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BOSE–EINSTEIN CONDENSATION BEYOND MEAN FIELD:
MANY-BODY BOUND STATE OF PERIODIC MICROSTRUCTURE∗

DIONISIOS MARGETIS†

Abstract. We study stationary quantum fluctuations around a mean field limit in trapped,
dilute atomic gases of repulsively interacting bosons at zero temperature. Our goal is to describe
quantum-mechanically the lowest macroscopic many-body bound state consistent with a microscopic
Hamiltonian that accounts for inhomogeneous particle scattering processes. In the mean field limit,
the wave function of the condensate (macroscopic quantum state) satisfies a defocusing cubic non-
linear Schrödinger-type equation, the Gross–Pitaevskii equation. We include consequences of pair
excitation, i.e., the scattering of particles in pairs from the condensate to other states, proposed in
[T. T. Wu, J. Math. Phys., 2 (1961), pp. 105–123]. Our derivations rely on an uncontrolled yet
physically motivated assumption for the many-body wave function. By relaxing mathematical rigor,
from a particle Hamiltonian with a spatially varying interaction strength we derive via heuristics an
integro–partial differential equation for the pair collision kernel, K, under a stationary condensate
wave function, Φ. For a scattering length with periodic microstructure of subscale ε, we formally
describe via classical homogenization the lowest many-body bound state in terms of Φ and K up to
second order in ε. If the external potential is slowly varying, we solve the homogenized equations via
boundary layer theory. As an application, we describe the partial depletion of the condensate.
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1. Introduction. A far-reaching advance in physics in 1995 was the first obser-
vation of Bose–Einstein condensation (BEC) in trapped dilute atomic gases [1, 15]. In
BEC, particles with integer spin (bosons) occupy a macroscopic one-particle quantum
state, usually referred to as the “condensate.” This possibility was first predicted for
noninteracting particles over 80 years ago [6, 16, 17]. Many recent experimental obser-
vations have stimulated theoretical research in systems without translation symmetry,
particularly when an external potential spatially confines the atoms.

The modeling of dilute atomic gases involves at least three length scales: (i) the de
Broglie wavelength, ldB, associated with the wavelike motion of particles; (ii) the mean
interparticle distance, ld; and (iii) the scattering length, a, where a� ld � ldB. If ρ is
the mean gas density, then ld = ρ−1/3 and ldB = (ρa)−1/2, where ρa3 � 1 for a dilute
gas. With a trapping potential, another length of interest is the typical size of the trap,
which may be larger than or comparable to ldB. A known mean field limit involves
a cubic nonlinear Schrödinger-type equation (NSE) (the Gross–Pitaevskii equation)
for the one-particle wave function, Φ̌(t, x), of the condensate [33, 34, 55, 69]. This
description is adequate for many experimental situations, but does not capture the
partial depletion of the condensate as particles scatter from it to other states [71].

In this article, we formally apply perturbation theory to study stationary effects
beyond the NSE in the BEC of trapped atomic gases with a varying positive scattering
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length at zero temperature. Our derivation of macroscopic equations relies on an
uncontrolled but physically motivated ansatz for the many-body wave function; this
ansatz accounts for the scattering of atoms in pairs, or pair excitation, from the
condensate to other quantum states. We focus on the lowest many-particle bound
state. A central variable is the pair collision kernel, Ǩ(t, x, y), a function of two spatial
variables. From a microscopic Hamiltonian with a confining potential, we (i) derive
partial differential equations (PDEs) for the stationary Φ̌ and Ǩ; (ii) homogenize these
equations for atomic interactions with a periodic microstructure; and (iii) thereby
describe the condensate depletion.

For nontranslation-invariant settings and constant scattering length, the formal-
ism of pair excitation is due to Wu [69, 70] given previous work by Lee, Huang, and
Yang for periodic systems [44]. A novelty of our work lies in its focus on the interplay
of a periodic scattering length and trapping potential for estimating the condensate
depletion. In [69, 70] no explicit connection is made of an external potential or a
varying scattering length to the fraction of particles out of the condensate. Here, we
show by heuristics how the condensate depletion can be influenced by spatial oscilla-
tions of the scattering length combined with a trap. For this purpose, we revisit the
pair-excitation formalism in a reasonably general setting and extend this formalism
to a scattering length with periodic microstructure.

The physical motivation for our work is twofold. First, the consideration of inho-
mogeneous scattering processes, e.g., a periodically varying scattering length, aims to
offer a simplified picture for realistic atomic collisions which may not be described by
the usual model of pairwise, translation-invariant interactions; cf. (1.1). This element
of inhomogeneity helps one to explore the possibility of controlling BEC through vari-
ations of particle interactions, e.g., near a Feshbach resonance [10, 12, 40, 63], or via
an optical lattice [71]. Second, the need to transcend the NSE, and thus include Ǩ,
stems from experimental efforts to relate properties of ultracold atomic gases to the
superfluidity of liquid helium [11, 42, 71]. The helium system has high condensate
depletion; i.e., a significant fraction of particles leave the condensate to occupy other
states.

Our results concern deviations from the usual mean field description of the NSE,
which are herein called quantum fluctuations, because of pair excitation in a setting
of inhomogeneous scattering. Such quantum fluctuations (defined precisely in section
3) cannot be avoided in BEC; for example, these are responsible for phonon creation
[44, 69]. We simplify the particle model by removing complications that are not
absolutely essential for a fundamental treatment; e.g., the particles are taken to be
spinless. We consider weakly and repulsively interacting atoms under nonperiodic
trapping potentials, leaving periodic potentials for future work; see [38, 62] for the
NSE.

The present approach has been inspired by and forms an extension of work
by Fibich, Sivan, and Weinstein on the (one-particle) bound states of the focusing
NSE [25]. In our case, an additional complication stems from the spatial nonlocal-
ity inherent to couplings of the PDE for the kernel Ǩ with the condensate wave
function, Φ̌.

The mathematical context of our work is quantum many-body perturbation the-
ory and homogenization via two-scale expansions. At the level of the many-particle
Hamiltonian, perturbations are applied to many-body operators via heuristics. In re-
gard to the macroscopic PDEs, periodic homogenization, in the spirit of Bensoussan,
Lions, and Papanicolaou (see [2, 52]), is formally applied to nonlinear PDEs. By re-
laxing rigor, we seek classical, sufficiently regular solutions of the effective equations
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via singular perturbations for traps that vary slowly in the spatial variables. The
convergence and legitimacy of the related asymptotic expansions are not addressed.
It is hoped that our investigations will serve as an invitation to more rigorous studies.

Because the pair-excitation approach is not used widely in applied mathematics,
we deem it necessary to review some related background (section 3). For broad reviews
of BEC in trapped atomic gases, the reader may consult, e.g., [7, 11, 13, 42, 46, 54, 57].

1.1. Particle model. An assumption throughout this article is that the number
of particles at state Φ remains O(N), where N is the total (conserved) number of
atoms. This hypothesis is consistent with BEC.1

The starting point is the Hamiltonian, HN , of N bosons. This HN encompasses
three major effects: (i) the repulsive pairwise particle interaction, V ; (ii) the spatially
varying scattering length, a(x); and (iii) the confining potential, Ve(x):

(1.1) HN =

N∑
j=1

[−Δj + Ve(xj)] +
∑
i<j

V(xi, xj) (xj ∈ R
3) ,

where the units are such that � = 2m = 1 (�: Planck’s constant, m: atomic mass)
and xj are particle positions. Ve : R

3 → R+ is a positive, smooth trapping potential
with Ve(x) → ∞ as |x| → ∞; and V can be thought of as a positive, symmetric,
compactly supported interaction potential.

To simplify the analysis, we represent V by the Fermi pseudopotential for many-
body problems, following Huang, Yang, and Luttinger [36], since in a dilute gas the
mean interatomic distance is much larger than the support of V . The Fermi pseudo-
potential for two-particle scattering amounts to an effective operator that reproduces
the low-energy limit of the far field of the exact wave function [4]. So, we set2

(1.2) V(xi, xj)f(xi, xj) ≈ g(xi) δ(xi − xj)
∂

∂xij

[
xijf(xi, xj)

]
(i �= j) ,

where f is any two-body wave function, g(x) := 8πa(x) > 0, xij := |xi − xj |, δ(x) is
the Dirac mass in R3, and a is the scattering length. A definition of constant a can
be found, e.g., in [22]. By omission of (∂/∂xij)xij , we use [69, 70]

(1.3) V(xi, xj) → V (xi, xj) = g(xi) δ(xi − xj)

instead. An alternate approach would be to employ a regularized interaction potential,
which would be scaled by N [20, 21, 22]: V = N3bg(xi, xj) V1(N

b(xi − xj)), where
V1 is compactly supported and smooth, and b > 0.

The N -particle wave function Ψ̌N (t, �x), where �x = (x1, . . . , xN ), generates all
observable properties of the atomic gas. For bosons, this Ψ̌N is symmetric with
respect to arbitrary permutations of the atom positions and satisfies

(1.4a) i∂tΨ̌N = HN Ψ̌N (i2 = −1) .

1A formal definition of BEC invokes the appropriate projection operator for the condensate; see
Penrose and Onsager [53].

2Note that the scattering length, a(x), enters our description as an ad hoc parameter. By
contrast, in recent works by Elgart, Erdős, Schlein, and Yau (see [18, 20, 21, 22]) the (constant)
scattering length emerges as an effective parameter from the mean field limit of the many-particle
quantum dynamics.
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For a wide variety of applications, it is reasonable to consider the initial data

(1.4b) Ψ̌N(0, �x) =

N∏
j=1

Φ(xj) ,

where Φ(x) corresponds to the condensate at t = 0. Bound states of Ψ̌N are particular
solutions to (1.4a) of the form Ψ̌N = e−iEN tΨN(�x), where EN is the total energy.

In the (simplest) case with V ≡ 0, the wave function can be a tensor product,

(1.5) Ψ̌N (t, �x) = Ψ̌0
N (t, �x) :=

N∏
j=1

Φ̌(t, xj) , Φ̌(0, xj) = Φ(xj) ,

where Φ̌(t, x) obeys a linear Schrödinger equation on (0,∞) × R3. A nonzero (and
nonconstant) V in HN (i) introduces nonlinearities, and (ii) may spoil the tensor prod-
uct (1.5) because of particle correlations. It is a remarkable feature of the quantum
dynamics that, as N → ∞, (1.5) still holds in an appropriate sense [22].

1.2. Known mean field limit. For large N , it is impractical to simulate parti-
cle model (1.1)–(1.4). The many-body Schrödinger equation needs to be replaced by
PDEs for macroscopic variables of interest in lower dimensions. One such variable is
the condensate wave function, Φ̌. More generally, it is desirable to formulate a macro-
scopic theory that encapsulates the major physics of N -body dynamics, particularly
the scattering of atoms in pairs, for finite yet large N .

The NSE results heuristically from the substitution of (1.5) into (1.4a) [69, 70].
Alternatively, consider the L2-variation of the energy functional [13, 33, 34, 46, 55]

(1.6) E [u, u∗] =
∫
R3

dx {|∇u|2 + (g/2)|u|4 + Ve(x)|u|2} .

Hence, the condensate wave function, Φ̌, satisfies

(1.7) i∂tΦ̌(t, x) =
δE [u, u∗]
δu∗

∣∣∣∣
(Φ̌,Φ̌∗)

= [−Δ+ Ve(x) + g|Φ̌||2]Φ̌ , g = 8πa .

A rigorous derivation of (1.7) from the many-atom Hamiltonian dynamics is based
on limits of the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchies for
reduced particle density matrices [18, 20, 21, 22].

The time-translation invariance and global gauge symmetry (by u 
→ eiθu) of (1.6)
entail that the energy, E , and mass, ‖Φ̌‖2L2, are conserved. For one-particle bound

states, one seeks solutions of the form Φ̌(t, x) = e−iμtΦ(x) of (1.7), where μ ∈ R is
the particle “chemical potential.” If g < 0 (focusing case), bound states exist even if
Ve ≡ 0. This case was studied at the level of NSE in [25].

1.3. Beyond mean field: Pair excitation. In the case with periodic bound-
ary conditions and constant scattering length, the condensate is the state of zero
momentum. This case is more transparent to physical interpretation since the system
Hamiltonian is expressed conveniently in terms of the particle momenta.

Bogoliubov [5] addressed the problem of the particle energy spectrum for this
setting by invoking a simplification of the Hamiltonian. His approach, discussed
in [45, 46], makes use of a linear transformation for many-body operators that ex-
press creation and annihilation of particle momenta (in the Fourier space). The idea
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of pair excitation was placed on a firm basis 10 years later by Lee, Huang, and
Yang [44], who systematically considered the scattering of atoms from the condensate
to states of nonzero momenta. By diagonalizing an approximate matrix representa-
tion of the Hamiltonian, these authors derived a formula for the stationary N -particle
wave function, ΨN , that distinctly differs from the usual tensor product form: their
formula expresses excitation of particles from zero momentum to pairs of opposite
momenta [44]. For details, see, e.g., [44, 45, 46, 68].

The extension of pair creation to settings with an external potential and constant
scattering length is nontrivial. We adopt Wu’s approach [69, 70], which uses the
ansatz

(1.8) Ψ̌1
N (t, �x) := C(t) eP[Ǩ](t)Ψ̌0

N (t, �x) ,

where Ψ̌0
N is the tensor product (1.5), C(t) is a normalization factor, and P [Ǩ](t) is an

operator that spatially averages out the excitation of particles from the condensate Φ̌
to other states with the effective kernel Ǩ. This Ǩ is not a priori known (in contrast,
e.g., to the case of the classical Boltzmann gas) but is determined by enforcement of
(1.4a) under a certain approximation for HN [69], to be revisited and slightly modified
in section 5.2. The formula for P is expressed in terms of many-body operators;
see (3.7). In the periodic case, (1.8) reduces to the many-body wave function of [44].

Here, we extend this formalism to include a spatially varying scattering length;
see section 5. A feature of the resulting description is that the (nonlocal) coupling
of Ǩ and Φ̌ is partially controlled by the microstructure of the scattering length.
Observable quantities, e.g., the condensate depletion, can be computed directly from
Ǩ; see section 8.

Ansatz (1.8) is not strictly consistent with the exact many-body dynamics. An
estimate for the error lies beyond our scope. In view of [32], we may expect that
‖Ψ̌N − Ψ̌1

N‖F = O(C1(t)N
−1/2), where ‖ · ‖F is the many-body Hilbert (Fock) space

norm (defined in section 3.1) and C1(t) is bounded locally in time.
The consequences of pair excitation in a confining potential have been studied in

a limited number of cases. The effect of a slowly varying trap has been studied via
singular perturbations in time-independent [70] and time-dependent [48, 49] settings.
Here, we formally homogenize the equations of motion for stationary Φ̌ and Ǩ under
a periodic scattering length and a macroscopic trap; and we apply singular perturba-
tions for a slowly varying trap to extract explicit solutions to homogenized equations.
Other past works that aim to transcend the NSE are outlined (nonexhaustively) in
section 3.3.

1.4. Periodic microstructure of scattering length. Following [25], we set

(1.9) g(x) = g0[1 +A(x/ε)] > 0 , 0 < ε� 1 ,

where A(x) is smooth and periodic with zero average. For example, in one spatial

dimension (1D) with unit period, impose A(x + 1) = A(x) and
∫ 1

0
dxA(x) = 0.

1.5. Program. The heart of our analysis is perturbation theory at two levels.
The first level concerns the many-body microscopic dynamics; perturbations are

formally applied to the microscopic Hamiltonian HN to single out the effect of pair
excitation. We review Wu’s method [69], which is a generalization of the periodic
case [44], and add an extension to include a spatially varying scattering length.

For this purpose, we revisit the formalism of quantized fields, which underlies
closely related works with a physics perspective [44, 69]. In this context, the N -body
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Hamiltonian is viewed as an operator on the Fock space, F, i.e., the Hilbert space for
quantum states with an arbitrary number of particles.

The next level of our analysis concerns approximate, classical solutions of the
derived PDEs for bound states of Φ̌ and Ǩ. If the coupling parameter g has the
microstructure (1.9), the PDEs for the many-body bound state are amenable to clas-
sical periodic homogenization [2]. For the lowest bound state, we derive via heuristics
homogenized equations for Φ̌ and Ǩ. Solutions to these equations are then deter-
mined for slowly varying traps, when the boson system is nearly (but not exactly)
translation invariant.

1.6. Main assumptions. There are two main sets of assumptions. One set is
physics-motivated and invokes a scale separation needed for approximations. If lc is
the correlation length of bosons [69], ld is the mean interparticle distance, lsc is the
length over which the scattering length varies, and le is the typical size of the trap,
then

(1.10) lsc � a� ld � lc � le .

We set ε := lsc/lc and ε̆ := lc/le; ε expresses the microstructure of the scattering
length, while ε̆ is used to describe the slow spatial variation of the external potential.
In addition, we assume that ε̆ � ε so that corrections from the ε̆-based asymptotics
for the slowly varying trap are small compared to O(ε2) terms of the homogenization
expansion. The condition a � ld � lc ensures that the atomic gas is sufficiently
dilute.

Another set of assumptions concerns the regularity of the stationary Φ̌ and Ǩ.
By relaxing mathematical rigor, we hypothesize that these functions are sufficiently
regular and decay rapidly enough with the spatial variables (section 6.1). In particular,
regarding Ǩ(t, x, y) we anticipate a weak (Coulombic) singularity on its diagonal
(x = y) for (x, y) ∈ R6; this type of singularity is shown formally for a slowly varying
trap (section 7.2).

1.7. Limitations. The many-body perturbation scheme is general enough to
include a wide class of external potentials, such as the periodic potentials of recent
experimental setups [71]. However, periodic Ve’s [38, 62] are not studied here.

The origin and nature of the (seemingly empirical) ansatz (1.8) are not further
investigated. By the result in [32] for coherent states without a trap, one may expect
that the resulting error (in some appropriate metric) scales as N−1/2 for large N and
fixed time t.

The classical homogenization is carried out formally up to the first two (nonzero)
orders in each two-scale expansion (for stationary Φ̌ and Ǩ). The next higher-order
terms and convergence of the expansions are not touched upon.

We focus on zero temperature, T = 0. For finite, small temperatures (T > 0),
the condensate coexists with thermally excited states described by a set of (a priori
unknown) wave functions, {Φ̌j}∞j=1, which are taken orthogonal to Φ̌. This means

that, for T > 0, the PDEs for Φ̌ and Ǩ need to be complemented with PDEs for Φ̌j .
(For a mean field limit of this case, see, e.g., [30, 37].) This task is left for future
work.

1.8. Article outline. In section 2, we outline our conventions. In section 3, we
review the main formalism: in section 3.1 we revisit the quantized fields; in section 3.2
we describe the perturbation method [69]; and in section 3.3 we delineate past works.
In section 4, we summarize our main results. In section 5, we apply the many-body
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theory to a varying scattering length: in section 5.1 we uncover the mean field limit;
and in section 5.2 we develop a macroscopic PDE for pair creation. In section 6, we
homogenize the derived PDEs: in section 6.1 we discuss some technical preliminaries
and assumptions; in section 6.2 we focus on the NSE; and in section 6.3 we describe
the procedure for the stationary Ǩ. In section 7, we find approximate homogenized
solutions for a slowly varying trap. In section 8, we compute the fraction of particles
out of the condensate. In section 9, we discuss our results and outline some open
problems.

2. Notation conventions. We adhere to the following conventions throughout.
• C is the complex plane, Z is the set of all integers, and N = {1, 2, . . .}. The
star (∗) operation denotes Hermitian conjugation.

• d is the one-particle spatial coordinate. We take d = 3, unless we state
otherwise; for example, in section 6 some results are stated for d = 1.

• B(γ, δ) is the δ-neighborhood of the hypersurface γ (embedded in Rd).
• Td denotes the d-dimensional unit torus (cell). Functions that satisfy A(x+
ek) = A(x) for all x = (x1, . . . , xd) ∈ Rd and k = 1, . . . d, where ek’s are unit
Cartesian vectors, are called 1-periodic. 〈A〉 is the average (or mean) of A.

• (F,G)2 denotes the one-particle inner product
∫
D
F (x)G(x) dx, D ⊆ R

d, with
induced norm ‖F‖L2(D). The scalar product in the Fock space, F, is denoted
by 〈·, ·〉F (to be defined precisely in section 3.1); the induced norm is ‖ · ‖F.

• L2
s(R

3n) is the space of symmetric L2 functions on R3n, which are invariant
under permutations of the particle spatial coordinates, (x1, . . . , xn).

• As usual, H1 denotes the Sobolev space W k,p for k = 1 and p = 2, with
dual space H−1; and H1

av is the space of H1 1-periodic functions with zero
average.

• The dual space H−1
av (Td) = {f ∈ H−1(Td)

∣∣ 〈f〉 = 0} is the Hilbert space
equipped with (f, h)H−1

av (Td) = ((−Δ)−1f, h)L2(Td) [27, 52]. ‖A‖−1 denotes

the H−1
av -norm of the 1-periodic A(x).

• The Fourier transform of h ∈ L2(Rd) is defined by ĥ(λ) =
∫
Rd h(x)e

−iλ·x dx.
• Let (the 1-periodic) F be in L2(Td). If F has zero mean, define ∂−α

x by

∂−α
x F (x) :=

∑
j �=0

F̂j∏d
k=1(i2πjk)

αk

ei2πj·x , α = (α1, . . . , αd) ,

where αk = 0, 1, . . . , j = (j1, . . . , jd) ∈ Zd, and
∑

j �=0 F̂j e
i2πj·x is the Fourier

series for F . In this vein, we define (−Δ)−s (s > 0) by (−Δ)−sF (x) :=∑
j �=0[F̂j/(4π

2|j|2)s]ei2πj·x; note that 〈∂−αF 〉 = 0 = 〈(−Δ)−sF 〉.
• Writing f = O(g) (f = o(g)) means that f/g is bounded (tends to zero) in
some limit. The symbol f ∼ g is used to imply f − g = o(g) in some limit.

3. Background. In this section, we review the Fock space formalism and the
many-body perturbation scheme introduced for three spatial dimensions (3D) in [69,
70]. For further details on the quantized fields, the reader may consult, e.g., [3, 28,
29, 35, 59].

3.1. Fock space. The Fock space, F, is defined as the Hilbert space F = C ⊕⊕
n≥1 L

2
s(R

3n) (where
⊕

denotes the direct sum). F consists of vectors υ formed

by sequences {υ(n)} of n-particle symmetric wave functions, where υ(n) ∈ L2
s(R

3n)
and n ≥ 0. In this context, |vac〉 := {1, 0, . . .} = υ(0) ∈ F denotes the “vacuum
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state,” which has no particles at all. The N -particle state Ψ̌N is represented in F by
{υ(n)}n≥0, where υ

(n) ≡ 0 for n �= N and υ(N) = Ψ̌N [59]. The scalar product on F is

defined by 〈υ1, υ2〉F =
∑

n≥0〈υ(n)1 , υ
(n)
2 〉L2(R3n); and ‖ · ‖F denotes the induced norm.

The next step is to express the Hamiltonian as an operator on a physically ap-
propriate sector of F. For a one-particle wave function f ∈ L2(R3), the creation and
annihilation operators a∗(f) and a(f) on F are defined by

(a∗(f)υ)(n)(�xn) = n−1/2
n∑

j=1

f(xj)υ
(n−1)(x1, . . . , xj−1, xj+1, . . . , xn) ,(3.1)

(a(f)υ)(n)(�xn) =
√
n+ 1

∫
R3

dx f∗(x)υ(n+1)(x, �xn) , �xn := (x1, . . . , xn) .(3.2)

It follows that a(f) and a∗(g) satisfy the commutation relations a(f)a∗(g)−a∗(g)a(f)
=: [a(f), a∗(g)] = (f, g)2 and [a(f), a(g)] = [a∗(f), a∗(g)] = 0. Accordingly, the
operator-valued distributions ψ(x) and ψ∗(x), called, respectively, the boson field
annihilation and creation operators, are defined by3

(3.3) a∗(f) =
∫

dx f(x)ψ∗(x) , a(f) =

∫
dx f∗(x)ψ(x) ,

where ψ(x) and ψ∗(x) are time-independent (in the Schrödinger picture). Thus,
[ψ(x), ψ∗(y)] = δ(x− y) and [ψ∗(x), ψ∗(y)] = [ψ(x), ψ(y)] = 0; evidently, ψ(x)|vac〉 =
0. The particle number operator, N , on F satisfies (Nυ)(n) = nυ(n) and is given by
N =

∫
dxψ∗(x)ψ(x). Note that ψ∗ψ corresponds to the particle density.

The Hamiltonian HN corresponds to the operator H on F, where (Hυ)(n) =
H(n)υ(n), H(n) = Hn. In view of (1.1), this H is written in the form

(3.4) H =

∫
dx ψ∗(x)[−Δx + Ve(x)]ψ(x) +

1

2

∫
dxdy ψ∗(x)ψ∗(y)V(x, y)ψ(y)ψ(x) .

By restriction to the N -particle sector of F, we will use (abusing notation) the symbol
HN in place of H. Further, we will write Ψ̌N to denote the N -particle state as a
vector in F.

3.2. Many-body perturbation theory. For weakly interacting atoms (dilute
gas), the perturbation scheme should express the physical picture that only a small
fraction of particles escape from the condensate to occupy other states; i.e., the de-
pletion of the condensate is relatively small. Accordingly, split ψ(x) as [69, 70]

(3.5) ψ(x) = ψ0(t, x) + ψ1(t, x) ,

where ψ0 is the boson field annihilation operator for the condensate. If a0(t) :=
N−1/2a(Φ̌) is the operator annihilating one particle at state Φ̌, we have the relations

(3.6) ψ0(t, x) = N−1/2a0(t)Φ̌(t, x) , a0(t) = N−1/2

∫
dx Φ̌∗(t, x)ψ(x) ,

where N−1‖Φ̌‖2L2(R3) = 1, [a0(t), a
∗
0(t)] = 1, a0(t)|vac〉 = 0, ψ1 is the boson field anni-

hilation operator in the space orthogonal to the condensate, and
∫
dx Φ̌∗(t, x)ψ1(t, x)

= 0.4

3The domain of integration is implied by the variables and is often not shown.
4The t-dependence of ψ1 will be suppressed, unless an explicit statement is made to the contrary.
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Remark 3.1. The heart of the perturbation analysis lies in the treatment of
ψ1 as small in an appropriate sense; see Remark 3.2. This amounts to expanding
the Hamiltonian (3.4) in powers of ψ1 and ψ∗

1 , where different powers yield distinct
approximations at large scales when combined with corresponding expressions for Ψ̌N .

The usual mean field limit stems formally from linearization of HN in ψ∗
1 and ψ1

by use of the tensor product ansatz (1.5) [70]. Then, the NSE dynamics come from
enforcement of the N -body Schrödinger equation (1.4a), as shown in section 5.1.

The retainment of higher-than-linear ψ1 and ψ∗
1 terms in HN amounts to pair

excitation [69]. The expansion for HN must be accompanied with the modification of
the ansatz for Ψ̌N according to (1.8); see section 5.2 for details.

In view of (1.8), the operator P generating pairs from the condensate reads as
[69, 70]

(3.7) P(t) = [2N0(t)]
−1

∫ ∫
dxdy ψ∗

1(t, x)ψ
∗
1(t, y) Ǩ(t, x, y) a0(t)

2 ,

where N0(t) = (Ψ̌1
N , a

∗
0(t)a0(t)Ψ̌

1
N )2 is the number of particles at the condensate,

and Ǩ is the pair excitation function. In (3.7), a20 annihilates two particles at the
condensate, while ψ∗

1(x)ψ
∗
1 (y) creates two particles at x and y in other states. For

definiteness, assume that

(3.8) Ǩ(t, x, y) = Ǩ(t, y, x) , (Φ̌(t, ·), Ǩ(t, ·, y))2 = 0 ,

where ‖Ǩ(t, x, ·)‖L2(R3), ‖Ǩ(t, ·, ·)‖L2(R3×R3) <∞.

The ψ1-expansion of the Hamiltonian is combined with the heuristic rule

(3.9) N = a∗0(t)a0(t) +
∫

dx ψ∗
1(t, x) ψ1(t, x) ,

which sets the particle number operator, N , equal to the (fixed) number N . This
replacement is made for later algebraic convenience. Equation (3.9) should be inter-
preted in the sense that N Ψ̌1

N = NΨ̌1
N , by restriction to the N -sector of F.

Remark 3.2. The number of particles out of the condensate equals

(3.10) N1 = 〈Ψ̌N ,N1Ψ̌N 〉F ∼ 〈Ψ̌1
N ,N1Ψ̌

1
N〉F , N1 :=

∫
ψ∗
1(x)ψ1(x) dx .

The perturbation scheme relies on the requirement that N1/N0 be small, where N0 =
〈Ψ̌N , a

∗
0a0Ψ̌N〉F is the number of particles at the condensate; thus, N1/N � 1.

Equation (3.9) suggests a bookkeeping procedure that respects conservation of the
total number of particles. Accordingly, a∗0a0 in HN will be replaced by N−∫ dxψ∗

1ψ1.

Definition 3.3. Quantum fluctuations describe the many-body dynamics that
arise from quadratic and higher-order ψ1 and ψ∗

1 terms in the many-particle Hamil-
tonian, HN . In this case, Ψ̌N deviates from the tensor product form (1.5).

3.3. On past works. Theoretical efforts to describe quantum fluctuations in
BEC date back to the 1940s. Recent variants, e.g., [58, 65], of Bogoliubov’s approach
[5] essentially invoke basis functions for particle excitations in correspondence to the
shape of the external potential, Ve(x). In the translation-invariant case, Ve = const.,
with periodic boundary conditions, the most convenient set of such basis functions of
course represents states of definite particle momenta, thus consisting of plane waves.
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The scheme by Esry [23] and Esry et al. [24] is based on a combination of many-
body techniques, namely, the Hartree–Fock, “random phase,” and “configuration in-
teraction” approximations. This scheme appears to be tailored to the shape of the
trap; basis functions are chosen accordingly. Other theories offer corrections to the
NSE from a mean field viewpoint for the interaction between the condensate and
other states; see, e.g., Gardiner [26], Castin and Dum [8], and Kolomeisky et al. [43].
These schemes involve only the condensate wave function; hence, they seem not to
be genuinely different from the limit where particle correlations are lumped to pa-
rameters of a macroscopic theory that involves one dependent variable (Φ̌). It should
be mentioned that studies of the excitation spectrum based on what is known as the
“Bogoliubov–de Gennes equations” [57] seem to mostly retain features of the NSE.
We can hardly view these methods as an exact substitute for the pair excitation
formalism of this article.

Static theories of BEC often focus on the low-density expansion for the ground
state energy of the particle system; see, e.g., works by Lieb [45], Lieb et al. [46], and
Lieb and Yngvanson [47]. For periodic boundary conditions (without a trap), the

expansion parameter is known to be
√
ρa3, where ρ is the (uniform) gas density [61,

68]. In the presence of a trap, the expansion for the ground state energy corresponds
to having Ǩ act back to the NSE for Φ̌. (Thus, the NSE must acquire nontrivial
corrections.) The issue of obtaining corrections to the mean field energy of the Bose
gas is not addressed here. Such corrections have been pursued via a hydrodynamic
theory for superfluids in, e.g., [51, 56, 57].

4. Overview of our results. The main results of this article concern (i) the
derivation of equations of motion for the condensate and pair excitation under a
spatially varying scattering length; (ii) two-scale expansions for stationary Φ̌ and Ǩ
when the scattering length has a periodic microstructure; (iii) solution of the effective
(homogenized) equations for slowly varying traps, Ve(x) = U(ε̆x); and (iv) description
of the fraction of particles out of the condensate.

4.1. Macroscopic equations of motion (sections 5.1 and 5.2). Starting
from the Hamiltonian (1.1) with (1.2) and the many-body wave function (1.8), we
show that, for the lowest bound state, the time-independent condensate wave func-
tion Φ(x) = eiectΦ̌(t, x) (where ec is the energy per particle of the condensate) and
corresponding pair excitation kernel K(x, y) satisfy equations of the form

(4.1) L[Φ]Φ(x) = 0 ,

[L(x) + L(y) + g(x)|Φ(x)|2 + g(y)|Φ(y)|2]K(x, y) + g(x)Φ(x)2δ(x− y)

= −C[Φ,K;A](x, y) +N−1ℵ[Φ,K;A](x, y) .(4.2)

In the above, L[Φ(x)] := −Δx + Ve(x) + g(x)Φ(x)2 − μ := L(x), μ = ec + ζ/2,
where ζ is defined via (5.2), and C[Φ,K;A] and ℵ[Φ,K;A] are (in principle) nonlinear
functionals of Φ and K; see (5.4) and (5.17).

4.2. Two-scale expansions (sections 6.2 and 6.3). If the interaction
strength g(x) has the periodic microstructure (1.9), then Φ and K admit expansions
of the form

(4.3) Φ = Φ0(x)+ε
2Φ2(x/ε, x)+ · · · , K = K0(x, y)+ε

2K2(x/ε, y/ε, x, y)+ · · · .
By classical homogenization, we show why the O(ε) terms should vanish. The zeroth-
order terms, Φ0 and K0, are found to be ε-independent and subject to PDEs (4.1) and
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(4.2) with g(x) replaced by g0. The coefficient Φ2 partly contains the slowly varying
parts Φ0(x) = f0(x) and f2(x); and K2 contains K0(x, y) = κ0(x, y) and κ2(x, y).
Both Φ2 and K2 also carry information for the oscillations of the scattering length;
see Proposition 6.9 (condensate wave function) and Proposition 6.12 (pair-excitation
kernel) for d = 1, along with Remarks 6.10 and 6.14 for d = 3. The ensuing energy
per particle of the condensate reads as

(4.4) ec = ec,0 + ε2ec,2 + · · · ;

see Remark 6.11 for formulas pertaining to ec,0 and ec,2.

4.3. Slowly varying trap (sections 7.1 and 7.2). For Ve(x) = U(ε̆x), ε̆� 1,
we derive simplified formulas for the coefficients Φj and Kj (j = 0, 2) of two-scale
expansions (4.3) by singular perturbation theory. We point out that a plausible
boundary layer in the NSE stems from a vicinity of the surface {x ∈ R3

∣∣U(x) = μ}.
The outer and inner solutions for Φ0 are described by (7.6) and (7.9) under the

change of variables φ0(x) := f0(x/ε̆); see also Remark 7.1. The solutions pertaining to
Φ2 are described in (7.11) and (7.14), along with Remark 7.3, under φ2(x) := f2(x/ε̆).
Formulas for the energy ec are provided in (7.8) and (7.13); and the effect of the
periodic microstructure of g(x) is pointed out in Remark 7.2.

In regard to the coefficients Kj (j = 0, 2), we use center-of-mass coordinates
and separate these into the fast x̄ = x − y and the slow X = ε̆(x + y)/2. Formulas
(7.22) and (7.26) describe the outer and inner solutions for the Fourier transform of
K0(x, y) with respect to x̄ when X lies inside the trap, with the change of variables
ß0(x̄, X) := κ0(X/ε̆+x̄/2, X/ε̆−x̄/2). The corresponding outer solution for the Fourier
transform in x̄ of K2 is provided by (7.33) with ß2(x̄, X) := κ2(X/ε̆+ x̄/2, X/ε̆− x̄/2).

4.4. Description of condensate depletion (sections 8.1 and 8.2). The
fraction, ξdp, of particles that occupy states out of the condensate is computed through
two-scale expansions (4.3). First, on the basis of formal expression (8.1) for ξdp in
terms of the trace of an operator depending on K, we derive the ε-expansion

(4.5) ξdp = ξdp,0 + ε2ξdp,2 + · · · ;

see (8.4)–(8.6). Second, the coefficients of this expansion are computed explicitly for
a macroscopic trap, Ve(x) = U(ε̆x), by use of formulas from section 7; see (8.12)
and (8.14). The combined effect on ξdp of the oscillatory particle repulsions and the
trapping potential is discussed in Remark 8.2.

5. Equations of motion: Varying scattering length. In this section, we
derive macroscopic equations from Hamiltonian (3.4) with interaction (1.3). Our
starting point is to express HN in terms of powers of ψ1 and ψ∗

1 via the simplified
point interaction (1.3). Thus, we write HN = H(0)+H(1)+H(2)+H(3)+H(4), where
H(m) denotes the constituent of HN where each of ψ1 and ψ∗

1 appears m times [69].

5.1. Mean field. Starting from the microscopic description we now show for-
mally that Φ̌(t, x) obeys the NSE with a varying scattering length, namely,

(5.1) i∂tΦ̌(t, x) = [−Δ+ Ve(x) + g(x)|Φ̌|2 − (1/2)ζ(t)]Φ̌ ,

where

(5.2) ζ(t) := N−1

∫
dx g(x) |Φ̌(t, x)|4 .
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For bound states, we set

(5.3) Φ̌(t, x) = e−i(μ−ζ/2)tΦ(x) ,

eliminating ζ from (5.1), where ec = μ− ζ/2 is the energy per particle of the conden-
sate. We consider the lowest μ and hence a real Φ. Equation (5.1) thus yields

[−Δ+ Ve(x) + g(x)Φ2]Φ = μΦ , μ = ζΔ + ζe + ζ ,(5.4)

ζΔ := N−1

∫
dx |∇Φ|2 , ζe := N−1

∫
dxVe(x)|Φ(x)|2 .(5.5)

We proceed to show (5.1) by revisiting, and slightly modifying, Wu’s approach
[70]. The Hamiltonian (3.4) needs to be linearized in ψ1 and ψ∗

1 . Hence, we write

(5.6) HN ≈ H(0) +H(1) ,

where, by use of the operator identity a∗0
2a20 = a∗0a0(a∗0a0 − 1), we have

H(0) =

∫
dx

{
Φ̌∗(t, x)[−Δ+ Ve(x)]Φ̌(t, x) +

N − 1

2N
g(x)|Φ̌(t, x)|4

}
,(5.7)

H(1) = N−1/2

∫
dx ψ∗

1

{
a0(−Δ+ Ve)Φ̌ +N−1a∗0a

2
0 g(x)Φ̌|Φ̌|2

}
+ c.c. ,(5.8)

where “c.c.” denotes the Hermitian conjugate of the first term on the right-hand side.
Recall (3.9), by which a∗0a0 ∼ N and thus

1− 〈Ψ̌N , (a
∗
0a0/N)Ψ̌N 〉F � 1 .

To this order, the N -body wave function is replaced by the tensor product (1.5):

(5.9) Ψ̌0
N(t) =

a∗0(t)
N

√
N !

|vac〉 ,

which means that N particles are created at the state Φ̌. By Schrödinger equa-
tion (1.4a) with (5.6) and (5.9), we obtain

(5.10) (i∂ta
∗
0)Ψ̃N−1(t) = [H̃(0) + H̃(1)]Ψ̃N−1(t) ;

here, we used the identity a0a
∗
0
n = a∗0

na0 + na∗0
n−1 and the definitions

Ψ̃N−1(t) := N
a∗0

N−1

√
N !

|vac〉 ,(5.11)

H̃(0) := N−1a∗0(t)
∫

dx

{
Φ̌∗(−Δ+ Ve)Φ̌ +

N − 1

2N
g(x) |Φ̌|4

}
,(5.12)

H̃(1) := N−1/2

∫
dx ψ∗

1

{
(−Δ+ Ve)Φ̌ +

N − 1

N
g(x) Φ̌|Φ̌|2

}
.(5.13)

The next step is to write an equation of motion for a∗0(t); (5.10) implies

(5.14) i∂ta
∗
0 = H̃(0) + H̃(1) .

By a∗0(t) = N−1/2
∫
dx Φ̌(t, x)ψ∗(x), (5.14) yields

(5.15)∫
dy ψ∗(y) (i∂tΦ̌) =

∫
dy ψ∗(y)

{
−Δy + Ve +

N − 1

N
g(y)|Φ̌|2 − N − 1

2N
ζ

}
Φ̌(t, y) ,

where ζ = ζ(t) is defined by (5.2). The contraction of (5.15) with ψ(x) by use of
[ψ(x), ψ∗(y)] = δ(x− y) leads to (5.1).
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5.2. Next higher order: Pair excitation. In the remainder of this article,
we restrict our attention to the lowest one-particle bound state. In this section, we
derive an equation of motion for the pair-excitation kernel K for varying scattering
length. By (3.7), the Ǩ(t, x, y) consistent with (5.4) reads as

(5.16) Ǩ(t, x, y) = e−i(2μ−ζ)tK(x, y) .

The exponential on the right-hand side is a consequence of ansatz (1.8) and the fact
that we look for stationary solutions of (1.4a). We show that K(x, y) satisfies

0 = (−Δx −Δy)K + g(x)Φ(x)2δ(x− y) + {−2ζΔ − 2ζ − 2ζe + Ve(x) + Ve(y)

+ 2[g(x)|Φ(x)|2 + g(y)|Φ(y)|2]}K(x, y) +

∫
dz g(z)Φ∗(z)2K(x, z)K(y, z)

−N−1

{∫
dz [Φ(y)K(x, z) + Φ(x)K(y, z)]g(z)|Φ(z)|2Φ∗(z)

+ Φ(x)Φ(y)[g(x)|Φ(x)|2 + g(y)|Φ(y)|2 − ζ]

}
,(5.17)

where Φ obeys (5.4), and ζ, ζΔ, and ζe are defined in (5.2) and (5.5); cf. (4.9) of [70]
with constant g. Assuming a unique solution of (5.17) (in some appropriate space),
we infer that if Φ is real, the corresponding K(x, y) should be taken to be real.

We proceed to derive (5.17). By keeping quadratic ψ1 and ψ∗
1 terms in HN , and

applying ansatz (1.8) with (3.7) and N0 = N , we write the Hamiltonian as

(5.18) HN ≈ HN,2 = H(0) +H(1) +H(2) .

By (5.4) and the orthogonality of Φ with ψ1, we assert that

(5.19) H(0) +H(1) = N
(
ζΔ + ζe +

1
2ζ
)
,

H(2) =

∫
dx ψ∗

1 [−Δ+ Ve − ζΔ − ζe − ζ + 2g(x)Φ2]ψ1(5.20)

+ 1
2N

−1a0
2

∫
dx g(x)Φ∗(x)2 ψ∗

1
2 + c.c. .(5.21)

The next step is to apply the many-body (stationary) Schrödinger equation (1.4a)
with HN replaced by (5.18) and the Ψ̌N given by Ψ̌N(t) = e−iEN tΨN under (1.8)
and (3.7); thus, the pair-excitation approximation Ψ1

N for ΨN obeys

(5.22) HN,2Ψ
1
N = ENΨ1

N ⇒ (
e−PHN,2e

P)Ψ0
N = ENΨ0

N .

Note that the non-Hermitian operator e−PHN,2e
P is required to have an eigenstate

equal to the tensor product Ψ0
N .

The operator e−PHN,2e
P can be computed via the Lie expansion [67]

(5.23) e−PAeP =
∑
n≥0

(−1)n

n!
[P ,A]n ,

where [P ,A]n is the iterated commutator defined by [P ,A]0 = A and [P ,A]n+1 =
[P , [P ,A]n]. A crucial property is [P , HN,2]n = 0, n ≥ 3. Following [70], we find

(5.24) e−PHN,2e
P = N

(
ζΔ + ζe +

1
2ζ
)
+Ha +Hc

a .
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The terms Ha and Hc
a in (5.24) have distinct roles. First, Ha contains ψ∗

1ψ1 and
ψ2
1 and is thus manifestly compatible with (5.22):

Ha =

∫
dx

{
ψ∗
1(x)[−Δ − ζΔ − ζe − ζ + Ve + 2g(x)|Φ(x)|2]ψ1(x)

+ 1
2g(x)Φ

∗(x)2
[
K(x, x) + 2

∫
dyK(x, y)ψ∗

1(y)ψ1(x)

]
+ 1

2N
−1g(x)Φ∗(x)2a∗0

2ψ1(x)
2

}
.

By contrast, Hc
a contains ψ∗

1ψ
∗
1 , which in principle is not compatible with (5.22):

Hc
a = N−1

∫
dx

{
1
2g(x)Φ(x)

2ψ∗
1(x)

2 −
∫

dy (ΔxK)ψ∗
1(x)ψ

∗
1(y) + (−ζΔ − ζe − ζ + Ve)

×
∫

dyK(x, y)ψ∗
1(x)ψ

∗
1 (y) + 2g(x)|Φ(x)|2

∫
dy K(x, y)ψ∗

1(x)ψ
∗
1(y)

+ 1
2g(x)Φ

∗(x)2
∫

dy dz K(x, y)K(x, z)ψ∗
1(y)ψ

∗
1(z)

}
a20 .

This Hc
a is written as

(5.25) Hc
a = (2N)−1

∫
dxdy ψ∗

1(x)ψ
∗
1 (y)L(x, y)a

2
0 ,

where the associated kernel is

L(x, y) = g(x)Φ(x)2δ(x− y)− (Δx +Δy)K + {−2ζΔ − 2ζ − 2ζe + Ve(x) + Ve(y)

+ 2[g(x)|Φ(x)|2 + g(y)|Φ(y)|2]}K(x, y)

+

∫
dz g(z)Φ∗(z)2K(x, z)K(y, z)− σ(x)Φ(y) − σ(y)Φ(x) ;(5.26)

σ(x) is to be determined. Note that the appearance of the Dirac mass in (5.26) is due
to the (simplified) interaction (1.3).

By (5.22) and (5.24), K(x, y) is determined by the condition that Hc
a be zero [70]:

(5.27) L(x, y) ≡ 0 .

To find σ(x), use ‖Φ‖2L2(R3) = N ; thus, (5.26) leads to the integral equation∫
dy K(x, y)[−Δy + Ve + 2g(y)|Φ(y)|2]Φ∗(y) + g(x)|Φ(x)|2Φ(x)

= Nσ(x) + Φ(x)

∫
dy σ(y)Φ∗(y) ,(5.28)

which has the explicit solution

(5.29) σ(x) = N−1

{∫
dyK(x, y)g(y)|Φ(y)|2Φ∗(y) + g(x)|Φ(x)|2Φ(x)− 1

2ζΦ(x)

}
.

The substitution of this σ into (5.26) under (5.27) yields (5.17).
Equations (5.4) and (5.17) form the core of this article. Note that, to the present

order of many-body perturbation, the NSE (5.1) is decoupled from K.
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6. Periodic homogenization. In this section, we formally study (5.4) and
(5.17) with the periodic g(x) of (1.9) for the lowest bound state. To demonstrate
the computations with relative ease, we first present the homogenization program in
1D (sections 6.2 and 6.3). We then extend the homogenization results to 3D.

6.1. Preliminaries. In this subsection, we outline a few technical assumptions
and preliminary results. The starting point consists of the two-scale expansions

Φε(x) = Φ(x) = Φ0(x̃, x) +
∑
n≥1

εn Φn(x̃, x) ,

K(x, y) = K0(x̃, ỹ, x, y) +
∑
n≥1

εnKn(x̃, ỹ, x, y) , x̃ = x/ε , ỹ = y/ε ,(6.1)

where x̃ and ỹ are fast variables and the superscript ε is dropped for ease of notation.
The real eigenvalue, μ, for the condensate is

(6.2) μ =
∑
n≥0

εn μn , μn = O(1) as ε ↓ 0 .

The study of convergence of expansions (6.1) and (6.2) lies beyond our purposes.
We restrict our attention to the computation of the first two nonzero terms of these
expansions, which we deem adequate for predictions regarding dilute atomic gases.
The corresponding energy is discussed in section 7. The procedure presented here can
be extended to higher orders, yet it becomes increasingly cumbersome with n.

Our main hypotheses are summarized in the following remarks.
Remark 6.1. We assume that the A(x) in (1.9) is 1-periodic and smooth; and

Ve(x) is smooth, positive, and monotone in |x| and growing algebraically at large
distances, i.e., Ve(x) = O(|x|�) as |x| → ∞, � > 1. In view of (1.9), we set

(6.3) A(x + ek) = A(x) , 〈A〉 = 0 ,

for all k = 1, . . . , d, where {ek}dk=1 is the set of unit Cartesian vectors.
Remark 6.2. We consider 1-periodic Φn(·, x) and Kn(·, x, y) and assume that

Kn(x̃, ỹ, ·) ∈ W 1,1(Rd×Rd) (see section 7). Further, impose ‖Φn(x̃, ·)‖H1(Rd) <∞ and
‖Kn(x̃, ỹ, ·)‖L2 <∞. For later convenience, take Φn(x̃, x) to be bounded, sufficiently
differentiable, and decaying rapidly for large x, as anticipated from properties of Ve(x)
and A(x).

Remark 6.3. The physical domains of Φ and K are R3 and R3 × R3 (d = 3),
respectively. It will be explicitly shown via heuristics that the kernelK(x, y) is weakly
singular on the diagonal (x = y), due to the presence of the Dirac mass in (5.17); see
Remark 7.4. In our classical homogenization program for the kernel K(x, y) (section
6.3), we essentially restrict our attention off the diagonal (x �= y).

In sections 6.2 and 6.3, we make use of a few results which we need to state here
in the form of lemmas for d spatial dimensions. The first lemma, given without proof,
is a consequence of the Fredholm alternative (see also [52] and Lemma 4 in [25]).

Lemma 6.4 (solvability condition). Equation −Δu = S(·, x), where S(·, x) is
1-periodic, admits a 1-periodic solution u(·, x) only if

(6.4) 〈S(·, x)〉 =
∫
Td

S(x̃, x) dx̃ = 0 .

If (6.4) is satisfied, the solution to −Δx̃u = S(x̃, x) reads as (see Remark 5 in [25])

(6.5) u(x̃, x) = −Δ−1
x̃ S(x̃, x) + c(x) ,
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where c(x) is reasonably arbitrary. Note that Δ−1
x̃ S is 1-periodic with zero mean. We

refer to any solution of form (6.5) with 〈S〉 = 0 as “admissible.”
The next lemma concerns oscillatory integrals; for similar results, see, e.g., [19].
Lemma 6.5 (oscillatory integrals I). Consider the function h : Rd → R and the

1-periodic P : Rd → C with 〈P 〉 = 0. Suppose P is bounded (P ∈ L∞(Rd)) and h has
m summable derivatives for some m ∈ N, with ∂βxh := ∂β1

x1
· · · ∂βd

xd
h → 0 as |x| → ∞,

where
∑d

k=1 βk ≤ m− 1, βk ≥ 0, β = (β1, . . . , βd); then,

(6.6)

∫
Rd

P

(
x

ε

)
h(x) dx = O(εm) as ε ↓ 0 .

Proof. Define the 1-periodic P (−α)(x̃) := ∂−α
x̃ P (x̃), where |α| :=∑d

k=1 αk = m:

I(ε) := εd
∫
Rd

P (x̃)h(εx̃) dx̃ = εd
∫
[∂αx̃P

(−α)(x̃)]h(εx̃) dx̃

= (−1)|α|ε|α|+d

∫
P (−α)(x̃)h(α)(εx̃) dx̃ , h(α)(x) := ∂αx h ,(6.7)

where we applied integration by parts with vanishing boundary terms. Consequently,

(6.8) |I(ε)| ≤ εm‖P (−α)‖L∞

∫
Rd

|h(α)(x)| dx ≤ Cεm,

which provides the desired estimate.
Another result for oscillatory integrals invokes the Fourier transform.
Lemma 6.6 (oscillatory integrals II). Consider h : Rd → C and the 1-periodic

P : Rd → C, where h ∈ L2(Rd), P ∈ L2(Td), and 〈P 〉 = 0. Suppose that the Fourier

transform of h(x) satisfies eiλ·x0 ĥ(λ) = c1 λ
−2s + o(|λ|−2s) as |λ| → ∞, λ ∈ Rd, for

some s > d/4, x0 �= 0, and constant c1 ∈ C. Then,

(6.9)

∫
Rd

P

(
x

ε

)
h(x) dx = c1 ε

2s (−Δx)
−sP

(
x

ε

)∣∣∣∣
x=x0

+ o(ε2s) as ε ↓ 0 .

Note that the condition 4s > d is consistent with h ∈ L2(Rd).

Proof. By P (x) =
∑

j �=0 P̂ (j) e
i2πj·x and ĥ(λ) =

∫
Rd e

−iλ·x h(x) dx, write∫
Rd

P

(
x

ε

)
h(x) dx =

∑
j �=0

P̂ (j)

∫
ei(2πj/ε)·xh(x) dx =

∑
j �=0

P̂ (j) ĥ

(
−2πj

ε

)

=
∑
j �=0

P̂ (j)

[
c1e

i2πj·(x0/ε)

(−2πj/ε)2s
+ o(ε2s|j|−2s)

]
as ε ↓ 0 ,(6.10)

which leads to (6.9) in view of the Fourier series for (−Δx)
−sP (x/ε) at x = x0.

Remark 6.7. A few comments on the relevance of Lemmas 6.5 and 6.6 are in
order. We apply both lemmas to integrals with P (x) ≡ ∂−α

x A(x). Lemma 6.5 is
invoked for integrals where h involves (i) products of Φn, supplied with sufficient
regularity (large enough m); or (ii) products of Kn, for which m = 1 by hypothesis.
Lemma 6.6 is used to refine information about integrals containing products of Kn,
in anticipation of a singularity on the diagonal for each factor of these products. For
example, in section 6.3 we encounter an integral of the form∫

Rd

dz P

(
z

ε

)
f(z)κ0(x, z)κ0(z, y) =

∑
j �=0

P̂ (j)

∫
dz ei(2πj/ε)·zf(z)κ0(x, z)κ0(z, y) ,
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where, by inspection of PDE (5.17) and from section 7 for K0 = κ0, κ0(x, z) is
weakly singular at z = x; see Remark 7.4. As ε ↓ 0, the major contribution to
integration comes from balls of radii O(ε) centered at z = x and z = y. By assuming
|x− y| > O(ε), we can claim that these contributions are nonoverlapping and can be
separated; thus, we compute∫

dz ei(2πj/ε)·zf(z)κ0(x, z)κ0(z, y) ∼ f(x)κ0(x, y)

∫
dz ei(2πj/ε)·z κ0(x, z)

+ f(y)κ0(x, y)

∫
dz ei(2πj/ε)·z κ0(z, y) .(6.11)

The emerging integrals are then estimated with recourse to Lemma 6.6 if sufficient
information is provided for the Fourier transform of κ0(·, z). In the case where Ve
becomes a constant, the system becomes translation invariant and Kn depends only
on x−y. For a slowly varying Ve, each term Kn depends primarily on the fast variable
x − y; an additional, slow variable is proportional to x + y and can be treated as a
parameter (see section 7).

Remark 6.8. We assume that the Fourier transform of K0(x̃, ỹ, x, ·), with fixed
(x̃, ỹ) and x, satisfies the hypothesis of Lemma 6.6 with x0 ≈ x and s ≥ 1. In fact, the
value s = 1 is extracted by heuristics in section 7 via the center-of-mass coordinates
and singular perturbations for slowly varying traps; cf. (7.21).

6.2. Effective equations for condensate. For d = 1, (5.4) for the condensate
wave function becomes

(6.12) {−∂2x + Ve(x) + g0[1 +A(x/ε)](Φ)2}Φ(x) = μΦ .

In this section, we start with (6.12) and apply (6.1) and (6.2).
Proposition 6.9 (consistency of two-scale expansion with NSE). The formal

two-scale expansion for Φ(x), x ∈ R, up to O(ε2) reads as

(6.13) Φ(x) = f0(x) + ε2 {g0f0(x)3 [∂−2
x̃ A(x̃)] + f2(x)} + · · · ,

where f0, f2 ∈ H1(R), N−1‖f0‖2L2(R) = 1, (f0, f2)2 = 0, and

L0f0 := [−∂2x + Ve(x) + g0f0(x)
2 − μ0]f0 = 0 ,(6.14)

L2f2 := [−∂2x + Ve(x) + 3g0 f0(x)
2 − μ0]f2(x) = 3g20f

5
0 ‖A‖2−1 + μ2f0 ;(6.15)

L2 := L0 + 2g0f
2
0 . The lowest eigenvalue μ is given by expansion (6.2) with

μ0 = ζ0 + ζΔ0 + ζe0 ,(6.16)

μ1 = 0 ,(6.17)

μ2 = −3g20 ‖A‖2−1

(f0,L−1
2 f5

0 )2

(f0,L−1
2 f0)2

,(6.18)

and

(6.19) ζ0 := g0N
−1‖f2

0 ‖2L2 , ζΔ0 := N−1‖∂xf0‖2L2 , ζe0 := N−1(f0, Vef0)2 .

In the proof of Proposition 6.9 we invoke the one-dimensional versions of Lem-
mas 6.4 and 6.5. We do not address the existence of solution to (6.14), assuming that a
finite-energy solution, f0, exists. For a rigorous variational treatment of bound states
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of NSE, see, e.g., [60, 64] (and [31] for nodal solutions).5 Given an acceptable solution
f0, the existence of a unique finite-energy f2 should stem from the invertibility of L2

(as outlined in the proof below).
Proof. The substitution of (6.1) and (6.2) into (6.12) along with the replacement

of ∂x by ∂x + ε−1∂x̃ yields the following cascade of equations for Φn:

O(ε0) : −∂2x̃Φ0 = 0 =: S0 ,(6.20)

O(ε1) : −∂2x̃Φ1 = 2∂x∂x̃Φ0 =: S1 ,(6.21)

O(ε2) : −∂2x̃Φ2 = 2∂x̃∂xΦ1 − {−∂2x + Ve(x) + g0[1 +A(x̃)]Φ2
0 − μ0}Φ0 =: S2 ,(6.22)

O(ε3) : −∂2x̃Φ3 = 2∂x̃∂xΦ2 − {−∂2x + Ve(x) + 3g0[1 +A(x̃)]Φ2
0 − μ0}Φ1

+ μ1Φ0 =: S3 ,(6.23)

O(ε4) : −∂2x̃Φ4 = 2∂x̃∂xΦ3 − {−∂2x + Ve + 3g0[1 +A(x̃)]Φ2
0 − μ0}Φ2

− 3g0[1 +A(x̃)]Φ0Φ
2
1 + μ1Φ1 + μ2Φ0 =: S4 .(6.24)

Note the appearance of Ve only in the equations for n ≥ 2. Equations (6.20)–(6.24)
suffice for our purpose of determining Φ0 along with the corrections Φ1 and Φ2.

To determine μn for n ≥ 1, we need to consider the normalization condition
‖Φ‖2L2 = N (which affects the prefactor in the nonlinear term of the NSE for Φ). The
two-scale expansion (6.1) for Φ thus yields the relations

(6.25) ‖Φ0‖2L2 = N , (Φ0,Φ1)2 = 0 , ‖Φ1‖2L2 + 2(Φ0,Φ2)2 = 0 ,

where N is treated as an O(1) parameter.
PDEs (6.20)–(6.24) for Φn are recast conveniently to

(6.26) −∂2x̃Φn = Sn(x̃, x) , Sn(x̃+ 1, x) = Sn(x̃, x) .

Equation (6.26) is solved via Lemma 6.4 for d = 1.
By (6.5), (6.20), and (6.21), the admissible Φ0 and Φ1 are x̃-independent:

(6.27) Φ0(x̃, x) = f0(x) , Φ1(x̃, x) = f1(x) .

By contrast, the remaining terms of expansion (6.1) are strictly (x̃, x)-dependent.
To derive an equation for f0(x) we resort to (6.22). By applying Lemma 6.4 to

S2(x̃, x) we obtain (6.14). Formula (6.16) for μ0 is obtained by taking the L2-inner
product of (6.14) with f0 and using the first one of relations (6.25), ‖f0‖2L2 = N . The
enforcement of (6.14) in (6.22) leads to

(6.28) ∂2x̃Φ2 = g0A(x̃)f0(x)
3 ⇒ Φ2(x̃, x) = g0f0(x)

3 [∂−2
x̃ A(x̃)] + f2(x) .

We address the f2(x) introduced above at a later stage of this proof.
Next, Φ1(x) = f1(x) is determined with recourse to (6.23). Application of solv-

ability condition (6.4) to the right-hand side of (6.23) entails

(6.29) [−∂2x + Ve(x) + 3g0f0(x)
2 − μ0]f1(x) = μ1f0(x) (g0 > 0) .

We now show that (6.29) admits only the (trivial) solution

(6.30) μ1 = 0 , f1 = 0 (a.e.) .

5In [31, 60] the authors primarily address the focusing NSE. Their variational approach should
also be applicable to the defocusing case with a trapping potential.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOSE–EINSTEIN CONDENSATION BEYOND MEAN FIELD 401

Consider the following argument for given μ0 and (nontrivial) f0. Equation (6.29)
has the form L2f1 = μ1f0, where the operator L2[f0] = L0[f0] + 2g0f

2
0 is symmetric.

By (6.14) we have that L0 is positive, i.e., (f,L0f)2 ≥ 0 for any f ∈ H1(R). In
view of the second condition in (6.25), the (L2-) inner product of (6.29) with f1
furnishes (f1,L2f1)2 = μ1(f1, f0)2 = 0. On the other hand, for any f1 ∈ H1(R),
(f1,L2f1)2 = (f1,L0f1)2 + 2g0(f1, f

2
0 f1)2 > 0 only if ‖f1‖L2 > 0; thus, L2 is positive

definite. (Notice that 0 does not belong to the point spectrum of L2.) We infer that
f1 = 0 (a.e.). Thus, (6.29) yields μ1 = 0. By (6.29), Φ3(x̃, x) is given by

(6.31) Φ3(x̃, x) = −2g0(∂xf
3
0 )[∂

−3
x̃ A(x̃)] + 3g0f0(x)

2f1(x) [∂
−2
x̃ A(x̃)] + f3(x) .

We turn our attention to f2(x) entering (6.28). By (6.24), we obtain

S4(x̃, x) = ∂2xf2 − Ve(x) f2(x) − 3g0f0[1 +A(x̃)]{f0(x)[g0f0(x)3(∂−2
x̃ A) + f2] + f2

1}
+ μ0 f2(x) + μ1f1(x) + μ2f0(x)− g0[3(∂

2
xf

3
0 ) + (Ve − μ0)f0(x)

3](∂−2
x̃ A)

+ 6g0 ∂x(f
2
0 f1)(∂

−1
x̃ A) .(6.32)

Hence, solvability condition (6.4) applied to S4 readily provides (6.15) by use of (6.30).
To derive (6.15) from (6.32), we invoke the relations

(6.33) 〈A (∂−2
x̃ A)〉 = (A, ∂−2

x̃ A)2 = −‖A‖2−1 .

Next, we assert (6.18) for μ2. Equation (6.15) is recast to the form L2f2 = b(x),
where b(x) := 3g20f

5
0 ‖A‖2−1 +μ2f0 and the operator L2 = L0 +2g0f

2
0 is invertible, as

we conclude in the course of deriving (6.30); thus, f2 = L−1
2 b(x), yielding

(6.34) f2(x) = 3g20‖A‖2−1L−1
2 f5

0 + μ2 L−1
2 f0 .

The term μ2 can now be determined with recourse to the third one of conditions (6.25),
which reduces to (Φ0,Φ2)2 = 0. By (6.28), we obtain

(6.35) μ2(f0,L−1
2 f0)2 = −3g20‖A‖2−1(f0,L−1

2 f5
0 )2 − g0(f0, (∂

−2
x̃ A)f3

0 )2 .

This relation yields (6.18). We applied Lemma 6.5 to the integral for (f0, (∂
−2
x̃ A)f3

0 )2
with P (x̃) ≡ ∂−2

x̃ A(x̃), where 〈∂−2
x̃ A〉 = 0 and f0 is sufficiently regular. By (6.34),

(6.36) f2(x) = 3g20‖A‖2−1

[
L−1
2 f5

0 − (f0,L−1
2 f5

0 )2

(f0,L−1
2 f0)2

L−1
2 f0

]
,

which satisfies (f0, f2)2 = 0. This observation concludes our proof.
Remark 6.10. Proposition 6.9 can be directly extended to d spatial dimensions,

d ≥ 2. The two-scale expansion for Φ reads as

(6.37) Φ(x) = f0(x) + ε2 {g0f0(x)3 [Δ−1
x̃ A(x̃)] + f2(x)}+ · · · ,

where f0(x) and f2(x) satisfy

[−Δx + Ve(x) + g0f0(x)
2 − μ0]f0 = 0 ,(6.38)

[−Δx + Ve(x) + 3g0 f0(x)
2 − μ0]f2(x) = 3g20f

5
0 ‖A‖2−1 + μ2f0 .(6.39)

Remark 6.11. Proposition 6.9 provides an expansion for μ. A corresponding
expansion for the energy, ec, per particle of the condensate follows from the relation
ec = μ− ζ/2 via Lemma 6.5: ec = ec,0 + ε2ec,2 + · · · , where

(6.40) ec,0 = μ0 − g0
2
N−1

∫
f0(x)

4 dx , ec,2 = μ2 − 2g0N
−1

∫
f0(x)

3 f2(x) dx .
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6.3. Effective equations for kernel K. In this section, we focus on (5.17) by
neglecting terms proportional to N−1.6 For d = 1, the equation of motion reads as

0 = (−∂2x − ∂2y)K + g0[1 +A(x/ε)]Φ(x)2δ(x− y) + {−2ζΔ − 2ζ − 2ζe

+ Ve(x) + Ve(y) + 2g0([1 +A(x/ε)]|Φ(x)|2 + [1 +A(y/ε)]|Φ(y)|2)}K(x, y)

+ g0

∫
dz [1 +A(z/ε)]Φ(z)2K(x, z)K(y, z) ,(6.41)

where

ζ = g0N
−1

∫
dx [1 +A(x/ε)]Φ(x)4 , ζΔ = N−1

∫
dx (∂xΦ)

2 ,

ζe = N−1

∫
dxVe(x)Φ(x)

2 .(6.42)

By substituting expansion (6.1) for K(x, y) into PDE (6.41), we derive effective equa-
tions for the coefficients Kn. The nonlocal term will be treated with recourse to
Lemma 6.5 with m = 1 and Lemma 6.6 for s = 1 (see Remark 6.8). In the following,
we treat Φn as known.

Proposition 6.12. The two-scale expansion for the pair-excitation kernelK(x, y),
(x, y) ∈ R2, reads as

K(x, y) = κ0(x, y) + ε2{g0(∂−2
x̃ A(x̃))f0(x)

2 δ(x − y) + 2g0[(∂
−2
x̃ A(x̃))f0(x)

2

+ (∂−2
ỹ A(ỹ))f0(y)

2]κ0(x, y) + κ2(x, y)} + · · · ,(6.43)

where κ0(x, y) and κ2(x, y) satisfy

L(xy)κ0 := {−Δxy + Ve(x) + Ve(y) + 2g0[f0(x)
2 + f0(y)

2]− 2μ0}κ0
= −C[f2

0 , κ0]κ0(x, y) +B0(x, y) , Δxy := ∂2x + ∂2y ,(6.44)

(6.45) L(xy)κ2 = −2C[f2
0 , κ0]κ2(x, y) +B2(x, y) ,

with L(xy) = L0(x) + L0(y) + g0[f0(x)
2 + f0(y)

2]. Recall that L0(x) = −∂2x + Ve(x) +
g0f0(x)

2 − μ0. The operator C[f, F ] and forcing terms B0(x, y) and B2(x, y) are

C[f, F ]K(x, y) := g0

∫
dz f(z) Sym{F,K}(z;x, y) ,(6.46)

Sym{F,K}(z;x, y) := 1
2 [F (x, z)K(y, z) +K(x, z)F (y, z)] ,(6.47)

(6.48) B0(x, y) := −g0 f0(x)2 δ(x− y) ,

B2(x, y) := 2g0
[
3g0‖A‖2−1f0(x)

4 − f0(x)f2(x)
]
δ(x− y) + {2Z2

+ 9g20‖A‖2−1[f0(x)
4 + f0(y)

4]− 4g0[f0(x)f2(x) + f0(y)f2(y)]}κ0
− 2C[f0f2, κ0]κ0 + 6g0 ‖A‖2−1 C[f4

0 , κ0]κ0 ,(6.49)

(6.50) Z2 := N−1g0
[
2(f3

0 , f2)2 − 3g0 ‖A‖2−1 ‖f3
0 ‖2L2

]
.

6Because of this simplification, the orthogonality of K and Φ is strictly abandoned. This is not
expected to distort the essential physics of the problem (with d = 3) [70].
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In the above, f0(x) and f2(x) are supposed to satisfy (6.14) and (6.15). We do
not address the existence and uniqueness of solutions to (6.44) and (6.45).7 Given a
solution f0, the respective K0 is assumed to exist uniquely. We show that K1 = 0, in
correspondence to Φ1 (see Proposition 6.9); our argument makes use of a small g0.

We first state a property pertaining to term C[f2
0 , κ0]u of (6.44) and (6.45).

Lemma 6.13. For given κ ∈ L2(Rd × Rd) and bounded f , the linear operator
C̃[f, κ] defined by

(6.51) C̃[f, κ]u(x, y) := g0

∫
Rd

f(z)κ(x, z)u(z, y) dz , u ∈ L2(Rd × R
d) ,

is bounded on L2(Rd × Rd).
The proof of this lemma relies on standard estimates and is omitted. We are now

in position to delineate the proof of Proposition 6.12.
Proof. The starting point consists of expansions (6.1) for Φ and K, which we

substitute into PDE (6.41) by use of the replacement

(6.52) Δxy ⇒ ε−2 {(∂x̃ + ε∂x)
2 + (∂ỹ + ε∂y)

2} .

By dominant balance, we find a cascade of equations for Kn. These have the form

(6.53) −Δx̃ỹKn(x̃, ỹ, x, y) = Ssc
n (x̃, ỹ, x, y) ,

where the source terms Ssc
n are described below. To ensure the solvability of (6.53)

for 1-periodic functions Kn(·, x, y), we apply condition (6.4). By (6.5), the admissible
solution of (6.53) reads as

(6.54) Kn(x̃, ỹ, x, y) = −Δ−1
x̃ỹ S

sc
n (x̃, ỹ, x, y) + κn(x, y) .

To obtain the source terms Ssc
n , we note the expansions

(6.55)

ζ ∼ ζ0 + ε2ζ2 , ζ0 = g0N
−1‖f0‖2L2 , ζ2 = 4g0N

−1

[
(f3

0 , f2)2 − g0‖A‖2−1‖f3
0‖2L2

]
;

ζΔ ∼ ζΔ0 + ε2ζΔ2 , ζΔ0 = N−1‖∂xf0‖2L2 ,

ζΔ2 = N−1

[
g20‖A‖2−1‖f3

0‖2L2 + 2(∂xf0, ∂xf2)2

]
;(6.56)

(6.57) ζe ∼ ζe0 + ε2ζe2 , ζe0 = N−1(f0, Vef0)2 , ζe2 = 2N−1(f2, Vef0)2 .

Regarding (6.55), we have simplified the integrals containing A. Specifically, we write
A∂−2

x̃ A = 〈A(∂−2
x̃ A)〉+Qos, where 〈Qos〉 = 0 and 〈A(∂−2

x̃ A)〉 = −‖A‖2−1; and we drop
the integral that involves Qos by virtue of Lemma 6.5.

Accordingly, the first two equations of the cascade do not involve Ve explicitly:

O(ε0) : −Δx̃ỹK0 = 0 =: Ssc
0 ,(6.58)

O(ε1) : −Δx̃ỹK1 = 2(∂x∂x̃ + ∂y∂ỹ)K0 =: Ssc
1 .(6.59)

7A difficulty is the presence of the Dirac mass in these equations, which destroys the L2 structure
of the forcing. The weak formulations of the respective boundary value problems lie beyond our scope.
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In view of (6.54), we obtain

(6.60) K0(x̃, ỹ, x, y) = κ0(x, y) , K1(x̃, ỹ, x, y) = κ1(x, y) .

In order to find equations for κ0 and κ1, we have to consider the next two higher-order
terms Kn (for n = 2, 3).

Proceeding to the next higher order, O(ε2), we find

Ssc
2 (x̃, ỹ, x, y) = −L(xy)κ0 − C[f2

0 , κ0]κ0 +B0(x, y)

− g0A(x̃)f
2
0 δ(x− y)− 2g0{A(x̃)f0(x)2 +A(ỹ)f0(y)

2}κ0 .(6.61)

Lemma 6.5 has been invoked for removal, to this order, of the oscillatory term A(z/ε)
from the nonlocal term in PDE (6.41); the lemma dictates that this contribution
should appear at least to order O(ε3) in the perturbation scheme. The application of
solvability condition (6.4), via 〈Ssc

2 〉 = 0, to (6.61) yields PDE (6.44).
Since μ0 is the lowest point of the spectrum for the condensate, 0 is not an

eigenvalue of L(xy). In particular, L(xy) is positive definite, i.e., (f,L(xy)f)2 > 0 for

every nonzero f ∈ H1(R2). It follows that L−1
(xy) exists. We will invoke the invertibility

of L(xy) in order to determine κ1.
By virtue of (6.44), K2 satisfies

(6.62) −Δx̃ỹK2 = −g0A(x̃)f2
0 δ(x− y)− 2g0[A(x̃)f0(x)

2 +A(ỹ)f0(y)
2]κ0 ,

by which

(6.63) K2 = g0(∂
−2
x̃ A)f2

0 δ(x−y)+2g0{(∂−2
x̃ A)f0(x)

2+(∂−2
ỹ A)f0(y)

2}κ0+κ2(x, y) ,

where κ2(x, y) must be consistent with the solvability condition on Ssc
3 .

Next, we address K3, bearing in mind that Φ1 = 0 and invoking Lemma 6.6 (for
s = 1). Thus, we derive (6.53) with

Ssc
3 = −{L(xy) + C[f2

0 , κ0]
}
κ1 + 2g0(∂

−1
x̃ A)∂x

[
f0(x)

2δ(x− y)
]

+ 4g0{(∂−1
x̃ A) ∂x[f0(x)

2κ0] + (∂−1
ỹ A) ∂y [f0(y)

2κ0]}
− 2g0[A(x̃)f0(x)

2 +A(ỹ)f0(y)
2] .(6.64)

The solvability condition (6.4), 〈Ssc
3 〉 = 0, yields the homogeneous PDE

(6.65)
{L(xy) + C[f2

0 , κ0]
}
κ1 = 0 .

By the invertibility of L(xy) and Lemma 6.13, we conclude that the operator L(xy) +
C[f2

0 , κ0] is invertible if g0 is sufficiently small [41]. Thus, the solution to (6.65) is

(6.66) κ1(x, y) = 0 (a.e.) .

Hence, the equation for K3 becomes

−Δx̃ỹK3 = 2g0(∂
−1
x̃ A)∂x

[
f2
0 δ(x− y)

]
+ 4g0[(∂

−1
x̃ A)∂x(f0(x)

2κ0)

+ (∂−1
ỹ A)∂y(f0(y)

2κ0)]− 2g0[A(x̃)f0(x)
2 +A(ỹ)f0(ỹ)

2]κ1

⇒ K3 = −2g0(∂
−3
x̃ A)∂x

[
f2
0 δ(x− y)

]− 4g0[(∂
−3
x̃ A)∂x(f

2
0κ0) + (∂−3

ỹ A)∂y(f
2
0κ0)]

+ 2g0
[(
∂−2
x̃ A(x̃)

)
f0(x)

2 +
(
∂−2
ỹ A(ỹ)

)
f0(y)

2
]
κ1 + κ3(x, y) .(6.67)
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Next, we consider the equation for K4, −Δx̃ỹK4 = Ssc
4 and find

Ssc
4 (x̃, ỹ, x, y) = −L(xy)K2(x̃, ỹ, x, y)− 2g0

[
1 +A(x̃)

]
f0(x)

[
g0(∂

−2
x̃ A)f3

0 + f2
]
δ(x− y)

− 2g0
[
A(x̃)f0(x)

2 +A(ỹ)f0(y)
2
]
K2 − 4g0

{
[1 +A(x̃)]f0(x)Φ2(x̃, x)

+ [1 +A(ỹ)]f0(y)Φ2(ỹ, y)
}
κ0 + 2(∂x̃∂x + ∂ỹ∂y)K3(x̃, ỹ, x, y)

− g0 lim
ε→0

∫
dz

[
1 +A

(
z
ε

)]{
f0(z)

2
[
K2

(
x̃, zε , x, z

)
κ0(y, z)

+ κ0(x, z)K2

(
ỹ, zε , y, z

)]
+ 2f0(z)

[
g0(∂

−2
z̃ A)f0(z)

3 + f2(z)
]

× κ0(x, z)κ0(y, z)
}
+ 2(ζΔ2 + ζ2 + ζe2)κ0(x, y) + OS ,(6.68)

where “OS” stands for terms oscillatory in x̃ and ỹ, which stem from C[Af2
0 , κ0]κ0 by

virtue of Lemma 6.6; such terms do not contribute to 〈Ssc
4 〉. Recall (6.28) in regard

to Φ2. Equation (6.45) results from (6.68) by evaluation of the requisite limit as ε ↓ 0
with recourse to (6.63) and Lemma 6.5, and enforcement of 〈Ssc

4 〉 = 0. Note that the
limit of the nonlocal term on the right-hand side of (6.68) yields the expression

−2C[f2
0 , κ0]κ2 − 2C[f0f2, κ0]κ0 + 6g0‖A‖2−1C[f4

0 , κ0]κ0

+ g20‖A‖2−1

[
f0(x)

4 + f0(y)
4
]
κ0(x, y) .

This observation concludes our proof.
Remark 6.14. Proposition 6.12 can be extended to d spatial dimensions, where

d = 2, 3. The two-scale expansion for K reads as

K(x, y) = κ0(x, y) + ε2{g0(Δ−1
x̃ A(x̃))f0(x)

2 δ(x − y) + 2g0[(Δ
−1
x̃ A(x̃))f0(x)

2

+ (Δ−1
ỹ A(ỹ))f0(y)

2]κ0 + κ2(x, y)}+ · · · ,(6.69)

where κ0(x, y) and κ2(x, y) satisfy (6.44) and (6.45) with Δxy = Δx+Δy and L0(x) =
−Δx+Ve(x)+g0f0(x)

2−μ0. The definitions of C, B0, B2, and Z2 follow from (6.47)–
(6.50).

7. Slowly varying trap. By taking d = 3, we now focus on expansions (6.37)
and (6.69) and discuss via heuristics approximate solutions for the homogenized co-
efficients with Ve(x) = U(ε̆ x), 0 < ε̆ � 1, x ∈ R3. As ε̆ ↓ 0, the system is expected
to become nearly translation invariant. This suggests that, order-by-order in ε, we
separate the spatial variables into slow and fast ones in terms of ε̆. This scale sep-
aration is carried out via singular perturbations (since ε̆ multiplies the highest-order
derivatives in the governing PDEs) [9]. For each homogenized coefficient, we consider
only the leading-order contribution in ε̆.

As stated in section 1.6, the approximations of this section hold in the asymptotic
regime a� ld � lc � le, where ld is the mean interparticle distance, lc is the system
correlation length (over which Φ changes appreciably), le is the typical size of the
trap, and ε̆ = lc/le. We consider ε̆� ε = lsc/lc (lsc: period of scattering length).

Our approximations serve the need to compute physical observables such as the
energy per particle of the condensate and the fraction of particles out of the con-
densate. These observables involve integrals on R

3 or R
6. To leading order in ε̆,

the contribution to integration comes from the region {x ∈ R3
∣∣U(x) < μ0} which

(loosely) defines the interior of the trap (as explained below). Outside this region,
Φ(x̃, ·) is expected to decay rapidly and, for all practical purposes, will be set to zero.
A similar consideration holds for K(x̃, ỹ, ·) via center-of-mass coordinates.
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7.1. Condensate wave function. Next, we focus on two-scale expansion (6.37)
for Φ (see Remark 6.10). Change the variable by x 
→ x̆ = ε̆ x, set φ0(x̆) := f0(x̆/ε̆),
and drop the ˘ symbol on top of x̆ (for ease of notation). The PDE for φ0(x) reads as

(7.1) [−ε̆2Δx + U(x) + g0(φ0)
2 − μ0]φ0 = 0 ,

along with the normalization condition

(7.2)

∫
φ0(x)

2 dx = ε̆3N .

Treating φ0(x) as O(1), we choose to set

(7.3) ε̆3N = 1 .

In the same vein, the PDE for φ2(x) := f2(x/ε̆) reads as

(7.4) [−ε̆2Δx + U(x) + 3g0 (φ0)
2 − μ0]φ2 = 3g20(φ0)

5 ‖A‖2−1 + μ2φ0 ,

supplemented with the condition (φ2, φ0)2 = 0 via Proposition 6.9.

7.1.1. Zeroth-order homogenized solution. We now briefly discuss an ap-
proximate solution to (7.1) by use of classical boundary layer theory [70].8

Outer solution. This is associated with the “Thomas–Fermi approximation” [13].
By allowing ε̆ = 0, we reduce (7.1) to

(7.5) [U(x) + φ00(x)
2 − μ0

0]φ
0
0 = 0 ,

which in turn yields an approximate formula for φ0:

(7.6) φ00(x) =

{
g
−1/2
0

√
μ0
0 − U(x) , x ∈ Rδ

0 ,

0 , x ∈ Rc,δ
0 .

Here, Rδ
0 is the region that results from exclusion of a δ-neighborhood (to be specified

below) of the boundary of R0 := {x ∈ R3
∣∣U(x) < μ0

0} for small enough δ; Rδ
0 = R0 \

B(∂R0, δ). This R0 is open, bounded with boundary ∂R0 = {U(x) = μ0
0} consisting

of classical turning points for the potential U(x). Similarly, Rc,δ
0 stems from excluding

from the complement of R0, R
c
0 = R3 \R0, a δ-neighborhood of ∂R0. Evidently, the

extension of φ00 across ∂R0 is continuous, while ∇φ00(x) = −g−1/2
0 [μ0

0 −U(x)]−1/2∇U
in Rδ

0. The vanishing of φ00 in Rc,δ
0 , which implies that φ0 decays rapidly outside the

trap, can be refined by use of the Wentzel–Kramers–Brillouin (WKB) formula [9],
e.g., for a spherically symmetric Ve [14, 50].

The value of the constant μ0
0 can be evaluated with recourse to (7.2) under (7.3):

(7.7) μ0 ∼ μ0
0 = |R0|−1g0 + 〈U〉R0 , 〈U〉R0 := |R0|−1

∫
R0

U(x) dx ,

where |R0| is the (g0-dependent) volume of R0, |R0| :=
∫
R0

dx. By Remark 6.11,

result (7.7) yields an approximate energy, ec ∼ e0c,0, per particle of the condensate:
(7.8)

e0c,0 = μ0
0 −

g0
2

∫
R0

φ00(x)
4 dx =

1

2
|R0|−1g0 + 〈U〉R0 −

1

2g0

∫
R0

[
U(x)− 〈U〉R0

]2
dx .

8In the following, the term “outer solution” pertains to a leading-order approximation of some
PDE by regular perturbation (with ε̆ = 0) away from boundary layers, inside and outside the trap.
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By definition ofR0, (2g0)
−1
∫
R0

(U(x)−〈U〉R0 )
2dx < |R0|−1g0/2+〈U〉; thus, e0c,0 > 0.

Inner solution. We seek a (local) description of φ0(x) inside possible boundary
layers, noticing that the extension of φ00 by (7.6) breaks down near ∂R0. In particular,
the extension of ∇φ00 is not in L2

loc(R
3) by integration on any region that contains a

measurable part of ∂R0, in contrast to the anticipated behavior of ∇φ0.
To remedy this pathology (which is due to naively setting ε̆ = 0 for the outer solu-

tion) consider the variation of φ0 along the local normal to ∂R0 (for C
1 boundary ∂R0)

[70]. For fixed xbd ∈ ∂R0 (where U(xbd) = μ0
0), define ν(xbd) := ∇U(xbd)/|∇U(xbd)|.

By the expansion U(x) = U(xbd)+Uo ν ·(x−xbd)+o(|x−xbd|) with Uo = |∇U(xbd)| > 0
and a flat boundary approximation, we locally reduce (7.1) to the one-dimensional
equation

(7.9a) [−∂2η + η+(φin0 )2]φin0 ≈ 0 , η :=

(
Uo

ε̆2

)1/3

ν · (x−xbd) , φ
in
0 :=

g
1/2
0

(ε̆Uo)1/3
φ0 .

In (7.9a), x lies in the local normal to ∂R0 at xbd, namely, x − xbd = b ν(xbd) for

|b| ≤ O(ε2/3), so that η = O(1); and tangential derivatives of φ̆0 have been neglected.
Thus, the boundary layer near ∂R0 is estimated to have width O(ε̆2/3); hence, δ =
O(ε̆2/3). The boundary conditions for (7.9), via asymptotic matching with (7.6), read
as

(7.9b) φin0 → 0 as η → ∞ , φin0 ∼ √−η as η → −∞ .

Remark 7.1. It is known that (7.9) is solved by a second Painlevé transcendent
[39, 70]. It has been shown that φin0 (η) ∼ √

2Ai(η) as η → +∞, where Ai is the Airy
function; see, e.g., [50] and the references therein. Let PII(η) denote this particular
second Painlevé transcendent: φin0 = PII .

Equations (7.6) and (7.9) combined should yield a composite approximation for
φ0 that is sufficiently regular across ∂R0.

7.1.2. Next higher-order homogenized solution. In the spirit of section
7.1.1, we now focus on (7.4), which takes the form
(7.10)
(−ε̆2Δ+ Ueff)φ2 = F2 , Ueff := U + 3g0(φ0)

2 − μ0 , F2 := 3g20(φ0)
5‖A‖2−1 + μ2φ0 .

By (7.6), we find Ueff(x) ∼ 2[μ0
0 − U(x)] > 0 for x ∈ Rδ

0 (inside the trap); and
Ueff(x) ∼ U(x)− μ0

0 > 0 outside the trap. Thus, φ2 should decay rapidly outside R0.
(This behavior can be captured more precisely by the WKB approximation, which we
do not pursue here.) We proceed in the same vein as in section 7.1.1.

Outer solution. By setting ε̆ = 0 in (7.10), we find that φ2(x) is approximated by
(7.11)

φ02(x) =

{
g
−1/2
0

{
3
2 [μ

0
0 − U(x)]3/2‖A‖2−1 +

1
2μ

0
2[μ

0
0 − U(x)]−1/2

}
, x ∈ Rδ

0 ,

0 , x ∈ Rc,δ
0 .

The value of μ0
2 comes from the condition (f0, f2)2 = 0 (by Proposition 6.9):

(7.12) μ2 ∼ μ0
2 = −3‖A‖2−1|R0|−1

∫
R0

[μ0
0 − U(x)]2 dx ;

μ0
0 is described by (7.7). By Remark 6.11, the respective contribution to the energy

per particle of the condensate is

(7.13) ec,2 ∼ e0c,2 = −3g−1
0 ‖A‖2−1

∫
R0

[μ0
0 − U(x)]3 dx < 0 .
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Note that the extension of φ02(x) across ∂R0 is not in L2
loc(R

3). This observation calls
for using boundary layer theory in the vicinity of ∂R0 (as discussed below).

Remark 7.2. The perturbations of this section indicate that the oscillations of
the scattering length cause a decrease in the energy per particle of the condensate.
The magnitude of this decrease is found to be proportional to ‖A‖2−1.

Inner solution. Consider (7.10) along the local normal to ∂R0, inside the bound-
ary layer conjectured in section 7.1.1. By the definitions of (7.9a), taking η = O(1)

we assert that Ueff(x) ∼ (Uoε̆)
2/3[η + 3PII(η)

2] and F2(x) ∼ μ0
2g

−1/2
0 (Uoε̆)

1/3PII(η),
in view of Remark 7.1. Thus, we obtain the equation

(7.14a) ∂ηηφ
in
2 − [η + 3PII(η)

2]φin2 ≈ PII(η) , φin2 := −(μ0
2)

−1g
1/2
0 (Uoε̆)

1/3φ2 .

By matching the inner and outer solutions for O(ε̆2/3) < |x − xbd| � 1, we require
that φin2 (η) satisfies

(7.14b) φin2 (η) → 0 as η → ∞ , φin2 (η) ∼ −1

2
(−η)−1/2 as η → −∞ .

Remark 7.3. It follows that φin2 (η) = P ′
II(η), the derivative of the second Painlevé

transcendent of section 7.1.1 [39]; in particular, φin2 (η) ∼ √
2Ai′(η) as η → ∞.

7.2. Pair-excitation kernel. Next, we turn our attention to expansion (6.69)
for spatial dimension d = 3 (see Remark 6.14). This expansion can be invoked for the
depletion of the condensate (section 8). Again, the underlying idea is that, for a slowly
varying trap, the boson system is nearly translation invariant. Accordingly, K(x, y) is
expected to depend primarily on x− y [69, 70]. Here, we follow the technique invoked
in [70], where x− y is treated as a fast variable (in ε̆).

The related transformation to the center-of-mass coordinates reads as

(7.15) (x, y) 
→
(
x− y,

x+ y

2

)
.

This change of variables is motivated by the observation that κj(x, y) (j = 0, 2) are
controlled by forcing terms proportional to the Dirac mass, δ(x− y).

7.2.1. Zeroth-order kernel. The analogue of (6.44) in 3D reads as

0 =
(− ε̆2

2 ΔX − 2Δx̄

)
ß0 +

{
U(X + ε̆

2 x̄) + U(X − ε̆
2 x̄)

+ 2g0
[
φ0(X + ε̆

2 x̄)
2 + φ0(X − ε̆

2 x̄)
2
]− 2μ0

}
ß0 + g0φ0(X)2 δ(x̄)

+ g0

∫
R3

dz φ0(X − ε̆
2 x̄+ ε̆z)2 ß0(x̄− z,X + ε̆

2z) ß0(z,X − ε̆
2 x̄+ ε̆

2z) ,(7.16)

where we defined the slow variable X := ε̆(x+ y)/2 > O(ε̆), and

(7.17) x̄ = x− y = O(1) , ß0(x̄, X) := κ0(X/ε̆+ x̄/2, X/ε̆− x̄/2) .

Thus, variations of κ0 with respect to x̄ are considered fast. This view is consistent
with the anticipated nearly translation-invariant character of the boson system. Now
apply the approximations [70]

U(X + ε̆
2 x̄) + U(X − ε̆

2 x̄) ∼ 2U(X) ,

φ0(X + ε̆
2 x̄)

2 + φ0(X − ε̆
2 x̄)

2 ∼ 2φ0(X)2 ,
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dz φ0(X − ε̆

2 x̄+ ε̆z)2 ß0(x̄ − z,X + ε̆
2z) ß0(z,X − ε̆

2 x̄+ ε̆
2z)

∼ φ0(X)2
∫

dz ß0(x̄− z,X) ß0(z,X) ,

since the major contribution to integration is expected to come from z = O(1). Hence,
the nonlocal term in (7.16) is reduced to a convolution integral.

Accordingly, we solve (7.16) approximately via the Fourier transform in x̄, treating

X as a parameter. The Fourier transform, ß̂0(λ,X), of ß0(·, X) satisfies

(7.18)
(− ε̆2

2 ΔX+2λ2
)
ß̂0+2[U(X)+2g0φ0(X)2]ß̂0+g0φ0(X)2+g0φ0(X)2(ß̂0)

2 ≈ 0 .

We now solve the last equation by singular perturbations.
Outer solution. By setting ε̆ = 0 in (7.18) and ß̂0 ∼ ß̂00, we obtain

(7.19) 1
2g0φ

0
0(X)2(ß̂00)

2 + [U(X) + 2g0φ
0
0(X)2 + λ2 − μ0

0]ß̂
0
0 +

1
2g0φ

0
0(X)2 = 0 ,

where λ0(X)2 := U(X)+ 2g0φ
0
0(X)2−μ0

0, and X ∈ R3 \B(∂R0,O(ε2/3)) (see section
7.1). Equation (7.19) has the solution

(7.20) ß̂00(λ,X) =
−λ2 − λ0(X)2 +

√
[λ2 + λ0(X)2]2 − g20φ

0
0(X)4

g0φ00(X)2
,

with ß̂00(·, X) ∈ L2(R3). In particular, if g0(φ
0
0)

2 � λ2 + λ20, we have

(7.21) ß̂00(λ,X) ∼ −1

2

g0φ
0
0(X)2

λ2 + λ0(X)2
,

which is consistent with the hypotheses of Lemma 6.6 for s = 1.
A further simplification of (7.20) ensues from (7.6) [70]:

(7.22) ß̂00(λ,X) =
−λ2 − g0φ

0
0(X)2 + |λ|

√
λ2 + 2g0φ00(X)2

g0φ00(X)2
if X ∈ Rδ

0 .

On the other hand, if X ∈ Rc,δ
0 , we obtain ß̂00(λ,X) = 0, which can be refined via the

WKB method in X (for fixed λ); we do not pursue the WKB solution here. Equation
(7.22) is inverted to give the pair-excitation kernel (for X ∈ Rδ

0) [70]

(7.23) ß00(x̄, X) = π−2

(
g0
2

)3/2

φ00(X)3ϑ(x̄, X)−1Im[S00(iϑ)− S04(iϑ)] ,

where ϑ = ϑ(x̄, X) = (2g0)
1/2φ00(X)|x̄| and Sαβ is Lommel’s function [66].

Remark 7.4. By (7.23), in the limit x̄ = x − y → 0 with X ∈ Rδ
0 (inside the

trap), we have

(7.24) κ0(x, y) ∼ ß00(x̄, X) ∼ − g0
8π

φ00(X)2

|x̄| .

Boundary layer. We now consider the pair-excitation kernel when the slow center-
of-mass coordinate ε̆(x + y)/2 lies inside the boundary layer for φ0, near ∂R0 (see
section 7.1.1). We (locally) define ßin0 (χ, η) := (Uoε̆)

−1κ0(x, y) with χ := (Uoε̆)
1/3x̄ =
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(Uoε̆)
1/3(x − y) and η(X) = (Uo/ε̆

2)1/3ν(xbd) · (X − xbd), where xbd ∈ ∂R0. Accord-
ingly, by a flat boundary approximation, (7.16) is reduced to

0 ≈ [− 1
2∂

2
η − 2Δχ + 2η + 4(φin0 )2

]
ßin0 (χ, η) + (φin0 )2 δ(χ)

+ (φin0 )2
∫

dz ßin0 (χ− z, η) ßin0 (z, η) , X ∈ B(∂R0, δ) , η = η(X) ,(7.25)

where δ = O(ε̆2/3).
By assuming ßin0 (·, η) ∈ L2(R3), we obtain an ordinary differential equation for

its Fourier transform, ß̂in0 (λ, η):

(7.26a) − 1
2∂

2
η ß̂

in
0 + 2

[
λ2 + η + 2(φin0 )2

]
ß̂in0 + (φin0 )2(ß̂in0 )2 + (φin0 )2 ≈ 0 ;

recall that −∂2ηφin0 + ηφin0 + (φin0 )3 = 0. Consider λ fixed. Boundary conditions

for (7.26a) stem from asymptotic matching with the outer solution, ß̂00, of (7.20) as
η → ±∞:9

(7.26b) ß̂in0 (λ, η) ∼ −1 + |λ|
√

−2

η
as η → −∞ , ß̂in0 (λ, η) → 0 as η → ∞ .

Equations (7.26) form a boundary value problem for the zeroth-order homogenized
pair-excitation kernel in the center-of-mass boundary layer close to ∂R0. The solution
of (7.26) and subsequent Fourier inversion to obtain ßin0 are not further pursued in
this article.

7.2.2. Higher-order kernel, κ2. The heuristics of the preceding subsection
can be extended to ß2(x̄, X) := κ2(X/ε+ x̄/2, X/ε− x̄/2). We outline the procedure
for the outer solution below.

The function ß2(x̄, X) obeys

4Λ(x̄, X) ≈ [−ε̆2ΔX − 4Δx̄ + 4W (X)]ß2(x̄, X)

+ 4g0φ0(X)2
∫

dz ß0(x̄− z,X)ß2(z,X) ,(7.27)

for given φ0(X), φ2(X), and ß0(x̄, X), where

(7.28) W (x) := U(x) + 2g0φ0(x)
2 − μ0 ,

Λ(x, y) := −g0{φ0(y)φ2(y)− 3g0‖A‖2−1φ0(y)
4}δ(x)

+ {Z2 + 9g20‖A‖2−1φ0(y)
4 − 4g0φ0(y)φ2(y)}ß0(x, y)

− g0[φ0(y)φ2(y)− 3g0‖A‖2−1φ0(y)
4]

∫
dz ß0(x− z, y)ß0(z, y) ,(7.29)

and Z2 is a constant defined by (6.50).
Equation (7.27) can be Fourier-transformed in x̄, by treatment of X as a param-

eter. The transformed outer solution, which approximates ß̂2(λ,X), is

(7.30) ß̂02(λ,X) =
Λ̂0(λ,X)

λ2 +W0(X) + g0φ00(X)2 ß̂00(λ,X)
, X ∈ R

3 \B(∂R0, δ) ,

9Note that (7.26b) holds provided |λ|(−η)−1/2 � 1. If instead η is kept fixed and |λ| → ∞, a

different asymptotic limit ensues in which ̂ßin0 = O(λ−2), consistent with ßin0 (·, η) ∈ L2(R3).
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where δ = O(ε2/3), and Λ̂0(λ,X) and W0(X) result from the replacement of φ0(X),

φ2(X), and ß̂0(λ,X) in Λ̂(λ,X) and W (X) by the outer solutions φ00(X), φ02(X), and

ß̂00(λ,X), respectively. The extension of this ß̂02(λ, ·) across ∂R0 is not continuous
because φ00φ

0
2 is not. By virtue of (7.6) and (7.11), we have the simplified formulas

Λ̂0(λ,X) =
3

2
g20‖A‖2−1[φ

0
0(X)4 + |R0|−1‖(φ00)2‖2L2] [1 + ß̂00(λ,X)]2 ,(7.31)

W0(X) = g0φ
0
0(X)2 , X ∈ Rδ

0 .(7.32)

Accordingly, we obtain

ß̂02(λ,X) =
3

2
g20‖A‖2−1[φ

0
0(X)4 + |R0|−1‖(φ00)2‖2L2 ]

× [1 + ß̂00(λ,X)]2

λ2 + g0φ00(X)2[1 + ß̂00(λ,X)]
, X ∈ Rδ

0 .(7.33)

Notice that ß̂02(λ,X) has a zero at λ = 0 (for fixedX). On the other hand, ifX ∈ Rc,δ
0 ,

we obtain ß̂02(λ,X) = 0.
Approximation (7.30) breaks down if X ∈ B(∂R0,O(ε2/3)), near classical turning

points. A remedy is to use the local coordinate η and the inner solutions for φ0, φ2,
and ß0, and to proceed as in section 7.2.1, by invoking boundary layer theory and
asymptotic matching. We leave details of this computation to the interested reader.

8. Application: Condensate depletion. In this section, we describe the par-
tial depletion of the condensate, as particles scatter from it in pairs, to the first two
nonzero orders in ε for the lowest bound state. In the leading order, the condensate
is partially depleted because of the repulsive particle interactions with strength g0
(g0 > 0). To the next higher order, the depletion is influenced by the oscillatory char-
acter of the scattering length. In the case with a slowly varying trap, we explicitly
compute the fraction of particles out of the condensate. We show that this fraction is
controlled by the H−1

av -norm of (the periodic) A(x). Recall that Φ(x) and K(x, y) are
considered real; and K is taken symmetric, K(x, y) = K(y, x). Our resulting, simple
formulas for the condensate depletion are valid under assumptions (1.10).

8.1. Homogenization-based expansion. We seek a formal ε-expansion for
the condensate depletion on the basis of our homogenization program. The fraction
of particles that occupy states out of the condensate, or depletion fraction, is [69]

(8.1) ξdp = 〈ΨN , (ψ
∗
1ψ1/N)ΨN 〉F = N−1

∫
w(x, x) dx = N−1trW ,

where 0 < ξdp < 1 and the operator W has representation w(x, y) defined by

w(x, y) =
∑
n≥1

wn(x, y) ,(8.2a)

w1(x, y) =

∫
dz K∗(x, z)K(z, y) , wn(x, y) =

∫
dz w1(x, z)wn−1(z, y) .(8.2b)

Next, we provide an expansion for ξdp in terms of a formal expansion for W .
In view of Remark 3.2, we assume that ξdp is small enough so that the many-body
perturbation scheme leading to the PDEs for Φ and K makes sense, namely,

(8.3) ξdp � 1 ;
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cf. Remark 3.2. Specifically, we show that, in correspondence to Proposition 6.12
(with Remark 6.14), the depletion fraction can be formally expanded as

(8.4) ξdp = ξdp,0 + ε2ξdp,2 + · · · = trW(0) + ε2 trW(2) + · · · ,
where

(8.5a) W(0) =
∑
n≥1

K2n
(0) = K2

(0)(1−K2
(0))

−1 ,

W(2) =
∑

n:even
n≥2

n−2
2∑

m=0

K2m
(0){{K(0),K(2)},K2n−2−4m

(0) }K2m
(0)

+
∑
n:odd
(n≥1)

⎡⎣ n−3
2∑

m=0

K2m
(0) {{K(0),K(2)},K2n−2−4m

(0) }K2m
(0) +Kn−1

(0) {K(0),K(2)}Kn−1
(0)

⎤⎦ .(8.5b)

In the above, K(l) (l = 0, 2) is the operator with representation κl(x, y); and the
anticommutator {·, ·} is {A,B} := AB + BA. Note that K(0) and K(2) may not
commute in general. If K(0) and K(2) commuted, we would write

(8.6) W(2) = 2
∑
n≥1

nK2n−1
(0) K(2) = 2K(0)K(2)(1−K2

(0))
−2 .

For sufficiently small g0, the operator K(0) is expected to be appropriately bounded
so that (1−K2

(0))
−1 exists; see Remark 8.1.

We proceed to sketch a derivation of (8.4) and (8.5), by resorting to an extension
of the binomial expansion for noncommuting operators. Noting the formal relations
W =

∑
n≥1 Wn, Wn = (W1)

n, and W1 = (K)2, where K has representation K(x, y),

we seek a two-scale expansion for the representation w1(x, y) of W1 up to O(ε2). By
(6.43) with Remark 6.14, we find

w1(x, y) =

∫
dz κ0(x, z)κ0(z, y) + ε2

{
g0
[
(Δ−1

x̃ A)f0(x)
2 + (Δ−1

ỹ A)f0(y)
2
]

×
[
κ0(x, y) + 2

∫
dz κ0(x, z)κ0(z, y)

]
+ 2

∫
dz Sym[κ0, κ2](z;x, y)

}
+ · · · ,(8.7)

where Sym[·] is defined by (6.47). Equation (8.7) suggests the operator form

(8.8) W1 = K2
(0) + ε2

[
�K(0)(1 + 2K(0)) + {K(0),K(2)}

]
+ · · · ,

where �(·, ·, x, y) is 1-periodic in R3 × R3 with 〈�〉 = 0. Now raise W1 to the power
n (n = 1, 2, . . .), sum up the terms (W1)

n, and take the total trace of the resulting W
up to order O(ε2) (by integration on the diagonal, for x = y and x̃ = ỹ) in order to
compute ξdp by (8.1). The contribution of � can be eliminated by virtue of Lemma
6.5. Thus, ξdp is determined up to O(ε2) from the sum of traces of[K2

(0) + ε2 {K(0),K(2)}
]n
, n = 1, 2, . . . ,

where in principle K(0) and {K(0),K(2)} do not commute. Equations (8.4) and (8.5)
result by direct multiplication, induction, and summation in n.
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8.2. Slowly varying potential. Consider the external potential Ve(x) = U(ε̆x).
By use of the center-of-mass coordinates, as in section 7, the operators K(0) and K(2)

are found to commute approximately. Indeed, let x̄ = x − y and X = ε̆(x + y)/2,
along with κ0(x, y) = ß0(x̄, X) and κ2(x, y) = ß2(x̄, X); then,∫
κ0(x, z)κ2(z, y) dz =

∫
ß0

(
z′, X +

εx̄

2
− εz′

2

)
ß2

(
x̄− z′, X − εz′

2

)
dz′

∼
∫

ß0(z
′, X) ß2(x̄− z′, X) dz′ =

∫
ß2(z

′, X) ß0(x̄− z′, X) dz′ ,(8.9)

formally, to leading order in ε̆ as ε̆ ↓ 0. Symbolically, we write

K(0)K(2) ∼ K(2)K(0) ⇒ {K(0),K(2)} ∼ 2K(0)K(2) ,

to imply (8.9). Alternatively, replace each operator by the Fourier transform of the
above approximation for ßl(·, X), treating X as an O(1) parameter.

A few comments on the operator K(0) are in order. The appropriate norm of
K(0) : L

2(R3) → L2(R3) is written formally as

‖K(0)‖2 = N−1‖κ0‖2L2(R3×R3) = (Nε̆3)−1

∫∫
|ß0(x̄, X)|2 dx̄dX

∼ N−1

(2π)3

∫
R0

dX

∫
R3

dλ |ß̂00(λ,X)|2 ;(8.10)

cf. section 7.2.1. By formula (7.22) for ß̂00, use of spherical coordinates for λ (λ ∈ R3),
and the change of variables |λ| 
→ τ with |λ| = √

2g0(φ00)
2 sinh τ inside Rδ

0, we find

ß̂00 = −e−2τ and directly obtain

(8.11) ‖K(0)‖2 ∼ 27/2

105π2

∫
R0

dx [μ0
0 − U(x)]3/2 .

Notice that, since μ0 → 0 as g ↓ 0, the volume |R0| should become arbitrarily small
in this limit; thus, ‖K(0)‖ → 0 as g0 ↓ 0.

Remark 8.1. The above sketchy argument suggests that if g0 is nonzero but small
enough, then (1−K2

0)
−1 is reasonably defined [41].

8.2.1. Zeroth-order depletion. By (8.4) and (8.5a) along with the use of the
Fourier representation for K(0) and spherical coordinates, we wind up with

ξdp ∼ ξdp,0 =
1

(2π)3

∑
n≥1

∫
R0

dx

∫
dλ |ß̂00(λ, x)|2n

=
1

2π2

∑
n≥1

∫
R0

dx

∫ ∞

0

d|λ| |λ|2 |ß̂00(λ, x)|2n

=
1

2π2

∑
n≥1

8n

(16n2 − 1)(16n2 − 9)

∫
R0

dx [2g0φ
0
0(x)

2]3/2

=

√
2

12π2

∫
R0

dx [μ0
0 − U(x)]3/2 .(8.12)
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8.2.2. Next higher-order depletion. Next, we indicate how the oscillatory
part, A(x/ε), of the scattering length can affect the depletion fraction. In (8.4), the
coefficient ξdp,2 contains information about A(x/ε). By using series (8.6), along with
the hypothesis of a slowly varying trap, we compute

(8.13) ξdp,2 ∼ 1

(2π)3

∑
n≥0

2(n+ 1)

∫
R0

dx

∫
dλ ß̂00(λ, x)

2n+1ß̂02(λ, x) .

By formulas (7.30)–(7.32), we have

(8.14) ξdp,2 ∼ −3
√
2

8π2
‖A‖2−1

∫
R0

{
g20φ

0
0(x)

4 + |R0|−1‖g0(φ00)2‖2L2

}
[g0φ

0
0(x)

2]1/2 dx ,

where φ00(x) is introduced in (7.6).

Remark 8.2. The periodic oscillations of the scattering length are found to cause
a relative decrease of the depletion fraction by an amount proportional to ‖A‖2−1, in
contrast to the effect of repulsive interactions to zeroth order in ε.

9. Conclusion. We studied BEC of dilute atomic gases with repulsive particle
interactions at zero temperature. Our goal was to transcend the mean field formal-
ism of the NSE when the scattering length has a periodic microstructure. The main
stationary effect beyond mean field considered here was pair excitation, by which
particles are scattered in pairs from the condensate to other states at different po-
sitions, x and y; a function that describes this process is the pair-excitation kernel,
K(x, y). Our focus was the lowest many-body bound state, which depends on both
the condensate wave function, Φ(x), and the kernel, K(x, y).

We applied perturbation theory at both the many-particle microscopic and macro-
scopic levels. First, by revisiting Wu’s formulation [69], we demonstrated how the
integro-PDE for K can emerge from the particle Hamiltonian when the scattering
length has a periodic microstructure. This stage involved formal manipulation of
operators in the Fock space. Second, by classical homogenization theory we derived
effective equations for Φ and K up to the second order in the subscale ε of the scat-
tering length. Third, in order to obtain some insight into solutions of these effective
equations, we considered a slowly varying trap, U(ε̆x), and applied singular pertur-
bation theory to leading order in ε̆. Last, we indicated what predictions can possibly
be made for the fraction, ξdp, of particles out of the condensate.

A noteworthy result is an expansion for ξdp, which reveals the dependence of this
fraction on the size and shape of the trap, and the form and strength of the repulsive
particle interactions, particularly the oscillatory part of the scattering length. Ac-
cording to our formula for ξdp, the oscillations of the scattering length favor a relative
decrease of the depletion fraction. This finding suggests that the spatial manipula-
tion of the scattering length may cause an effect competing with the increase of the
(positive) interaction strength in the unperturbed (lacking periodic microstructure)
system.

Our work has not addressed several issues. For example, we have not studied the
correction to the condensate energy that stems from the coupling of the PDE for Φ
with K. Another issue concerns time-dependent settings, with a spatially periodic or
time-dependent scattering length and trapping potential. Our analysis was restricted
to zero temperature, in the absence of thermally excited states. An issue is to derive
(from the microscopic Hamiltonian) equations of motion for Φ, K and, in addition,
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the wave functions of thermally excited states for finite but small temperatures. Fur-
thermore, the homogenization of such macroscopic equations would be the next step.
The modeling and analysis of the finite-temperature boson gas beyond mean field in
a trap is left for near-future work.
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