of continuum theories in the lateral directions.

Such a hybrid approach is the Burton-Cabrera-Frank
(BCF) model [3]; for reviews, see, e.g., [1, 2]. In this
model, step edges are represented by moving smooth
curves, which are boundaries of terraces. The step mo-
tion is mediated by the continuous diffusion of adsorbed
atoms (adatoms). A typical BCF-type description con-
sists of the following [1, 2]: (i) a step velocity law; (ii) the
diffusion equation for the adatom density on each terrace;
and (iii) a linear kinetic relation, which is a Robin-type
boundary condition involving the adatom flux normal to
each step edge and forms an extension of the Dirichlet-
type boundary condition for the adatom density in [3].
The motion laws for steps have been conceived primarily
through a phenomenological framework by invoking the
principles of mass conservation and local thermodynamic
equilibrium. An issue is how this mesoscale picture can
firmly be linked to fundamental atomistic processes.

In this paper, we present a stochastic scheme adopted

from a simplified kinetic solid-on-solid (SOS) model [4]
for the hopping of atoms on a stepped surface in 1+1
dimensions in the absence of elastic effects. We derive
the entire BCF description for the flow of steps as a scal-
ing limit of averaged equations from the atomistic model.
First, we analyze an epitaxial system with a single step in
the presence of external material deposition and desorp-
tion; and then extend our analysis to many steps. Our
main assumption is that the adatoms are non-interacting
and form a dilute system; on average, only a small num-
ber of adatoms occupy each lattice site at any given time.
This diluteness has been observed experimentally [5], and
simplifies the governing atomistic laws.

Our present approach is inspired by recent efforts to
shed light on the nature of the BCF theory [6, 7]; see
also [8–10]. It is tempting to explore whether the BCF
model can be interpreted as the universal, in some ap-
propriate sense, limit of fundamental atomistic processes
at the mesoscale. Adopting a line of investigation that
favors this view, we invoke basic mechanisms of atomistic
motion in the presence of steps; these include generic lo-
cal rules for the atom attachment/detachment at a step
edge. Our hypotheses lead to a linear kinetic relation
for the mesoscale adatom flux, which serves as a Robin-
type boundary condition for the adatom diffusion on ter-
races [2]. The derivation of this relation from scaling ar-
guments applied to an atomistic theory of crystal growth
is one of our main achievements with this work.

This study is motivated by the broader question how to
develop mesoscale models for far-from-equilibrium pro-
cesses. A long-term objective is to construct by purely
atomistic principles mesoscale theories for kinetic regimes
far from thermodynamic equilibrium (for some related
phenomenological models, see [11–14]). This task re-
mains an open challenge.

A few comments on past works [6–10, 15] with a simi-
lar perspective are in order. In [6, 7], the starting point
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is a master equation for the probabilities of finding the
system in atomistic configurations characterized by the
total number, `, of adatoms and their positions on a one-
dimensional lattice; for every such configuration, the mi-
croscale step position at any given time is completely
determined by this `. The mesoscale motion of the step
comes from the ensemble average of this microscale vari-
able. In this setting, the entire BCF-type description for
the one-step flow emerges as the low-density limit of the
adatom system [6]. This formalism is not directly exten-
sible to two spatial dimensions (2D). In [8], the authors
connect atomistic rates to BCF-type parameters via bal-
ancing out discrete and continuum fluxes at the step edge
in 1D, without invoking a stochastic scheme or describing
the effect of noise; their results are compatible with ours.
On the other hand, the studies in [9, 10] concern geome-
tries in 2D with focus on more particular aspects of step
flow. For example, in [9] the step position is held fixed;
and in [10] only numerical comparisons of kinetic Monte
Carlo (KMC) simulations to the BCF model are pursued.
Notably, in [15] the authors pursue the coarse-graining of
a 2D master equation and reduce it to a Langevin-type
description for continuous-in-time height columns by re-
taining discreteness in the lateral directions. We believe
that a direct comparison of this last approach to the BCF
theory is not compelling.

Our derivation of the BCF limit in this paper differs
from the recent analysis of [6, 7] in several interrelated
aspects. First, here we apply the hypothesis of a di-
lute adatom system, whereas in [6] the diluteness results
as a special case, by neglect of multi-adatom states of
the model. Second, we invoke a stochastic scheme, in
contrast to the master-equation approach adopted in [6].
This, along with the diluteness hypothesis, presently en-
ables us to include richer kinetic effects, namely, desorp-
tion and material deposition from above, and a larger
number of steps with relative algebraic ease. Third, we
introduce the step front position as an additional stochas-
tic variable whose motion is coupled with the random
number of adatoms per lattice site. We believe that this
formalism is promising for 2D, where kinks play an im-
portant role [3]; this extension is the subject of work
in progress. In the present work we resort to scaling
arguments, thus offering a physically more transparent
derivation of the step flow limit.

Our analysis here also reveals some details of the effect
of stochastic noise on step motion as the lattice spacing
approaches zero. In particular, we show that this noise
tends to vanish; thus, the BCF-type description emerges
in a regime where the law of large numbers is applicable.

Mathematically, our starting scheme is akin to a ran-
dom choice method (“Glimm scheme”) invented for solv-
ing certain systems of conservation laws such as those
arising in gas dynamics [16, 17]. The main idea is to
construct the appropriate solution (say, a shock wave)
through a sequence of operations; these include a sam-
pling scheme by use of a random variable that is uni-
formly distributed over a fixed interval. Here, our ap-

proach has a similar flavor but bears particularities tai-
lored to the physics of epitaxial growth. The time-
dependent random variable that we employ takes discrete
values corresponding to the distinct events of advance-
ment, retreat or immobility of the step edge as adatoms
attach to the step, detach from it or move otherwise,
respectively. These events have prescribed probabilities
involving known atomistic rates subject to the principle
of detailed balance in the sense of [12] (see Sec. II for
details).

Our work has several limitations. These are mainly
due to restricting attention to: dilute systems, non-
interacting steps, and 1D. In particular, the possi-
ble emergence of force-dipole step-step interaction [18]
may require the alteration of the stochastic scheme to
take into account an elastic lattice with spontaneous
stress [19]. We expect that the extension of our formal-
ism to 2D would have to possibly involve a space-time
stochastic noise driving step fluctuations on the lattice.
The scaling analysis of non-dilute adatom systems poses
a challenge currently under investigation.

The remainder of the paper is organized as follows. In
Sec. II, we formulate the discrete stochastic scheme for
a single step. In Sec. III, we formally derive the scal-
ing limit of this scheme. In Sec. IV, we discuss impli-
cations and extensions of our analysis, particularly the
presence of more than one steps. Section V concludes
our work with a summary of our results and an outline
of open problems. Throughout the paper, the expression
Q = O(h) means that the quantity Q/h is bounded by
a constant as a parameter approaches an extreme value.
The bar on top of a symbol for a stochastic variable im-
plies the mean value (expectation) of that variable.

II. ATOMISTIC SCHEME WITH ONE STEP

The single-step geometry in 1D is shown in Fig. 1. The
step lies on a lattice of uniform spacing a and length L =
Na where N � 1. Since L constitutes a natural length of
the BCF setting, we set L = 1; thus, a = 1/N � 1. The
step position at time t can be tracked by q(t), an integer-
valued Lagrangian coordinate expressing the number of
the lattice site located immediately to the right of the
step edge [q(t) = 0, 1, . . . , N − 1]; this q is distinct from
j, the Eulerian coordinate for the lattice site. Hence,
the step edge position is determined through the discrete
stochastic variable X(t) = q(t)a.

It is useful to distinguish the edge atom, which has only
one in-plane nearest neighbor (to its left), from the step
atom, which has two in-plane nearest neighbors while all
atoms to its left also have two in-plane nearest neighbors
(see Fig. 1). In contrast, an adatom is a movable particle
that is neither an edge atom nor a step atom.



3

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAA 

x
qna (qn+1)a(qn¡ 1)a … 0 a Na

… a

FIG. 1: Microscale view of a step edge at time t = tn. The
step has height a, an atomic length, and lies on a 1D lattice
of spacing a and total length L = Na, where N is the total
number of lattice sites (N � 1). The step position is deter-
mined by the lattice site qn = q(tn) directly to the right of
the edge (qn = 0, 1, . . . N − 1). Notice that the step atoms
(grey) of the upper terrace and the edge atom (dark grey) are
represented by boxes; the atom position is indexed by the left
side of each box, as indicated by arrows in the vicinity of the
step. The Eulerian coordinate is x = ja (j = 0, . . . N − 1).

A. Kinetic frame: Assumptions

To prescribe the adatom kinetics relative to the step
edge, we apply the following main assumptions [7].

(i) An atom is only allowed to move horizontally, left
or right, by one lattice site at any given time.

(ii) The adatoms are non-interacting and have low den-
sity, i.e., in the sense of some ensemble average,
only a small average number of adatoms can oc-
cupy any lattice site at any given time. Therefore,
it is unlikely that islands form and any height col-
umn may contain more than one adatom [see also
(vi) below] [7].

(iii) An adatom can hop from a lattice site to an adja-
cent site of the same terrace with a probability pro-
portional to the constant rate D. This rule gives
rise to the usual, unbiased diffusion process as the
result of a random walk [see Figs. 2(a), (b)].

(iv) An adatom from the upper (−) or lower (+) terrace
attaches to the step edge and becomes an edge atom
with probability proportional to the rate Dφ∓,
where the nondimensional φ± (φ± ≤ 1) is an Ar-
rhenius factor accounting for the Ehrlich-Schwoebel
barrier [1, 7, 20]; φ± = e−E±/T , E± > 0, and T is
the Boltzmann energy (absolute temperature). As
a result, the step edge moves forward (to the right)
by a distance equal to a [see Figs. 2(c), (d)].

(v) An edge atom can detach from a step, breaking a
bond, become an adatom and hop to the upper (−)
or lower (+) terrace with a probability proportional
to Dkφ∓, where k = e−Eb/T and Eb is the edge-
atom bond energy barrier, Eb > 0. As a result, the
step edge retreats (to the left) by distance a [see
Figs. 2(e), (f)].

(vi) A step atom cannot become an adatom, or vice
versa.

(vii) Only adatoms can evaporate from the surface.

(viii) Atoms deposited on the terrace from above in-
stantly become adatoms.

Note that, within our atomistic model, steps can move
only via rules (iv) and (v). By the above choice of kinetic
rates at the step edge, detailed balance is satisfied in
the sense of [12, 21, 22]. This principle implies that at
equilibrium the microscale adatom fluxes toward the step
edge must vanish [12]. In particular, by setting D−TE =

Dφ−, D+
TE = Dφ+, D−ET = Dkφ− and D+

ET = Dkφ+, we
note the relation

D−TED
+
ET = D+

TED
−
ET.

In the special case of a simple cubic SOS model [12, 23],
it is expected that D±TE = D and D+

ET = D−ET; thus,
φ+ = φ− = 1. This case is known to lead to a Dirichlet-
type boundary condition at the step edge [1], which is
not the focus of the present treatment. For a discussion
on the magnitudes of D, φ± and k, see Sec. III A.

Atoms are assumed to be deposited on the surface from
above with constant flux f , which expresses number of
atoms per unit time per lattice site, and can be evapo-
rated with constant rate τ−1

e where τe is a typical evap-
oration or desorption time. In addition, we introduce
boundary conditions at x = 0 and x = 1 for definite-
ness. We consider a steady incoming flux, fin, of adatoms
from the left boundary, x = 0. Some of the incoming
adatoms attach to the step so that the step moves for-
ward; while some other adatoms leave the system from
the right boundary, x = 1. Adatoms are not allowed to
enter the prescribed spatial domain, 0 < x < 1, from the
right boundary or leave it from the left boundary. Note
that our choice of conditions at the domain boundaries
(x = 0, 1), is meant to form an example for definiteness;
other choices are possible that do not distort the essential
physics of step edge motion.

B. Stochastic scheme

Next, we formulate a discrete stochastic scheme for
the (random) step front variable, X(t), coupled with the
(random) number, %j(t), of adatoms at lattice site j (j =
0, 1, . . . , N − 1). By discretizing time, t = tn, with a
sufficiently small yet constant timestep, τ = tn+1 − tn,
we describe how the step position, X(t), varies with time.
Now set qn = q(tn), %nj = %j(tn) and Xn = X(tn).

Consider the discrete random variable ξ(t) that takes
values in the set {−1,−2, 0, 1, 2}; ξn = ξ(tn). These
integer values correspond to the possible atomistic events
at t = tn; see Fig. 2. In particular, regarding the motion
of a step, ξn = 1 or 2 if an adatom attaches to the step
from the upper or lower terrace, respectively; and ξn =
−1 or −2 if the edge atom detaches toward the upper or
lower terrace. Setting ξn = 0 amounts to processes that
do not cause step motion for tn ≤ t < tn+1.
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FIG. 2: Schematic of the basic atomistic processes of our
model. Upper panel [(a), (b)]: Unbiased hopping of an adatom
with constant rate D from a lattice site of a terrace to an
adjacent site of the same terrace directly to the right [(a)] or
left [(b)]. Middle panel [(c), (d)]: Attachment of an adatom
to the step edge from the upper terrace with rate Dφ− [(c)],
or the lower terrace with rate Dφ+ [(d)]; the step edge moves
to the right by one lattice spacing, a. Lower panel [(e), (f)]:
Detachment of an edge atom from the step toward the upper
terrace with rate Dkφ− [(e)], or the lower terrace with rate
Dkφ+ [(f)]; the step moves to the left by distance a.

Thus, the microscale step position is updated with time
via the rule

Xn+1 =

 Xn if ξn = 0,
Xn + a if ξn = 1 or 2,
Xn − a if ξn = −1 or − 2.

(1)

We supplement this rule with the following probabilities:

P(ξn = 1) = Dφ−τ%
n
qn−1, P(ξn = 2) = Dφ+τ%

n
qn+1,

P(ξn = −1) = Dkφ−τ, P(ξn = −2) = Dkφ+τ, (2)

which are mean-field expressions stemming from rules
(iv) and (v) (Sec. II A). Note that the distribution of
the random variable ξn in principle depends on the cur-
rent position of the step edge and the local environment
around it. Evidently,

P(ξn = 0) = 1−Dτ(φ−%
n
qn−1+φ+%

n
qn+1)−Dτk(φ−+φ+).

Given the above distribution of ξn, one can realize it from
an independent, identically distributed random variable,
uniformly distributed in some fixed interval (as is the
common practice in KMC simulations).

It remains to prescribe the discrete scheme for %nj . For
lattice sites sufficiently away from the step edge, we have

%n+1
j = (1− 2Dτ)%nj +Dτ(%nj−1 + %nj+1)− τ

τe
%nj + τf,

j 6= 0, qn − 2, qn − 1, qn, qn + 1, N − 1, (3)

which expresses the usual unbiased random walk on a
lattice in the presence of desorption and external depo-
sition. At the domain boundaries (j = 0, N − 1), we

additionally impose

%n+1
0 = (1−Dτ)%n0 +Dτ%n1 + finτ −

τ

τe
%n0 + τf, (4a)

%n+1
N−1 = (1− 2Dτ)%nN−1 +Dτ%nN−2 −

τ

τe
%nN−1 + τf.

(4b)

For the remaining sites, sufficiently close to the step edge,
the scheme reads

%n+1
qn−2 = (1− 2Dτ)%nqn−2 +Dτ(%nqn−3 + %nqn−1)

− τ

τe
%qn−2 + fτ + 1(ξn = −1), (5a)

%n+1
qn−1 = (1−Dτ)%nqn−1 +Dτ%nqn−2 −

τ

τe
%nqn−1 + fτ

− 1(ξn = 1), (5b)

%n+1
qn = (1−Dτ)%nqn +Dτ%nqn+1 −

τ

τe
%nqn + fτ

+ 1(ξn = −2), (5c)

%n+1
qn+1 = (1− 2Dτ)%nqn+1 +Dτ(%nqn + %nqn+2)

− τ

τe
%nqn+1 + fτ − 1(ξn = 2). (5d)

In the above, 1(·) is the indicator function, viz., 1(A) = 1
if the event A occurs, and 1(A) = 0 otherwise. Thus, the
presence of this indicator in Eqs. (5) signifies the addi-
tion or removal of an adatom to/from the corresponding
lattice site when the step edge moves.

A few specific remarks on the meaning of Eqs. (5) are
in order; see also Fig. 2. By Eqs. (5a) and (5d) pertain-
ing to sites qn − 2 and qn + 1, an adatom at these sites
can either hop to or from any of the two adjacent sites
with rate D [Figs. 2(a), (b)]; or evaporate with rate τ−1

e ;
or be deposited from the vapor to the surface with rate
f ; or come from an atom detaching from the step edge
[Eq. (5a) and Fig. 2(e)]; or attach to the step [Eq. (5d)
and Fig. 2(d)]. In the same vein, in regard to Eqs. (5b)
and (5c) for sites qn− 1 and qn, an adatom at these sites
can either hop to or from the adjacent site of the same
terrace with rate D; or evaporate; or be deposited from
above; or attach to the step edge [Eq. (5b) and Fig. 2(c)];
or come from the detachment of the edge atom [Eq. (5c)
and Fig. 2(f)].

C. Averaging of stochastic scheme

We now average out the governing stochastic laws of
Sec. II B in the limit τ → 0 by keeping the spacing a
fixed. To simplify the analysis, we henceforth apply the
condition that a � 1 and take into account that, as ar-
gued in Sec. III B, the stochastic noise for the step po-
sition, X(t), is negligible for small enough a. Therefore,
we carry out the averaging procedure for the stochastic
scheme involving the step position and adatom number
in the regime where the law of large numbers holds, al-
lowing the mean of %q(t), where q is a stochastic variable,
to be set approximately equal to %̄q̄(t) [24].
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By Eqs. (1) and (2), we obtain the expectation

E[Xn+1 −Xn] = a{P(ξn = 1 or 2)−P(ξn = −1 or − 2)}
≈ Da{(φ−%̄nq̄n−1 + φ+%̄

n
q̄n+1)

− k(φ− + φ+)}τ, (6)

where E[X] ≡ X̄. In the same vein, we compute the
variance of Xn+1 −Xn:

V[Xn+1 −Xn] = Da2{(φ−ρ̄q̄−1 + φ+ρ̄q̄+1)

+ k(φ− + φ+)}τ +O(τ2). (7)

In the limit τ → 0, we thus derive a mean step velocity
law at t = tn in terms of %̄nj where j belongs to adjacent
sites of the step edge:

dxs

dt
≡ lim
τ→0

E

[
Xn+1 −Xn

τ

]
≈ a{D(φ−%̄q̄−1 + φ+%̄q̄+1)−Dk(φ− + φ+)}; (8)

here, q̄ = q̄(t) and xs(t) = X̄(t) = q̄(t)a.
Accordingly, as τ → 0 the heuristic limit of the mean

of Eqs. (3) and (4), for j 6= q − 2, q − 1, q, q + 1, reads

d%̄j
dt

= D(%̄j−1 − 2%̄j + %̄j+1)− 1

τe
%̄j + f ; (9)

d%̄0

dt
= D(%̄1 − %̄0) + fin −

1

τe
%̄0 + f, (10a)

d%̄N−1

dt
= −2D%̄N−1 +D%̄N−2 −

1

τe
%̄N−1 + f. (10b)

On the other hand, for lattice sites near the step edge,
the scheme reads

∂%̄q̄−2

∂t
= D(%̄q̄−3 − 2%̄q̄−2 + %̄q̄−1)− 1

τe
%̄q̄−2

+ f +Dkφ−, (11a)

∂%̄q̄−1

∂t
= D(%̄q̄−2 − %̄q̄−1)− 1

τe
%̄q̄−1 + f

−Dφ−%̄q̄−1, (11b)

∂%̄q̄
∂t

= D(%̄q̄+1 − %̄q̄)−
1

τe
%̄q̄ + f +Dkφ+, (11c)

∂%̄q̄+1

∂t
= D(%̄q̄+2 − 2%̄q̄+1 + %̄q̄)−

1

τe
%̄q̄+1 + f

−Dφ+%̄q̄+1. (11d)

Equations (9) and (11) are recast into the compact form

∂%̄j
∂t

= D(%̄j−1 − 2%̄j + %̄j+1)− 1

τe
%̄j + f

+Dkφ−δj,q̄−2 + [D(%̄q̄−1 − %̄q̄)−Dφ−%̄q̄−1]δj,q̄−1

+ [D(%̄q̄ − %̄q̄−1) +Dkφ+]δj,q̄ −Dφ+%̄q̄+1δj,q̄+1,
(12)

in which j 6= 0, N −1 and δi,j denotes Kronecker’s delta.
A few remarks on the mean motion laws are in order.

Equation (8) couples the discrete mean step velocity law
with the average adatom numbers on each side of the
step. In the limit a → 0, this coupling will give rise
to a mass conservation statement involving the values of
the adatom flux directly to the left and right of the edge
(Sec. III). This flux can be determined via Eqs. (9)–(11),
which pertain to the adatom diffusion and kinetic con-
ditions at all the associated boundaries. To reduce the
discrete equations to BCF-type laws, we need to appro-
priately scale variables and parameters of the problem
with the system size, N = a−1; and then take the limit
a → 0 by assuming that the adatom number per lattice
site, %j , becomes a smooth function of coordinate x = ja
on the terrace, away from the step edge.

III. SCALING LIMIT AS a→ 0

In this section, we carry out the scaling limit of
Eqs. (8)–(11) as a → 0 by use of Eq. (12). For this
purpose, we restrict attention to macroscopic times by
defining

t̃ = at, τ̃e = aτe, (13)

and the variable

ρ̃j(t̃) = %̄j(t)/a, (14)

which plays the role of the adatom number density as
a → 0. In this vein, we consider t̃, τ̃e = O(1) and ρ̃j =
O(1). For notational economy, we will drop the tildes
and replace q̄ by q from now on.

By Eq. (8), the mean step velocity law reads

dxs

dt
= (r−a ρq−1 − r−d ) + (r+

a ρq+1 − r+
d ), (15)

where both sides should be considered as O(1) quantities.
In Eq. (15), the kinetic coefficients are defined by

r±d = Dkφ±, r±a = Dφ±a, (16)

which serve the roles of mesoscopic detachment (d) and
attachment (a) rates to the left (−) or right (+) of the
step edge. Hence, it is reasonable to assume that, as
a → 0, the rates of Eqs. (16) are finite and independent
of a (see Sec. III A). This assumption will enable us to
recover the entire Robin-type boundary conditions at the
step edge.

Thus, Eq. (12) for the adatom number density becomes

a
∂ρj
∂t

= D(ρj−1 − 2ρj + ρj+1)− 1

τe
ρj + fa−1

+ {Da(ρq − ρq−1)(δj,q − δj,q−1)

+ (r+
d δj,q − r

+
a ρq+1δj,q+1)

+ (r−d δj,q−2 − r−a ρq−1δj,q+1)}a−1, (17)
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where j = 1, . . . , N − 2. A task is to express the right-
hand side of Eq. (15) as a sum of adatom fluxes defined
through the limit of Eq. (17). Note that Eqs. (10), suit-
ably scaled, should additionally be imposed at the do-
main boundaries, x = 0, 1.

A. Scaling of atomistic rates

We now discuss the scaling of the kinetic parameters
with a, by inspection of Eqs. (15)–(17). First, it is rea-
sonable to set

D ≡ Da2 = O(1), (18)

i.e., require that the rate D scale with the system size
(N = a−1) as 1/a2 = N2. This D expresses the usual
macroscopic diffusivity resulting from a random walk on
a lattice [25]. By Eqs. (10), (16) and (17), we also assume
that

φ± = O(a), k = O(a), f = O(a), fin = O(1), (19)

and define

F ≡ fa−1 = O(1). (20)

Equations (18) and (19) provide a set of conditions
sufficient for deriving a kinetic relation for the adatom
flux as a linear function of the adatom density at the
step edge. Note that the parameters D−1fin and D−1F
should be sufficiently small, consistent with our dilute-
ness hypothesis.

We alert the reader that Eqs. (18) and (19) preclude
φ+ ≈ 1 or φ− ≈ 1, a choice known to imply a Dirichlet
boundary condition at the step edge [1]. This special
case, which signifies the absence of an Ehrlich-Schwoebel
barrier, is not strictly treated by our present asymptotics.

B. On limit of stochastic noise

It is worthwhile addressing the stochastic noise that
underlies mean step velocity law (15). The stochastic
differential equation for the step position variable, X(t),
can be written as

dXt ≈ cs dt+
√
acn dWt, (21)

where dt = tn+1 − tn, dXt = Xn+1 −Xn and Wt is the
Wiener process [25] so that dWt = Wn+1−Wn represents
discrete “white noise”. The O(1)-quantities cs and cn
come from the expectation E[dXt] [Eq. (6)] and standard

deviation
√
V[dXt] [Eq. (7)] of Xn+1 − Xn as dt → 0,

under the definitions of Eqs. (13), (14), (18) and (19):

cs = r−a ρq−1 − r−d + r+
a ρq+1 − r+

d ,

cn = (r−a ρq−1 + r−d + r+
a ρq+1 + r+

d )1/2; (22)

cf. Eq. (15).

Evidently, in the limit a → 0 the term pertaining to
white noise vanishes in Eq. (21), provided ρq−1 and ρq+1

approach finite values on each side of the step edge. This
observation is not surprising, originating from the as-
sumption that the step front can only move by ±a each
time, which in turn causes a negligibly small variance of
its random motion. Hence, in this regime, step motion
can be viewed as a phenomenon in the context of the
law of large numbers. It should be noted, however, that
a stochastic mesoscale description, in which the noise is
preserved as a → 0, may result under different kinetics
or scaling scenarios. This issue deserves to be the subject
of future work.

C. Step flow limit

Next, we complement Eq. (15) by a description of the
adatom number density, ρj(t), as a → 0. Suppose the
step position is still denoted xs(t) in this limit. By
slightly abusing notation, we formally replace ρj(t) by
the O(1)-function ρ(t, x), assuming that this limit exists
in some appropriate sense for x = ja and t > 0, where
0 < x < 1 with x 6= xs(t); also, D, r±d , r±a , τe, and F
should take their finite limiting values. In the following,
we suppress the time dependence of ρ(t, x) for algebraic
convenience.

Consider Eq. (17). First, a(∂ρj/∂t) ≈ a[∂ρ(t, x)/∂t]→
0 for fixed time t, since ∂ρj/∂t is bounded. Second, it
is tempting to replace the second-order difference term,
a−2(ρj+1 − 2ρj + ρj−1), by the Laplacian of ρ(x), ∆xρ,
for x < xst and x > xst. A word of caution is in order. If
j = q−1 or j = q, the above discrete term involves values
of ρj on both sides of the step edge; however, ρ(x) can
be discontinuous across the step. In an effort to describe
the limit of Eq. (17) transparently, we introduce reference
densities ρ±s such that the scheme for the adatom number
density at sites adjacent to the step edge reads [1, 6]

j = q − 1 : 0 = D[a−2(ρj−1 − 2ρj + ρ−s )]− 1

τe
ρj + F

− {r−a ρj + D[a−1(ρ−s − ρj)]}a−1, (23a)

j = q : 0 = D[a−2[(ρj+1 − 2ρj + ρ+
s )]− 1

τe
ρj + F

+ {r+
d + D[a−1(ρj − ρ+

s )]}a−1. (23b)

The densities ρ±s can be thought of as representing the
continuum limits of ρj at either side of the step edge, and
can be determined so that they produce the appropriate
adatom fluxes to the right (+) or left (−) of the step.
Specifically, ±a−1(ρj − ρ±st) is let to approach (∂ρ/∂x)±,
the respective value of the derivative of ρ(x), for j = q
(+) or j = q − 1 (−). These terms contribute to the
desired Robin boundary conditions as shown below.



7

Consequently, in the limit a→ 0 Eq. (17) becomes

0 = {D∆xρ− τ−1
e ρ(x) + F}[θ(x− xs) + θ(xs − x)]

+ δ+
xs

(−J + + r+
d − r

+
a ρ

+)

+ δ−xs
(J− + r−d − r

−
a ρ
−), 0 < x < 1. (24)

Note the elimination of the time derivative of the adatom
number density in this scaling regime. In the above, θ(x)
is the Heaviside function [θ(x) = 0 if x < 0 and θ(x) =
1 if x > 0]; δ±xs

= lima→0(a−1δj,l) is the Dirac mass,
delta function, centered at xs to the left (−) or right (+)
of the step edge, for l = q − 2, q − 1 and l = q, q +
1, respectively; and J± is the corresponding x-directed
adatom flux restricted at the step edge, viz.,

J + = −D
(
∂ρ

∂x

)+

= −D lim
a→0

(
ρq − ρ+

s

a

)
,

J− = −D
(
∂ρ

∂x

)−
= −D lim

a→0

(
ρ−s − ρq−1

a

)
. (25)

Evidently, there is no convective term present in J±,
which is consistent with the elimination of ∂ρ/∂t. This
feature signifies the quasistatic regime.

Equation (24) is equivalent to a diffusion equation on
each terrace along with kinetic Robin-type boundary con-
ditions at the step edge:

D∆xρ− τ−1
e ρ(x) + F = 0, 0 < x < xs or xs < x < 1,

(26)

J + = −r+
a (ρ+ − r+

d /r
+
a ), x = x+

s ,

J− = r−a (ρ− − r−d /r
−
a ), x = x−s , (27)

where

r+
d

r+
a

=
r−d
r−a
≡ ρeq = lim

a→0

(
k

a

)
, (28)

which is finite by Eq. (19). This ρeq represents the equi-
librium number density of adatoms at the step edge;
cf. [1, 6, 8]. Thus, step velocity law (15) reads

dxs

dt
= r−a (ρ− − ρeq) + r+

a (ρ+ − ρeq) = J− − J +. (29)

Equations (26), (27) and (29) provide the BCF-type step
motion laws.

For the sake of completeness, we need to include con-
ditions at the boundaries, x = 0 and 1, of the domain.
These come from Eqs. (10) as a → 0; specifically, using
the scaling of Sec. III A, we obtain the following relations:

0 = lim
a→0
{D[a−1(ρ1 − ρ0)] + fin − aτ−1

e ρ0 + aF}

⇒ J (0) = −D
(
∂ρ

∂x

) ∣∣∣∣∣
x=0

= fin, (30)

0 = lim
a→0
{−DρN−1 −D(ρN−1 − ρN−2)}

⇒ ρ(1) = 0. (31)

At the risk of redundancy, we note that this set of bound-
ary conditions at x = 0 and 1 is not meant to be special;
other choices of conditions are possible without distorting
the essential physics of the BCF model.

IV. DISCUSSION

In this section, we discuss issues that underlie the ex-
position and formal analysis of Secs. II and III. In par-
ticular, we (i) provide remarks on the convergence of our
atomistic scheme, and (ii) extend the formulation to mul-
tiple non-interacting steps.

A. Convergence of atomistic scheme

Thus far, we have provided a derivation of the BCF-
type model from an atomistic scheme based on heuristic
asymptotics. To make the derivation mathematically rig-
orous, it is useful to make the analogy of the atomistic
dynamics to a finite-difference scheme approximating the
continuous description from the BCF-type model, where
the parameter a is identified as the mesh size of the dis-
cretization. Indeed, as already mentioned above, the first
term on the right-hand side of Eq. (17) can be viewed as
a central difference of the Laplacian operator acting on
ρ, except near the step edge which in turn results in suit-
able boundary conditions there. Moreover, the evolution
of the step edge in the atomistic scheme, given by Eq. (1),
can be viewed as a stochastic scheme for the step velocity
law (29). This is very similar to the Glimm scheme used
for front propagation [16, 17]. Therefore, to establish the
limiting behavior of the atomistic scheme as a → 0, it
is desirable to prove the convergence of the particular
numerical scheme to the BCF-type step flow model.

Let us briefly sketch the main ideas of the convergence
proof; the details lie beyond the scope of the present pa-
per. As usual, the convergence of the scheme involves
both consistency and stability analysis. The consistency
for the scheme essentially follows the heuristic asymp-
totic arguments provided above in the derivation. The
stability is more subtle. A difficulty comes from the qua-
sistatic time scaling on the left-hand side of Eq. (17):
The small parameter a multiplying the time derivative
of ρ requires stability for effectively long time evolution.
Hence, an energy estimate is needed to show that the dis-
crete system is dissipative. This amounts to establishing
a gradient flow structure for the atomistic scheme, which
is expected to be similar to that on the continuous scale
for the BCF-type system with detailed balance [21].

B. Multiple steps

Our analysis can be extended to more than one non-
interacting ordered steps without difficulty. The main
observation is that the above derivation of step motion
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laws is local, based on local atomistic laws. Specifically,
the Robin boundary conditions (27) for adatom diffusion
and step velocity law (29) both result from the mass ex-
change between the edge atom and adatoms in the neigh-
boring lattice sites. Hence, the derivation of mesoscale
laws for systems with a monotone step train should not
present any difficulty, provided the steps do not interact
elastically and are sufficiently far apart, so that the local
atomistic laws at the step edges are not distorted. In
particular, if the system consists of M non-interacting
steps with the same kinetic rates everywhere, the atom-
istic scheme near the kth step edge, which is at site qk
(k = 1, 2, . . .M), is assumed to be

%n+1
qnk−2 = (1− 2Dτ)%nqnk−2 +Dτ(%nqnk−3 + %nqnk−1)

− τ

τe
%qnk−2 + fτ + 1(ξnk = −1),

%n+1
qnk−1 = (1−Dτ)%nqnk−1 +Dτ%nqnk−2 −

τ

τe
%nqnk−1 + fτ

− 1(ξnk = 1),

%n+1
qnk

= (1−Dτ)%nqnk +Dτ%nqnk +1 −
τ

τe
%nqnk + fτ

+ 1(ξnk = −2),

%n+1
qnk +1 = (1− 2Dτ)%nqnk +1 +Dτ(%nqnk + %nqnk +2)

− τ

τe
%nqnk +1 + fτ − 1(ξnk = 2), (32)

where the random variable ξk(t) indicates the atomistic
events relevant to the kth step; cf. Eqs. (5). The local
probabilistic rules for ξk follow directly from Eqs. (2).

In this case, in the scaling limit each step moves ac-
cording to velocity law (29) with the adatom density de-
termined by quasistatic diffusion on each terrace with the
same Robin-type boundary conditions at each step edge.
However, as our atomistic model does not include elastic
response of the lattice, the system of multiple steps is
deemed as physically incomplete. It is an interesting and
challenging research direction to understand the elastic
interaction between multiple steps starting from atom-
istic models.

V. CONCLUSION

In this paper, starting from a stochastic scheme for the
hopping of atoms on a crystal lattice we formally derived
a set of quasistatic motion laws for a system of non-
interacting steps in 1+1 dimensions. These laws form
the core of mesoscale BCF-type theories. Our scheme
was adopted on the basis of a simplified SOS model for

a dilute system of adatoms. Within our discrete model,
the step edge is treated as a front that propagates via
the attachment/detachment of atoms. This process is
described by a random variable that takes values under
mean-field probabilistic rules associated with the kinet-
ics at the step. Our approach here differs from the more
traditional master-equation viewpoint of previous treat-
ments, e.g., [6, 7, 15]. We believe that our present for-
malism is promising for extensions to 2D, including more
realistic effects in step motion.

Our formal analysis reveals some key features of the
passage from atomistic rules to mesoscale laws for line
defects. In our treatment, the emergence of BCF-type
laws, including the full Robin boundary conditions for
the adatom density at the step edge, is intimately con-
nected to certain scalings of the time variable and the
atomistic rates with the system size, N = a−1. This en-
tails a particular dominant balance for the adatom den-
sity and flux in the stochastic scheme as the lattice spac-
ing, a, approaches zero. Our analysis also reveals that
the stochastic noise vanishes in this limit, thus suggest-
ing the interpretation of BCF theory as a consequence of
the law of large numbers.

The present work points to several pending issues,
not addressed in this paper. An issue is the possible
emergence from atomistic rules of a stochastic mesoscale
model, in which the noise plays a significant role as
a→ 0. This requires a careful examination of the under-
lying kinetics. Furthermore, in experimental situations,
steps interact as force dipoles in homoepitaxy and force
monopoles or otherwise in hereroepitaxy. Hence, our cur-
rent treatment needs to include elastic effects by tak-
ing into account the strain dependence of kinetic rates.
Lastly, the derivation of a BCF-type description in 2D,
where steps are curved in the presence of step-edge dif-
fusion and kinks, and islands form, is a viable direction
of future research.
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