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We formulate a phase field model for the evolution of stepped surfaces under surface diffusion in
the presence of distinct material parameters across nanoscale terraces. The model corresponds to
the Burton-Cabrera-Frank (BCF) theory for the motion of non-interacting steps separating inho-
mogeneous terraces. This setting aims to capture features of reconstructed semiconductor such as
Si surfaces below the roughening transition. Our work forms an extension of the phase field by Hu
et al. [Physica D 241, 77 (2012)].
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I. INTRODUCTION

Surface reconstruction (SR) amounts to the presence
of structural phases on certain crystal, especially semi-
conductor, surfaces; such phases depend on tempera-
ture and misorientation angle [1, 2]. For example, many
phases on Si surfaces have been observed [3]; a well-
known type of SR on Si(100) is manifested by the for-
mation of dimer rows in directions parallel and perpen-
dicular to line defects (steps) below the roughening tran-
sition [4–6]. Kinetic rates, e.g. diffusivities, and other
material parameters then vary dramatically across neigh-
boring terraces (regions separating steps). The mesoscale
and macroscale behavior of the surface emerging from
such defect inhomogeneities is not well understood.

Below the roughening transition, crystal surface
morphological evolution is driven by the motion of steps
of atomic height, a, according to the Burton-Cabrera-
Frank (BCF) model [7, 8]. Linking step kinetics to the
meso- and large-scale surface behavior can contribute to
understanding how microscale parameters can be engi-
neered to achieve appealing surface morphologies. This
connection is largely unexplored. A partial differential
equation (PDE) for the relaxation of the large-scale
height profile was formally derived for reconstructed
surfaces in one spatial dimension (1D) [9]. However, a
systematic, general macroscopic theory is still elusive.

In this Brief Report, we present a phase field model
aiming to capture salient features of a reconstructed sur-
face with non-interacting steps in two spatial dimensions
(2D). The diffusion of adsorbed atoms (adatoms) and
attachment/detachment of atoms at steps, which are key
processes of the BCF theory [7], have kinetic rates that
vary across terraces. Ehrlich-Schwoebel (ES) barriers
[10], step edge diffusion, desorption and material depo-
sition from above are included. Our work was inspired
by and forms an extension of [11]; see also [12–14].

Our motivation is twofold. First, it is broadly known
that phase field models, which replace each step edge by
a diffuse boundary layer, are computationally appealing
[15]; their use circumvents the need for explicitly track-
ing steps, which are sharp boundaries in BCF theory.

Numerical computations lie beyond our present scope.
Second, the phase field model provides a natural link-

age of microscale (step) motion to the mesoscale and
macroscale properties of the surface. The mesoscale com-
prises the collective behavior of a few atomic steps, at
length scales in the range 10-100 nm. This approach
should capture heterogeneities in the dynamics of sur-
faces suppressed by the fully macroscopic description.

The full macroscale theory of reconstructed surfaces
should incorporate some notion of averaging over distinct
material parameters [9]. Determining such averages in
2D is an open problem. We do not address this issue here,
but expect that the phase field model can be explored for
further analytical insights in this direction.

The phase field gives rise to a continuum theory since
step edges are smoothened out. At the same time, the
boundary layer width, ϵ, controls the influence of bound-
ary conditions at steps. Recovering the sharp-interface
limit (BCF-type model) requires ϵ → 0. The full contin-
uum limit results from a → 0 with fixed slope.

Our model has limitations. As in [11], step interac-
tions are neglected; the incorporation of force-monopole
and other interactions is the subject of work in progress.
Furthermore, we neglect anisotropy in terrace diffusion.

The remainder of this Brief Report is organized as fol-
lows. Section II revisits elements of the BCF theory, and
outlines equations of motion for steps. In Sec. III, we
formulate the phase field model, extending related ideas
of [11]. In Sec. IV, we argue that the phase field model
yields the BCF-type theory. Lastly, Sec. V summarizes
our results and discusses possible implications.

II. ELEMENTS OF BCF-TYPE THEORY

We start with elements of step motion [7]. The kinetic
processes are: (i) diffusion of adatoms on terraces and
step edges; (ii) attachment and detachment of atoms at
steps; (iii) desorption; and (iv) material deposition from
above. Our model uses distinct diffusivities (on terraces
and step edges) and sticking rates for atoms at steps.

First, we outline the step geometry. Consider N mono-
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FIG. 1: Top and side views of steps and terraces in 2D. Ui

denotes the ith terrace (i = 0, . . . , N), and Γi denotes the
ith step edge (i = 1, . . . , N). The parameters σi, k

±
i , and

νi/a denote step stiffness, attachment/detachment rates, and
step-edge diffusivity on Γi; and Di is the adatom diffusivity
on Ui. The step height is a constant, a.

layers (or ordered steps); see Fig. 1. Let Ui and Γi denote
the ith terrace and step edge, respectively, where each
Γi is smooth and non-self-intersecting; i = 1, . . . , N ,
N ≫ 1, and Γ0 lies far away from ΓN (at infinity).
Adatom diffusion is characterized by the (positive) dif-

fusivity Di in each region Ui; in addition, atoms at-
tach/detach with kinetic rates k±i at Γi from the upper
(+) or lower (−) terrace; see Eqs. (1) below. An exam-
ple of a system with such terrace-dependent diffusivities
is the reconstructed Si(111) which exhibits two phases
simultaneously, with two values of Di periodically alter-
nating from one terrace to the next [3].
Now define Ci = Ci(x, y, t) and Ji = −Di∇Ci as the

adatom density and flux on the ith terrace of the (x, y)-
plane (basal plane). The adatom concentration satisfies
∂tCi+∇·Ji = F−τ−1Ci in Ui, where F is the deposition
flux and τ is the desorption time. We employ the quasi-
steady approximation, ∂tCi ≃ 0 for small enough F , by
which ∇ · Ji ≃ F − τ−1Ci. Further, we apply linear
kinetics for atom attachment/detachment at steps:

Ji · ni = k+i (Ci − Ceq
i ) on Γi, (1a)

−Ji−1 · ni = k−i (Ci − Ceq
i ) on Γi, (1b)

where ni is the unit vector normal to Γi pointing out-
ward from Ui, and k+i (k

−
i ) is the adatom attachment-

detachment rate from the upper (lower) terrace at the
ith step edge; for a positive ES barrier [10], we assume
k+i < k−i . If steps do not interact, the equilibrium con-

centration, Ceq
i , is given by [8]

Ceq
i ≃ C∗ (1 + σiκi) , (2)

where C∗ and σi are constants and κi is the (local) curva-
ture of Γi; σi = ςi/(kBT ), ςi is the ith step stiffness, and
kBT is the Boltzmann energy (absolute temperature).

A few remarks on the omitted step-step interactions
are in order. It is known that surface reconstruction
can generate internal stresses, because of which steps
interact as force monopoles, or as force dipoles and
monopoles [6, 16]. These interactions modify Eq. (2) to
Ceq

i ≃ C∗ (1 + σiκi + ei), where the interaction term ei
may have tractable forms in relatively simple, e.g. radial,
step geometries in 2D. Thus far, we have been unable to
formulate a phase field model with nonzero ei.

The diffusion equation for Ci along with Eqs. (1) and
(2) are complemented with the step velocity law, vi =
(Ω/a)(Ji − Ji−1) · ni + a∂si(νi∂siκi) on Γi, where vi is
the normal velocity of the ith step edge, νia

−1 is the step-
edge diffusion coefficient, Ω ≃ a3 is the atomic volume,
and ∂si is the partial derivative with respect to the step-
edge arc length, si. The last term in the equation for
the step velocity describes the step-edge diffusion; as a
result, atoms are most inclined to attach to points with
a relatively high rate of change in curvature. We assume
that Γ0 ≡ Γ∞ is a large circle of radius R∞, a typical
macroscopic length. By a uniform-far-field condition [11],
we require that 1

2π

∫
Γ∞

J0 · n0 dS = J∞, and set J∞ = 0
for later algebraic convenience.

Next, we non-dimensionalize time and spatial variables
by introducing t∗ = R2

∞/D and ℓ∗ = R∞; D is a reference
value for the diffusivities, say, D = D0. Set t̃ = t/t∗
and (x̃, ỹ) = (x/ℓ∗, y/ℓ∗), ã = a/ℓ∗. Define the non-
dimensional concentration and flux: ϱi = ℓ2∗(Ci − C∗)

and J i = −Di∇̃ϱi, where Di = Di/D and ∇̃ = (∂x̃, ∂ỹ).
The adatom diffusion equation and step velocity law read

∇̃ ·J i = Λ− ς2(ϱi + ϱ∗) in Ui, (3)

ṽiã
−2 = (J i −J i−1) · ni + ã−1∂̃si(βi∂̃si κ̃i) on Γi, (4)

where the tildes express the scaled-coordinate system.
The kinetic boundary conditions at step edges read

ξ+i Ji · ni = ϱi − ϱ∗δiκ̃i on Γi, (5a)

− ξ−i Ji−1 · ni = ϱi−1 − ϱ∗δiκ̃i on Γi. (5b)

In Eqs. (3)–(5), ṽi = (ℓ∗/D)vi, Λ = Fℓ4∗/D, ς =

ℓ∗/
√
Dτ , ξ±i = D/(k±i ℓ∗), δi = σi/ℓ∗, κ̃i = ℓ∗κi,

ϱ∗ = C∗ℓ
2
∗, and βi = νi/(ℓ∗D). For ease of notation,

we drop the tildes from now on.

III. PHASE FIELD MODEL

We now focus on the phase field variable (order param-
eter) ϕϵ(x, y, t), a smooth approximation of the discrete
height of the step configuration [11]; ϕϵ = ia on the ith
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terrace. Our goal is to replace the BCF-type model of
Eqs. (3)-(5) by evolution laws involving ϕϵ. These laws
account for: (i) the rapid change of ϕϵ across boundary
layers (narrow regions near steps); and (ii) the condition
that ϕϵ approaches its appropriate constant value on each
terrace away from steps. These two distinct behaviors are
matched to produce a solution everywhere.
Our model contains the step-number-dependent mate-

rial parameters ξ±i ,Di, δi and βi; in contrast, in [11] each
of these parameters is constant. This feature is reflected
in the resulting evolution laws for ϕϵ, Eqs. (6) and (7).
Equation (3) is replaced by the evolution law

a−2
[
a−1∂tϕ

ϵ −∇s · (β∇sκ)|∇ϕϵ|
]

= ∇ · [M(ϕϵ; ϵ)∇ϱϵ] + Λ− ς2(ϱϵ + ϱ∗), (6)

where ϱϵ(x, y, t) is a field variable that smoothly approx-
imates the adatom density, ϱi; κ = ∇ · n and n = nϵ =
−∇ϕϵ/|∇ϕϵ| define the local curvature of and unit vec-
tor normal to level sets of ϕϵ, i.e., (x, y)-curves on which
ϕϵ = const., respectively [17]. Also, ∇s = (I − nn)∇
(I: unit tensor) is the gradient along ϕϵ-level sets. Step
velocity law (4) and conditions (5) are replaced by

αa−2ϵ2
[
a−1∂tϕ

ϵ −∇s · (β∇sκ)|∇ϕϵ|
]

= ϵ2∆ϕϵ −G′(ϕϵ) +
ϵϑ

ϱ∗
ϱϵ, (7)

where the prime denotes differentiation with respect to
the argument. The coefficients of Eqs. (6) and (7) are
defined below. These equations are supplemented with
the boundary conditions that the normal derivatives of
ϕϵ and ϱϵ vanish at Γ∞. Unlike the description in [13],
Eqs. (6) and (7) do not contain a time derivative of ϱϵ

because of the quasi-steady approach. In the limit ϵ → 0,
Eq. (6) reduces to Eq. (3) on each terrace; and both Eqs.
(6) and (7) contribute to Eqs (4) and (5) at steps.
We further comment on Eqs. (6) and (7). The contin-

uous mobility M accounts for inhomogeneities due to ξ±i
and Di: M(ϕ; ϵ) = M(ϕ)[1 + ϵ−1ζ(ϕ)]−1. Here, M is a
smooth function for terrace (i)-dependent diffusivities,

M(ϕ) = ηa/4(ϕ) ∗
∑
i

Diχ[(i−1/2)a,(i+1/2)a)(ϕ),

where ηa/4(ϕ) =
4
aη(

4ϕ
a ) is a mollifier with, e.g. η(x) =

C exp[1/(|x|2 − 1)] if |x| < 1 and 0 if |x| ≥ 1 so that∫∞
−∞ η(x)dx = 1; the ∗ operation denotes convolution;

and χS(ϕ) = 1 if ϕ lies in set S and 0 otherwise. Step-
dependent sticking rates are included in ζ(ϕ) = γi[ϕ −
(i− 1)a]pi(ia−ϕ)qiG(ϕ) for ϕ ∈ [(i− 1)a, ia) [18], where
γi, pi, and qi satisfy

α =
1

ϱ∗δ

∫ a

0

ζ(ϕ+ (i− 1)a)

M(ϕ+ (i− 1)a)
√
2G(ϕ)

ϕ(a− ϕ) dϕ, (8)

ξ−i =

∫ a

0

ζ(ϕ+ (i− 1)a)

M(ϕ+ (i− 1)a)
√
2G(ϕ)

(a− ϕ) dϕ, (9)

ξ+i =

∫ a

0

ζ(ϕ+ (i− 1)a)

M(ϕ+ (i− 1)a)
√

2G(ϕ)
ϕ dϕ. (10)

The functionG(ϕ) is the periodic multi-well free energy
G(ϕ) = [efi(ϕ) − 1][efi+1(ϕ) − 1] for ϕ ∈ [ia, (i + 1)a)
[11, 13]; fi(ϕ) = c1(ia − ϕ)2 + c2(ia − ϕ)4 where c1 and
c2 are constants chosen conveniently for applications; for
example, take c1 = 4.5 and c2 = 0.9 in [11]. Note that G
changes rapidly away from step edges and indicates the
position of terraces as a function of the height profile.
For each i, the function ϑ(ϕ) is defined on [(i − 1)a, ia]

by ϑ(ϕ) = Ki

[
ϖ(ϕ)

∫ ϕ

(i−1/2)a
G(w)−1 dw

]−1

for ϕ ̸= (i−
1)a, ia and 0 for ϕ = (i − 1)a, ia, where ϖ(ϕ) = −1 if
ϕ < (i − 1/2)a and 1 otherwise; and the constant Ki is

chosen so that δi =
∫ ia

(i−1)a
ϑ(ϕ)−1

√
2G(ϕ) dϕ.

In Eqs. (6) and (7) we invoke the continuous function

β(ϕ; ϵ) =
∑

i(βi − βi−1)
{
1 + e−

[ϕ−(i−1)a]

ϵl

}−1

which

accounts for step edge diffusion, with β0 ≡ 0. The
constant l is positive and determines how fast β(ϕ; ϵ)
converges (as ϵ → 0) to the discontinuous function∑N

i=1 βiχ[(i−1)a,ia)(ϕ); one may set l = 1 for definiteness.
Our definition of the mobility function, M(ϕ; ϵ), dif-

fers from the corresponding formulation in [11] where
M(ϕ) is unity and the coefficients of ζ(ϕ) do not de-
pend on i. In particular, our M(ϕ; ϵ) is non-periodic so
that it can accommodate distinct diffusivities (whereas
M is periodic in [11]). Note that M(ϕ) ≡ Di if ϕ lies
in

(
(i− 1

4 )a, (i+
1
4 )a

)
. In Sec. IV, we indicate how this

M leads to the terrace-dependent Eqs. (3). Also, we in-
troduce i-dependent parameters pi, γi and qi in ζ(ϕ) to
compensate for the i-dependence of ξ±i and the lack of
periodicity of M(ϕ). Physically, this ζ yields the asym-
metry of the ES barrier.

In view of the above, the BCF-type limit is described
via ϕϵ. By defining Γi(t; ϵ) so that ϕϵ(x, y, t) = (i−1/2)a
for (x, y) in Γi(t; ϵ), the sharp interface stems from the
limit Γi(t; 0) ≡ Γi of Γi(t; ϵ) as ϵ → 0.

IV. DISCUSSION

Following [11], we briefly discuss how the phase field
model yields the BCF-type model. The idea is to sepa-
rate the spatial coordinate normal to each step into fast
(zi) and slow (ri) variables. In the inner regions (bound-
ary layers), the variation of ϕϵ over zi prevails; and in the
outer regions the slow variable is important. A global so-
lution for ϕϵ is obtained by appropriate matching.

To describe ϕϵ near the ith step, consider the or-
thogonal curvilinear coordinate system (ri, si) near
Γi(t; ϵ); ri = rϵi (x, y, t) is the signed distance of (x, y)
from Γi(t; ϵ) where ri > 0 in the direction of Ui−1,
and si = sϵi(x, y, t) is the arc length along Γi(t; ϵ)
[11]. By zi = ri/ϵ, define Φ(zi, si, t; ϵ) = ϕϵ(x, y, t)
and P (zi, si, t; ϵ) = ϱ̂ϵ(ri, si, t) = ϱϵ(x, y, t) in the
inner region. We make explicit the dependence
on ϵ of each relevant variable (Q) by expanding
Q = Q(0) + ϵQ(1) + ϵ2Q(2) + · · · (e.g. Q = Φ) [11].

Our model uses continuous functions such as M(ϕ)
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to reconcile the distinct microscale parameters, e.g. Di,
with the smooth transition of the phase field ϕϵ from each
boundary layer to the outer region. Across the bound-
ary layer, the terrace diffusion function M, a constant in
[11], varies from one diffusivity to another. Since M is
independent of ϵ, this transition is smooth even in the
limit ϵ → 0 and does not affect the resulting diffusion
equation on terraces. The edge diffusion function β(ϕ)
remains a constant (βi) in the ith boundary layer; and
varies smoothly from βi to βi+1 on the ith terrace. How-
ever, this behavior does not alter Eq. (3) because β is
multiplied by |∇ϕϵ| which vanishes on terraces to lead-
ing order in ϵ. The smooth function ζ(ϕ) is properly
integrated over the boundary layer to yield the distinct
sticking rates ξ±i . Note that ζ has no effect on any terrace
because ζ(ia) = 0 for all i. Also, ϑ(ϕ) does not appear
in the leading outer expansion; the magnitude of ϑ (de-
termined by Ki) accommodates an i-dependent stiffness.
By skipping details, we now indicate the sharp-

interface limit. In the outer region, Eq. (7) yields
G′(ϕ(0)) = 0 to leading order in ϵ; thus, ϕ(0) = (i −
1)a, ia. This implies that, as ϵ → 0, Γi(t; 0) ≡ Γi lies
between two terraces of heights (i−1)a and ia. Thus, we
find ζ(ϕ(0)) = 0 and M(ϕ(0); ϵ) = Di on the ith terrace.
Hence, Eq. (6) produces Eq. (3) to leading order.
In the overlap region near each terrace, every ϕϵ-

dependent quantity from the outer region must coincide
with the limit of the respective variable from the inner
region. For example, as (x, y) approaches Γi, ϕ

(0) from
the outer region tends to the limit of Φ(0)(zi, si, t) as
zi → ±∞; thus, the matching gives limzi→−∞ Φ(0) = ia
[11]. Such conditions are incorporated in the inner region
as boundary conditions to the appropriate expansions in
ϵ of Eqs. (6) and (7) to obtain Eqs. (4) and (5).

V. CONCLUSION

We presented a phase field model for the near-
equilibrium evolution of stepped surfaces with distinct
inhomogeneities at the microscale. This work forms an
extension of the formulation in [11]. A particular feature
of our model, absent from [11], is the mobility function,
M(ϕϵ), that describes sequences of disparate diffusivi-
ties, Di, and sticking kinetic rates, k±i , across terraces
and steps. Our analysis accounts for arc-length-varying
step edge diffusivities, νi(s).

Our model has limitations, pointing to open questions.
We considered non-interacting steps; the incorporation of
entropic, force-monopole and other step-step interactions
is a pending issue. The numerical simulation of ϕϵ, al-
though appealing for applications, was not touched upon.
Similarly, we have not studied possible instabilities that
may arise in the presence of terrace inhomogeneities; for
example, we expect that simulations of the phase field
model can reveal meandering instabilities in the spirit of
[19]. The full continuum limit, where a → 0 and ϵ → 0,
was not studied; a question is how to implement a rea-
sonable ordering of these limits or scaling of a with ϵ.
This task is left for near-future work.
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