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1. Introduction

Our goal in writing this paper is to propose and analyze a non-conforming domain

decomposition generalization to P.L. Lions initial idea, 32, in view of an extension of

the approach to optimized interface conditions algorithms. This type of algorithm

has proven indeed to be an efficient approach to domain decomposition methods

in the case of conforming approximations, 12,25. This paper presents the basic ma-

terial related to so called optimized zeroth order method in case of finite element

1
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discretizations, see Ref. 17 for a short presentation. In the companion paper Ref. 1,

the case of the finite volume discretization was introduced and analyzed.

In the finite element case, our method is based on a new interface cement using

Robin conditions, and correspond to an equilibrated mortar approach (i.e. there is

no master and slave sides). Thus we name this new method “New Interface Cement

Equilibrated Mortar” (NICEM) method.

In Section 2, we present the method at the continuous level and then at the

discrete level. Then in Section 3, we give in details the numerical analysis, with the

proofs of well-posedness and error estimates both in 2D and 3D for P1 elements.

Given the length of the paper, the numerical analysis for 2D piecewise polynomials

of higher order as well as convergence proofs for the Schwarz algorithm used to solve

the discrete problem is the subject of another paper. We finally present in Section

4 simulations for two and four subdomains, that fit the theoretical estimates.

We first consider the problem at the continuous level: Find u such that

L(u) = f in Ω (1.1)

C(u) = g on ∂Ω (1.2)

where L and C are partial differential equations. The original Schwarz algorithm is

based on a decomposition of the domain Ω into overlapping subdomains and the

resolution of Dirichlet boundary value problems in the subdomains. It has been

proposed in Ref. 32 to use more general boundary conditions for the problems on

the subdomains in order to use a non-overlapping decomposition of the domain.

The convergence factor is also dramatically reduced.

More precisely, let Ω be a C1,1 (or convex polygon in 2D or polyhedron in 3D)

domain of IRd, d = 2 or 3. This assumption is necessary to obtain minimal H2

regularity that provides the full first order convergence of the P1 finite element

approximation. We could deal with lower regularity on the solution at the price of

more technical proofs in non integer Sobolev spaces.

We assume that Ω is decomposed into K non-overlapping subdomains:

Ω = ∪K
k=1Ω

k
. (1.3)

We suppose that the subdomains Ωk, 1 ≤ k ≤ K are either C1,1 or polygons in

2D or polyhedrons in 3D. We assume also that this decomposition is geometrically

conforming in the sense that the intersection of the closure of two different subdo-

mains, if not empty, is either a common vertex, a common edge, or a common face

in 3D a. Let nk be the outward normal from Ωk. Let (Bk,ℓ)1≤k,ℓ≤K,k 6=ℓ be the cho-

sen transmission conditions on the interface between subdomains Ωk and Ωℓ (e.g.

Bk,ℓ =
∂
∂nk

+ αk). What we shall call here a Schwarz type method for the problem

aThis assumption is actually not much restrictive since in the case of a geometrically nonconform-
ing partition, the faces can be decomposed into subfaces to obtain a geometric conformity
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(1.1)-(1.2) is its reformulation: Find (uk)1≤k≤K such that

L(uk) = f in Ωk

C(uk) = g on ∂Ωk ∩ ∂Ω
Bk,ℓ(uk) = Bk,ℓ(uℓ) on ∂Ω

k ∩ ∂Ωℓ,

leading to the iterative procedure

L(un+1
k ) = f in Ωk

C(un+1
k ) = g on ∂Ωk ∩ ∂Ω

Bk,ℓ(u
n+1
k ) = Bk,ℓ(u

n
ℓ ) on ∂Ω

k ∩ ∂Ωℓ.

Let us focus first on the interface conditions Bk,ℓ. The convergence factor of asso-

ciated Schwarz-type domain decomposition methods is very sensitive to the choice

of these transmission conditions. The use of exact artificial (also called absorbing)

boundary conditions as interface conditions leads to an optimal number of itera-

tions, 22,34,21,20. Indeed, for a domain decomposed into K strips, the number of

iterations is K, see Ref. 34. Let us remark that this result is rather surprising since

exact absorbing conditions refer usually to truncation of infinite domains rather

than interface conditions in domain decomposition. Nevertheless, this approach has

some drawbacks: first, the explicit form of these boundary conditions is known only

for constant coefficient operators and simple geometries. Secondly, these boundary

conditions are pseudo-differential. The cost per iteration is high since the corre-

sponding discretization matrix is not sparse for the unknowns on the boundaries

of the subdomains. For this reason, it is usually preferred to use partial differential

approximations to the exact absorbing boundary conditions. This approximation

problem is classical in the field of computation on unbounded domains since the

seminal paper of Engquist and Majda, 15. The approximations correspond to “low

frequency” approximations of the exact absorbing boundary conditions. In domain

decomposition methods, many authors have used them for wave propagation prob-

lems, 13,14,31,5,38,29,8 and in fluid dynamics, 33,19. Instead of using ”low frequency”

in space approximations to the exact absorbing boundary conditions, it has been

proposed to design approximations which minimize the convergence factor of the

algorithm. Such optimization of the transmission conditions for the performance

of the algorithm was done in Ref. 25, 26, 27 for a convection-diffusion equation,

where coefficients in second order transmission conditions where optimized. These

approximations, named OO2 (Optimized Order 2), are quite different from the ”low

frequency” approximations and reduce dramatically the convergence factor of the

method.

When the grids are conforming, the implementation of such interface condi-

tions on the discretized problem is not too difficult. On the other hand, using

non-conforming grids is very appealing since their use allows for parallel generation

of meshes, for local adaptive meshes and fast and independent solvers. The mor-

tar element method, first introduced in Ref. 7, enables the use of non-conforming
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grids. It is also well suited to the use of the so-called ”Dirichlet-Neumann”, 19,

or ”Neumann-Neumann” preconditioned conjugate gradient method applied to the

Schur complement matrix, 30,2,37. In the context of finite volume discretizations, it

was proposed in Ref 36 to use a mortar type method with arbitrary interface condi-

tions. To our knowledge, such an approach has not been extended to a finite element

discretization. Moreover, the approach we present here is different and simpler.

The purpose of this paper is to set the basics, and present the associated anal-

ysis in full details of such Robin type boundary conditions. Here we consider only

interface conditions of order 0 : Bk,ℓ = ∂
∂nk

+ αk. The approach we propose and

study was introduced in Ref. 17 and independently implemented in Ref. 28 for the

Maxwell equations but without numerical analysis. These results are the prerequi-

site for the goal in designing this non overlapping method: use interface conditions

such as OO2 interface conditions (see Ref. 25, 27). The implementation of such op-

timized order 2 transmission conditions is already available for advection-diffusion

problems, 23,24.

2. Definition of the method

We consider the following problem : Find u such that

(Id−∆)u = f in Ω (2.1)

u = 0 on ∂Ω, (2.2)

where Ω is a C1,1 (or convex polygon in 2D or polyhedron in 3D) domain of IRd,

d = 2 or 3, and f is given in L2(Ω).

The variational statement of the problem (2.1)-(2.2) consists in writing the problem

as follows : Find u ∈ H1
0 (Ω) such that

∫

Ω

(∇u∇v + uv) dx =

∫

Ω

fvdx, ∀v ∈ H1
0 (Ω). (2.3)

Making use of the domain decomposition (1.3), the problem (2.3) can be written as

follows : Find u ∈ H1
0 (Ω) such that

K
∑

k=1

∫

Ωk

(

∇(u|Ωk) ∇(v|Ωk) + u|Ωkv|Ωk

)

dx =

K
∑

k=1

∫

Ωk

f|Ωkv|Ωkdx, ∀v ∈ H1
0 (Ω).

Let us introduce the space H1
∗ (Ω

k) defined by

H1
∗ (Ω

k) = {ϕ ∈ H1(Ωk), ϕ = 0 over ∂Ω ∩ ∂Ωk}.

It is standard to note that the space H1
0 (Ω) can then be identified with the subspace

of the K-tuple v = (v1, ..., vK) that are continuous on the interfaces:

V = {v = (v1, ..., vK) ∈
K
∏

k=1

H1
∗ (Ω

k), ∀k, ℓ, k 6= ℓ, 1 ≤ k, ℓ ≤ K, vk = vℓ over ∂Ω
k ∩ ∂Ωℓ}.
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This leads to introduce also the notation of the interfaces of two adjacent subdo-

mains

Γk,ℓ = ∂Ωk ∩ ∂Ωℓ.

In what follows, for the sake of simplicity, the only fact to refer to a pair (k, ℓ)

preassumes that Γk,ℓ is not empty. The problem (2.3) is then equivalent to the

following one : Find u ∈ V such that

K
∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx =

K
∑

k=1

∫

Ωk

fkvkdx, ∀v ∈ V.

The mortar element method cannot be used easily and efficiently with Robin in-

terface conditions in the framework of Schwarz type methods. In order to glue

non-conforming grids with Robin transmission conditions, it turns out to be useful

to impose the constraint vk = vℓ over ∂Ωk ∩ ∂Ωℓ through a Lagrange multiplier in

H−1/2(∂Ωk).

Lemma 1. For v ∈∏K
k=1H

1
∗ (Ω

k), the constraint vk = vℓ across the interface Γk,ℓ

is equivalent to

∀p ≡ (pk) ∈
K
∏

k=1

H−1/2(∂Ωk) with pk = −pℓ over Γk,ℓ, ∀k, ℓ,
K
∑

k=1

H−1/2(∂Ωk) < pk, vk >H1/2(∂Ωk) = 0. (2.4)

Proof: The proof is similar to the one of proposition III.1.1 in Ref. 11 but can’t

be directly derived from this proposition. Let p ≡ (pk) ∈ ∏K
k=1H

−1/2(∂Ωk) with

pk = −pℓ over Γk,ℓ, in (H
1/2
00 (Γk,ℓ))′ sense. Then, there exists over each Ωk a lifting

of the normal trace pk in H(div,Ωk). The global function P, which restriction to

each Ωk is defined as being equal to the lifting, belongs to H(div,Ω) and is such

that (P.n)|∂Ωk = pk. Let now v ∈ V . From the previously quoted identification, we

know that there exists v ∈ H1
0 (Ω) such that v|Ωk = vk. In addition,

∫

Ω

v∇ ·P−
∫

Ω

P∇v = 0.

On the other hand,

∫

Ω

v∇ ·P−
∫

Ω

P∇v =

K
∑

k=1

(

∫

Ωk

v∇ ·P−
∫

Ωk

P∇v) =

K
∑

k=1

∫

∂Ωk

(P.n)v =

K
∑

k=1

∫

∂Ωk

pkvk,

so that (2.4) is satisfied.

Conversely, let v = (v1, ..., vK) ∈ ∏K
k=1H

1
∗ (Ω

k) such that (2.4) is satisfied. Let

x ∈ Γk,ℓ, and let γx ⊂ γ̄x ⊂ Γx ⊂ Γ̄x ⊂ Γk,ℓ be open sets. There exists a function
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ϕ in D(Γx) such that ϕ(y) = 1 for all y in γx. With any q ∈ (H
1/2
00 (Γx))

′, let us

associate p ≡ (pk) defined by

H−1/2(∂Ωk)< pk, wk >H1/2(∂Ωk) = (H
1/2
00

(Γx))′
< q, ϕwk >H

1/2
00

(Γx)
, ∀wk ∈ H1/2(∂Ωk),

H−1/2(∂Ωℓ)< pℓ, wℓ >H1/2(∂Ωℓ) = −
(H

1/2
00

(Γx))′
< q, ϕwℓ >H

1/2
00

(Γx)
, ∀wℓ ∈ H1/2(∂Ωℓ),

and pj = 0, ∀j 6= k, ℓ.

By construction, p ∈∏K
k=1H

−1/2(∂Ωk) and pk = −pℓ over Γk,ℓ. Hence from (2.4),

K
∑

k=1

H−1/2(∂Ωk)< pk, vk >H1/2(∂Ωk)= 0.

We derive

H−1/2(∂Ωk)< pk, vk >H1/2(∂Ωk)= −H−1/2(∂Ωℓ)< pℓ, vℓ >H1/2(∂Ωℓ),

thus,

(H
1/2
00

(Γx))′
< q, ϕvk >H

1/2
00

(Γx)
=

(H
1/2
00

(Γx))′
< q, ϕvℓ >H

1/2
00

(Γx)
,

and this is true for any q ∈ (H
1/2
00 (Γx))

′, hence ϕvk = ϕvℓ over Γx, and thus

vk = vℓ over γx, ∀x ∈ Γk,ℓ.

We derive vk = vℓ a.e. over Γk,ℓ, which ends the proof of Lemma 1.

The constrained space is then defined as follows

V = {(v, q) ∈
(

K
∏

k=1

H1
∗ (Ω

k)

)

×
(

K
∏

k=1

H−1/2(∂Ωk)

)

,

vk = vℓ and qk = −qℓ over Γk,ℓ, ∀k, ℓ}, (2.5)

and problem (2.3) is equivalent to the following one : Find (u, p) ∈ V such that

K
∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx−
K
∑

k=1

H−1/2(∂Ωk) < pk, vk >H1/2(∂Ωk)

=
K
∑

k=1

∫

Ωk

fkvkdx, ∀v ∈
K
∏

k=1

H1
∗ (Ω

k).

(2.6)

Being equivalent to the original problem, with pk = ∂u
∂nk

over ∂Ωk (recall that f is

assumed to be in L2(Ω) so that ∂u
∂nk

actually belongs to H−1/2(∂Ωk)), this problem

is naturally well posed.

Let us describe the method in the non-conforming discrete case. Standard mortar

methods are based on Galerkin approximation where both the trial spaces and

test spaces are defined by imposing a gluing condition on the Dirichlet values on

the interface by integral matching through mortar Lagrange multipliers. Here, we

wish to match Robin conditions (i.e. the combination of Dirichlet and Neumann



October 10, 2012 16:52 WSPC/INSTRUCTION FILE newcementpaper

A new interface equilibrated mortar method with Robin interface conditions 7

condition) we thus need to introduce a new independent entity representing the

normal derivative of the trial function on the interface by increasing the set of trial

function. This leads in turn to an increase in the set of test functions that appear

to be defined with no glue. The method is no longer of Galerkin type but rather of

Petrov Galerkin.

In all what follows we restrict the analysis to P1 finite elements. The more

general case is the subject of another paper for sake of brevity.

2.1. Discrete case

We introduce now the discrete spaces. Each Ωk is provided with its own mesh

(classical and locally conforming) T k
h , 1 ≤ k ≤ K, such that

Ω
k
= ∪T∈T k

h
T.

For T ∈ T k
h , let hT be the diameter of T (hT = supx,y∈T d(x, y)) and h the dis-

cretization parameter

h = max
1≤k≤K

hk, with hk = max
T∈T k

h

hT .

At the price of (even) more technicalities in the analysis, possible large variations

in the norms of the solution u|Ωk can be compensated by tuning the parameter hk.

This requires in particular that the uniform h is not used but all the analysis is

performed with hk. For the sake of readability we prefer to use h instead of hk.

Let ρT be the diameter of the circle (in 2D) or sphere (in 3D) inscribed in T , then

σT = hT

ρT
is a measure of the nondegeneracy of T . We suppose that T k

h is uniformly

regular: there exists σ and τ independent of h such that

∀T ∈ T k
h , σT ≤ σ and τh ≤ hT .

We consider that the sets belonging to the meshes are of simplicial type (triangles

or tetrahedron), but the analysis made hereafter can be applied as well for quadran-

gular or hexahedral meshes. Let P1(T ) denote the space of all polynomials defined

over T of total degree less than or equal to 1. The finite elements are of Lagrangian

type, of class C0. We define over each subdomain two conforming spaces Y k
h and

Xk
h by :

Y k
h = {vh,k ∈ C0(Ω

k
), vh,k|T ∈ P1(T ), ∀T ∈ T k

h },
Xk

h = {vh,k ∈ Y k
h , vh,k|∂Ωk∩∂Ω = 0}.

The space of traces over each Γk,ℓ of elements of Y k
h is a finite element space denoted

by Yk,ℓ
h . As we assumed that the domain decomposition is geometrically conforming,

then the space Yk
h is the product space of the Yk,ℓ

h over each ℓ such that Γk,ℓ 6= ∅.
With each such interface we associate a subspace W̃ k,ℓ

h of Yk,ℓ
h in the same spirit as

in the mortar element method, see Ref. 7 in 2D or Ref. 4 and Ref. 10 in 3D. To be

more specific, let us recall the situation in 2D. If the space Xk
h consist of continuous
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piecewise polynomials of degree ≤ 1, then it is readily noticed that the restriction

of Xk
h to Γk,ℓ consists in finite element functions adapted to the (possibly curved)

side Γk,ℓ of piecewise polynomials of degree ≤ 1. This side has two end points that

we denote as xk,ℓ0 and xk,ℓn that belong to the set of vertices of the corresponding

triangulation of Γk,ℓ : xk,ℓ0 , xk,ℓ1 , ..., xk,ℓn−1, x
k,ℓ
n . The space W̃ k,ℓ

h is then the subspace

of those elements of Yk,ℓ
h that are polynomials of degree 0 over both [xk,ℓ0 , xk,ℓ1 ] and

[xk,ℓn−1, x
k,ℓ
n ]. As before, the space W̃ k

h is the product space of the W̃ k,ℓ
h over each ℓ

such that Γk,ℓ 6= ∅. In 3D, we used specific notations from Ref. 10, given in Section

3.4.

The discrete constrained space is then defined as

Vh = {(uh, ph) ∈
(

K
∏

k=1

Xk
h

)

×
(

K
∏

k=1

W̃ k
h

)

,

∫

Γk,ℓ

((ph,k + αuh,k)− (−ph,ℓ + αuh,ℓ))ψh,k,ℓ = 0, ∀ψh,k,ℓ ∈ W̃ k,ℓ
h , ∀k, ℓ}. (2.7)

Note that, for regular enough function
∫

Γk,ℓ

((pk + αuk)− (−pℓ + αuℓ))ψk,ℓ = 0, ∀ψk,ℓ ∈ L2(Γk,ℓ), ∀k, ℓ,

then pk = −pℓ and uk = uℓ, which allows us to make the link between the Robin

condition (2.7) and the Dirichlet-Neumann condition in (2.5).

Let πk,ℓ denote the orthogonal projection operator from L2(Γk,ℓ) onto W̃ k,ℓ
h .

Then, for v ∈ L2(Γk,ℓ), πk,ℓ(v) is the unique element of W̃ k,ℓ
h such that

∫

Γk,ℓ

(πk,ℓ(v)− v)ψ = 0, ∀ψ ∈ W̃ k,ℓ
h . (2.8)

We remark that the constraint in (2.7) also reads

pk + απk,ℓ(uk) = πk,ℓ(−pℓ + αuℓ) over Γk,ℓ, ∀k, ℓ. (2.9)

The discrete problem is the following one : Find (uh, ph) ∈ Vh such that

∀vh = (vh,1, ...vh,K) ∈∏K
k=1X

k
h ,

K
∑

k=1

∫

Ωk

(∇uh,k∇vh,k + uh,kvh,k) dx−
K
∑

k=1

∫

∂Ωk

ph,kvh,kds =

K
∑

k=1

∫

Ωk

fkvh,kdx. (2.10)

For the numerical analysis, we have to precise the norms that can be used on the

Lagrange multipliers p
h
. For any p ∈ ∏K

k=1 L
2(∂Ωk), in addition to the natural

norm, we can define two better suited norms as follows

‖p‖− 1

2
,∗ =









K
∑

k=1

K
∑

ℓ=1
ℓ 6=k

‖pk‖2
(H

1

2

00
(Γk,ℓ))′









1

2

, and ‖p‖− 1

2

=

(

K
∑

k=1

‖pk‖2
H− 1

2 (∂Ωk)

)

1

2

,
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where ‖.‖
(H

1

2

00
(Γk,ℓ))′

stands for the dual norm of H
1

2

00(Γ
k,ℓ).

We also need a stability result for the Lagrange multipliers, and refer to Ref. 3

for 2D and to the appendix in 3D (the proof is postponed to the appendix because

it needs ingredients that are developed later, in the analysis of the best approxima-

tion), in which it is proven that,

Lemma 2. There exists a constant c∗ such that, for any ph,k,ℓ in W̃
k,ℓ
h , there exists

an element wh,k,ℓ in Xk
h that vanishes over ∂Ωk \ Γk,ℓ and satisfies

∫

Γk,ℓ

ph,k,ℓw
h,k,ℓ ≥ ‖ph,k,ℓ‖2

(H
1

2

00
(Γk,ℓ))′

(2.11)

with a bounded norm

‖wh,k,ℓ‖H1(Ωk) ≤ c∗‖ph,k,ℓ‖
(H

1

2

00
(Γk,ℓ))′

. (2.12)

We now provide an analysis of the approximation properties of this scheme.

3. Numerical Analysis

3.1. Well posedness

The first step in this error analysis is to prove the stability of the discrete problem

and thus its well posedness. Let us introduce over (
∏K

k=1H
1
∗ (Ω

k)×∏K
k=1 L

2(∂Ωk))×
∏K

k=1H
1
∗ (Ω

k) the bilinear form

ã((u, p), v)) =
K
∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx −
K
∑

k=1

∫

∂Ωk

pkvkds. (3.1)

The space
∏K

k=1H
1
∗ (Ω

k) is endowed with the norm

‖v‖∗ =

(

K
∑

k=1

‖vk‖2H1(Ωk)

)

1

2

.

Lemma 3. There exists c′ > 0 and a constant β > 0 such that

for αh ≤ c′, ∀(uh, ph) ∈ Vh, ∃vh ∈
K
∏

k=1

Xk
h ,

ã((uh, ph), vh)) ≥ β(‖uh‖∗ + ‖p
h
‖− 1

2
,∗)‖vh‖∗. (3.2)

Moreover, we have the continuity argument : there exists a constant c > 0 such that

∀(uh, ph) ∈ Vh, ∀vh ∈
K
∏

k=1

Xk
h , ã((uh, ph), vh)) ≤ c(‖uh‖∗ + ‖p

h
‖− 1

2

)(‖vh‖∗). (3.3)
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Proof of Lemma 3: In (2.11) and (2.12), we have introduced local H1
0 (Γk,ℓ)

functions that can be put together in order to provide an element wh of
∏K

k=1X
k
h

that satisfies

K
∑

k=1

∫

∂Ωk

pkwkds ≥ ‖p
h
‖2− 1

2
,∗. (3.4)

Let us now choose a real number γ, 0 < γ < 2
c2∗

(where c∗ is introduced in (2.12))

and choose vh = uh − γwh in (3.1) that yields

ã((uh, ph), vh)) =

K
∑

k=1

∫

Ωk

(∇uk∇(uk − γwk) + uk(uk − γwk)) dx

−
K
∑

k=1

∫

∂Ωk

pk(uk − γwk)ds (3.5)

By (2.9), we can write
∫

Γk,ℓ

pkukds =
1

4α

∫

Γk,ℓ

((pk + απk,ℓ(uk))
2 − (pk − απk,ℓ(uk))

2)ds

=
1

4α

∫

Γk,ℓ

((πk,ℓ(−pℓ + αuℓ))
2 − (pk − απk,ℓ(uk))

2)ds

≤ 1

4α

∫

Γk,ℓ

((pℓ − αuℓ)
2 − (pk − απk,ℓ(uk))

2)ds

≤ 1

4α

∫

Γk,ℓ

((pℓ − απℓ,k(uℓ))
2 − (pk − απk,ℓ(uk))

2)ds

+
1

4α

∫

Γk,ℓ

α2(πℓ,k(uℓ)− uℓ)
2ds

so that

K
∑

k=1

∫

∂Ωk

pkukds ≤
α

4

K
∑

k=1

∑

k<ℓ

∫

Γk,ℓ

(uk − πk,ℓ(uk))
2ds ≤ cαh‖uh‖2∗.

We refer to Ref. 7 in 2D and Ref. 4 or Ref. 10 equation (5.1) in 3D, where the

approximation properties of πk,ℓ are proven.

Going back to (3.5), using (3.4) and Lemma 2 yields

ã((uh, ph), vh) ≥ (1− cαh)‖uh‖2∗ − γ‖uh‖∗‖wh‖∗ + γ‖p
h
‖2− 1

2
,∗

≥ (
1

2
− cαh)‖uh‖2∗ + γ‖p

h
‖2− 1

2
,∗ −

γ2

2
‖wh‖2∗

≥ (
1

2
− cαh)‖uh‖2∗ + (γ − γ2c2∗

2
)‖p

h
‖2− 1

2
,∗.

Due to the choice of γ, we know that, for αh small enough, (3.2) holds. The conti-

nuity (3.3) follows from standard arguments (note that the norm on the right-hand

side of (3.3) is not the ‖.‖− 1

2
,∗–norm), which ends the proof of Lemma 3.
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From this lemma, we have the following result :

Theorem 1. Let us assume that αh ≤ c, for some constant c small enough. Then,

the discrete problem (2.10) has a unique solution (uh, ph) ∈ Vh, and there exists a

constant c > 0 such that

‖uh‖∗ + ‖p
h
‖− 1

2
,∗ ≤ c‖f‖L2(Ω).

From Lemma 3, we are also in position to state that the discrete solution (uh, ph)

satisfies the following optimal error bound

‖u− uh‖∗ + ‖p− p
h
‖− 1

2
,∗ ≤ c inf

(ũh,p̃h
)∈Vh

(‖u− ũh‖∗ + ‖p− p̃
h
‖− 1

2

) (3.6)

and we are naturally led to the analysis of the best approximation of (u, p = ∂u
∂n )

solution to (2.6) (or equivalently u solution to (2.1)-(2.2)) by elements in Vh.

3.2. Analysis of the best approximation in 2D

In this part we analyze the best approximation of (u, p) by elements in Vh. As

the proof is very technical for the analysis of the best approximation, we restrict

ourselves in this section to the complete analysis of the 2D. The extension to 3D

first order approximation is postponed to a next subsection.

The first step in the analysis is to prove the following lemma

Lemma 4. There exist two constants c1 > 0 and c2 > 0 independent of h such that

for all ηℓ,k in Yℓ,k
h ∩H1

0 (Γ
k,ℓ), there exists an element ψℓ,k in W̃ ℓ,k

h , such that
∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k ≥ c1‖ηℓ,k‖2L2(Γk,ℓ), (3.7)

‖ψℓ,k‖L2(Γk,ℓ) ≤ c2‖ηℓ,k‖L2(Γk,ℓ). (3.8)

Note that ηℓ,k and πk,ℓ(ηℓ,k) are associated with different grids.

Then, we can prove the following interpolation estimates :

Theorem 2. For any u ∈ H2(Ω) ∩ H1
0 (Ω), let uk = u|Ωk , 1 ≤ k ≤ K, u =

(uk)1≤k≤K and let pk,ℓ = ∂uk

∂nk
over each Γk,ℓ. Then there exists an element ũh

in
∏K

k=1X
k
h and p̃

h
= (p̃kℓh), p̃kℓh ∈ W̃ k,ℓ

h such that (ũh, p̃h) satisfy the coupling

condition (2.7), and

‖ũh − u‖∗ ≤ ch

K
∑

k=1

‖uk‖H2(Ωk) +
c

α

∑

k<ℓ

‖pk,ℓ‖
H

1

2 (Γk,ℓ)

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
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where c is a constant independent of h and α.

If we assume more regularity on the normal derivatives on the interfaces, we

have

Theorem 3. Let u ∈ H2(Ω) ∩ H1
0 (Ω), uk = u|Ωk , 1 ≤ k ≤ K, u = (uk)1≤k≤K

and pk,ℓ = ∂uk

∂nk
is in H

3

2 (Γk,ℓ). Then there exists an element ũh in
∏K

k=1X
k
h and

p̃
h
= (p̃kℓh), p̃kℓh ∈ W̃ k,ℓ

h such that (ũh, p̃h) satisfy the coupling condition (2.7),

and

‖ũh − u‖∗ ≤ ch

K
∑

k=1

‖uk‖H2(Ωk) +
ch

α
| log h|

∑

k<ℓ

‖pk,ℓ‖
H

3

2 (Γk,ℓ)

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch2| logh|‖pk,ℓ‖

H
3

2 (Γk,ℓ)

where c is a constant independent of h and α.

Proof of Lemma 4: We consider Γℓ,k to be on the line y = 0. Remind that we

have denoted as xℓ,k0 , xℓ,k1 , ..., xℓ,kn−1, x
ℓ,k
n the vertices of the triangulation of Γℓ,k that

belong to Γℓ,k. To any ηℓ,k in Yℓ,k
h ∩H1

0 (Γ
k,ℓ) we then associate the element ψℓ,k in

W̃ ℓ,k
h as follows

ψℓ,k =















ηℓ,k(x
ℓ,k
1

−xℓ,k
0

)

(x−xℓ,k
0

)
over ]xℓ,k0 , xℓ,k1 [

ηℓ,k over ]xℓ,k1 , xℓ,kn−1[
ηℓ,k(x

ℓ,k
n −xℓ,k

n−1
)

(xℓ,k
n −x)

over ]xℓ,kn−1, x
ℓ,k
n [

=











η1ℓ,k over ]xℓ,k0 , xℓ,k1 [

ηℓ,k over ]xℓ,k1 , xℓ,kn−1[

ηn−1
ℓ,k over ]xℓ,kn−1, x

ℓ,k
n [

where ηiℓ,k = ηℓ,k(x
k,ℓ
i ). By using a mapping onto the reference element [0, 1] and

by recalling that all norms are equivalent over the space of polynomials of degree 1

we deduce in a classical way that there exists a constant c such that

‖ψℓ,k‖L2(Γk,ℓ) ≤ c‖ηℓ,k‖L2(Γk,ℓ).

Moreover, it is straightforward to derive
∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k =

∫

Γk,ℓ

ηℓ,kψℓ,k +

∫

Γk,ℓ

(πk,ℓ(ηℓ,k))
2 +

∫

Γk,ℓ

πk,ℓ(ηℓ,k)(ψℓ,k − ηℓ,k).

Then, by using the relation

πk,ℓ(ηℓ,k)(ψℓ,k − ηℓ,k) ≥ −1

2
(πk,ℓ(ηℓ,k))

2 − 1

2
(ψℓ,k − ηℓ,k)

2,

we obtain
∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k ≥
∫

Γk,ℓ

ηℓ,kψℓ,k +
1

2

∫

Γk,ℓ

(πk,ℓ(ηℓ,k))
2 − 1

2

∫

Γk,ℓ

(ψℓ,k − ηℓ,k)
2.

We realize now that, over the first interval,
∫

]xℓ,k
0

,xℓ,k
1

[

(ηℓ,kψℓ,k −
1

2
(ψℓ,k − ηℓ,k)

2) =

∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x − xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
)ψ2

ℓ,k.
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We observe, by computing separately each integral, that
∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x − xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
) =

∫

]xℓ,k
0

,xℓ,k
1

[

(x− xℓ,k0 )2

(xℓ,k1 − xℓ,k0 )2
.

By recalling that ψℓ,k is constant on ]xℓ,k0 , xℓ,k1 [, we get that
∫

]xℓ,k
0

,xℓ,k
1

[

(
(x − xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x− xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
)ψ2

ℓ,k =

∫

]xℓ,k
0

,xℓ,k
1

[

(x− xℓ,k0 )2

(xℓ,k1 − xℓ,k0 )2
ψ2
ℓ,k,

and thus
∫

]xℓ,k
0

,xℓ,k
1

[

(
(x− xℓ,k0 )

(xℓ,k1 − xℓ,k0 )
− 1

2

(x− xℓ,k1 )2

(xℓ,k1 − xℓ,k0 )2
)ψ2

ℓ,k =

∫

]xℓ,k
0

,xℓ,k
1

[

η2ℓ,k.

The same holds true over the interval ]xℓ,kn−1, x
ℓ,k
n [. By summing up, we derive that

∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k ≥
∫

Γk,ℓ

η2ℓ,k,

which ends the proof of Lemma 4.

Proof of Theorem 2: In order to prove this theorem, let us build an element

that will belong to the discrete space and will be as close as the expected error to

the solution. Let u1kh be the unique element of Xk
h defined as follows :

• (u1kh)|∂Ωk is the best approximation of uk over ∂Ωk in Yk,ℓ
h ,

• u1kh at the inner nodes of the triangulation (in Ωk) coincide with the inter-

polate of uk.

Then, it satisfies

‖u1kh − uk‖L2(∂Ωk) ≤ ch
3

2 ‖uk‖H2(Ωk), (3.9)

from which we deduce that

‖u1kh − uk‖L2(Ωk) + h‖u1kh − uk‖H1(Ωk) ≤ ch2‖uk‖H2(Ωk), (3.10)

and, from Aubin-Nitsche estimate

‖u1kh − uk‖
H− 1

2 (Γk,ℓ)
≤ ch2‖uk‖H2(Ωk). (3.11)

We define then separately the best approximation p1kℓh of pk,ℓ =
∂uk

∂nk
over each Γk,ℓ

in W̃ k,ℓ
h in the L2 norm. These elements satisfy for the error estimate

‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) ≤ ch
1

2 ‖pk,ℓ‖
H

1

2 (Γk,ℓ)
(3.12)

‖p1kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.13)

But there is very few chance that (u1h, p
1
h
) satisfy the coupling condition (2.7). This

element of
(

∏K
k=1X

k
h

)

×
(

∏K
k=1 W̃

k
h

)

misses (2.7) of elements ǫk,ℓ and ηℓ,k such

that
∫

Γk,ℓ

(p1kℓh + ǫk,ℓ + αu1kh)ψk,ℓ =

∫

Γk,ℓ

(−p1ℓkh + αηℓ,k + αu1ℓh)ψk,ℓ, ∀ψk,ℓ ∈ W̃ k,ℓ
h (3.14)
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∫

Γk,ℓ

(p1ℓkh + αηℓ,k + αu1ℓh)ψℓ,k =

∫

Γk,ℓ

(−p1kℓh − ǫk,ℓ + αu1kh)ψℓ,k, ∀ψℓ,k ∈ W̃ ℓ,k
h . (3.15)

In order to correct that, without polluting (3.9)-(3.13), for each couple (k, ℓ) we

choose one side, say the smaller indexed one, hereafter we shall also assume that each

couple (k, ℓ) is ordered by k < ℓ. Associated to that choice, we define ǫk,ℓ ∈ W̃ k,ℓ
h ,

ηℓ,k ∈ Yℓ,k
h ∩H1

0 (Γ
k,ℓ), such that (ũh, p̃h) satisfy (2.7) where we define

ũℓh = u1ℓh +
∑

k<ℓ

Rℓ,k(ηℓ,k), p̃kℓh = p1kℓh + ǫk,ℓ (for k < ℓ), (3.16)

where Rℓ,k is a discrete lifting operator (see Ref. 38, 6) that to any element of Yℓ,k
h ∩

H1
0 (Γ

k,ℓ) associates a finite element function over Ωℓ that vanishes over ∂Ωℓ \ Γk,ℓ

and satisfies

∀w ∈ Yℓ,k
h ∩H1

0 (Γ
k,ℓ), (Rℓ,k(w))|Γk,ℓ

= w

‖Rℓ,k(w)‖H1(Ωℓ) ≤ c‖w‖
H

1

2

00
(Γk,ℓ)

(3.17)

where c is h-independent.

The set of equations (3.14)-(3.15) for ǫk,ℓ and ηℓ,k results in a square system of

linear algebraic equations that can be written as follows
∫

Γk,ℓ

(ǫk,ℓ − αηℓ,k)ψk,ℓ =

∫

Γk,ℓ

e1ψk,ℓ, ∀ψk,ℓ ∈ W̃ k,ℓ
h (3.18)

∫

Γk,ℓ

(ǫk,ℓ + αηℓ,k)ψℓ,k =

∫

Γk,ℓ

e2ψℓ,k, ∀ψℓ,k ∈ W̃ ℓ,k
h (3.19)

with

e1 = −p1kℓh − p1ℓkh + α(u1ℓh − u1kh), (3.20)

e2 = −p1kℓh − p1ℓkh + α(u1kh − u1ℓh). (3.21)

Proposition 1. The linear system (3.18)-(3.19) is well posed.

Proof: With the notations above, (3.18) yields

ǫk,ℓ = πk,ℓ(αηℓ,k + e1) (3.22)

and (3.19) yields

αηℓ,k = πℓ,k(−ǫk,ℓ + e2). (3.23)

As (3.18)-(3.19) is a square linear system, it suffices to prove uniqueness for e1 and

e2 null. From (3.22)-(3.23), we get

0 = ηℓ,k + πℓ,kπk,ℓ(ηℓ,k)

so that for all ψℓ,k in W̃ k,ℓ
h ,

0 =

∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k.
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By Lemma 4, this proves that ηℓ,k is zero, thus by (3.22), ǫk,ℓ is zero.

Let us resume the proof of Theorem 2: By (3.22) and (3.23) we have
∫

Γk,ℓ

(ηℓ,k + πk,ℓ(ηℓ,k))ψℓ,k =
1

α

∫

Γk,ℓ

(e2 − πk,ℓ(e1))ψℓ,k, ∀ψℓ,k ∈ W̃ ℓ,k
h . (3.24)

To estimate ‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
and ‖ũℓh − uℓ‖H1(Ωℓ), we first estimate

‖ηℓ,k‖L2(Γk,ℓ):

from (3.7) and (3.24) we get

c1‖ηℓ,k‖2L2(Γk,ℓ) ≤
1

α
‖e2 − πk,ℓ(e1)‖L2(Γk,ℓ)‖ψℓ,k‖L2(Γk,ℓ) (3.25)

and using (3.8) in (3.25)

‖ηℓ,k‖L2(Γk,ℓ) ≤
c2
αc1

‖e2 − πk,ℓ(e1)‖L2(Γk,ℓ)

hence

‖ηℓ,k‖L2(Γk,ℓ) ≤
c2
αc1

(‖e2‖L2(Γk,ℓ) + ‖e1‖L2(Γk,ℓ)). (3.26)

Now, from (3.20) and (3.21), for i = 1, 2

‖ei‖L2(Γk,ℓ) ≤ ‖p1kℓh + p1ℓkh‖L2(Γk,ℓ) + α‖u1ℓh − u1kh‖L2(Γk,ℓ)

and recalling that pk,ℓ =
∂uk

∂nk
= − ∂uℓ

∂nℓ
= −pℓ,k over each Γk,ℓ

‖p1kℓh + p1ℓkh‖L2(Γk,ℓ) ≤ ‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) + ‖p1ℓkh − pℓ,k‖L2(Γk,ℓ)

‖u1ℓh − u1kh‖L2(Γk,ℓ) ≤ ‖u1kh − uk‖L2(Γk,ℓ) + ‖u1ℓh − uℓ‖L2(Γk,ℓ)

so that, using (3.9) and (3.12), we derive for i = 1, 2

‖ei‖L2(Γk,ℓ) ≤ cαh
3

2 (‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch
1

2 ‖pk,ℓ‖
H

1

2 (Γk,ℓ)
(3.27)

and (3.26) yields

‖ηℓ,k‖L2(Γk,ℓ) ≤ ch
3

2 (‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) +
ch

1

2

α
‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.28)

We can now evaluate ‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
, using (3.16) :

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ ‖ǫk,ℓ‖

H− 1

2 (Γk,ℓ)
+ ‖p1kℓh − pk,ℓ‖

H− 1

2 (Γk,ℓ)
. (3.29)

The term ‖p1kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
is estimated in (3.13), so let us focus on the term

‖ǫk,ℓ‖
H− 1

2 (Γk,ℓ)
. From (3.22) we have,

‖ǫk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ α‖ηℓ,k‖

H− 1

2 (Γk,ℓ)
+ ‖e1‖

H− 1

2 (Γk,ℓ)
+ ‖(Id− πk,ℓ)(αηℓ,k + e1)‖

H− 1

2 (Γk,ℓ)
. (3.30)

To evaluate ‖e1‖
H− 1

2 (Γk,ℓ)
we proceed as for ‖e1‖L2(Γk,ℓ) and from (3.11) and (3.13)

we have, for i = 1, 2:

‖ei‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.31)
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The third term in the right-hand side of (3.30) satisfies

‖(Id− πk,ℓ)(αηℓ,k + e1)‖
H− 1

2 (Γk,ℓ)
≤ c

√
h‖αηℓ,k + e1‖L2(Γk,ℓ).

Then, using (3.28) and (3.27) yields

‖(Id− πk,ℓ)(αηℓ,k + e1)‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.32)

In order to estimate the term ‖ηℓ,k‖
H− 1

2 (Γk,ℓ)
in (3.30), we use (3.24):

2

∫

Γk,ℓ

ηℓ,kψℓ,k =

∫

Γk,ℓ

(ηℓ,k − πk,ℓ(ηℓ,k))ψℓ,k +
1

α

∫

Γk,ℓ

(e2 − πk,ℓ(e1))ψℓ,k.

Using the symmetry of the operator πk,ℓ we deduce

2

∫

Γk,ℓ

ηℓ,kψℓ,k =

∫

Γk,ℓ

(ψℓ,k − πk,ℓ(ψℓ,k))ηℓ,k +
1

α

∫

Γk,ℓ

(e2 − πk,ℓ(e1))ψℓ,k.

Then, we have

|
∫

Γk,ℓ

ηℓ,kψℓ,k| ≤ c
√
h‖ηℓ,k‖L2(Γk,ℓ)‖ψℓ,k‖

H
1

2 (Γk,ℓ)
+

1

α
‖e2 − πk,ℓ(e1)‖

H− 1

2 (Γk,ℓ)
‖ψℓ,k‖

H
1

2 (Γk,ℓ)

and thus, we obtain

‖ηℓ,k‖
H− 1

2 (Γk,ℓ)
≤ c

√
h‖ηℓ,k‖L2(Γk,ℓ) +

c

α
‖e2 − πk,ℓ(e1)‖

H− 1

2 (Γk,ℓ)
. (3.33)

Then, using (3.28) and the fact that

‖e2 − πk,ℓ(e1)‖
H− 1

2 (Γk,ℓ)
≤ ‖e2‖

H− 1

2 (Γk,ℓ)
+ ‖e1‖

H− 1

2 (Γk,ℓ)
+ ‖e1 − πk,ℓ(e1)‖

H− 1

2 (Γk,ℓ)

≤ ‖e2‖
H− 1

2 (Γk,ℓ)
+ ‖e1‖

H− 1

2 (Γk,ℓ)
+ c

√
h‖e1‖L2(Γk,ℓ) (3.34)

with (3.27) and (3.31) yields

‖ηℓ,k‖
H− 1

2 (Γk,ℓ)
≤ ch2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) +

ch

α
‖pk,ℓ‖

H
1

2 (Γk,ℓ)
.

Using the previous inequality in (3.30), (3.29) yields

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch‖pk,ℓ‖

H
1

2 (Γk,ℓ)
. (3.35)

Let us now estimate ‖ũℓh − uℓ‖H1(Ωℓ) :

‖ũℓh − uℓ‖H1(Ωℓ) ≤ ‖u1ℓh − uℓ‖H1(Ωℓ) +
∑

k<ℓ

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) (3.36)

and from (3.17)

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) ≤ c‖ηℓ,k‖
H

1

2

00
(Γk,ℓ)

then, with an inverse inequality

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) ≤ ch−
1

2 ‖ηℓ,k‖L2(Γk,ℓ).
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Hence, from (3.28) we have

‖Rℓ,k(ηℓ,k)‖H1(Ωℓ) ≤ ch(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) +
c

α
‖pk,ℓ‖

H
1

2 (Γk,ℓ)
(3.37)

and (3.36) yields

‖ũℓh − uℓ‖H1(Ωℓ) ≤ ch‖uℓ‖H2(Ωℓ) + ch
∑

k<ℓ

‖uk‖H2(Ωk) +
c

α

∑

k<ℓ

‖pk,ℓ‖
H

1

2 (Γk,ℓ)
,(3.38)

which ends the proof of Theorem 2.

Proof of Theorem 3: The proof is the same that for Theorem 2, except that

the relation (3.12) is changed using the following lemma

Lemma 5. The best L2 approximation p1kℓh of pk,ℓ satisfy the error estimate

‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) ≤ ch
3

2 | logh|‖pk,ℓ‖
H

3

2 (Γk,ℓ)
. (3.39)

Therefore, (3.13) is changed in

‖p1kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ ch2 | log h|‖pk,ℓ‖

H
3

2 (Γk,ℓ)

and (3.35) is changed in

‖p̃kℓh − pk,ℓ‖
H− 1

2 (Γk,ℓ)
≤ cαh2(‖uk‖H2(Ωk) + ‖uℓ‖H2(Ωℓ)) + ch2 | log h|‖pk,ℓ‖

H
3

2 (Γk,ℓ)

and (3.38) is changed in

‖ũℓh − uℓ‖H1(Ωℓ) ≤ ch‖uℓ‖H2(Ωℓ) + ch
∑

k<ℓ

‖uk‖H2(Ωk) +
ch

α
| log h|

∑

k<ℓ

‖pk,ℓ‖
H

3

2 (Γk,ℓ)
.

Proof of Lemma 5: Let p̄kℓh be the unique element of W̃ k,ℓ
h defined as follows :

• (p̄kℓh)|[xℓ,k
1

,xℓ,k
n−1

] coincide with the interpolate of degree 1 of pk,ℓ.

• (p̄kℓh)|[xℓ,k
0

,xℓ,k
1

] and (p̄kℓh)|[xℓ,k
n−1

,xℓ,k
n ] coincide with the interpolate of degree

0 of pk,ℓ.

Then, we have

‖p1kℓh − pk,ℓ‖2L2(Γk,ℓ) ≤ ‖p̄kℓh − pk,ℓ‖2L2(Γk,ℓ).

Using Deny-Lions theorem we have

‖p1kℓh − pk,ℓ‖2L2((Γk,ℓ) ≤ ‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
+ ch3‖pk,ℓ‖2

H
3

2 ([xℓ,k
1

,xℓ,k
n−1

])
+ ‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k

n−1
,xℓ,k

n [)
.

In order to analyse the two extreme contributions, we use Deny-Lions theorem

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ ch3−

2

p ‖dpk,ℓ
dx

‖2
Lp(]xℓ,k

0
,xℓ,k

1
[)
,

and thus

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ ch3−

2

p ‖dpk,ℓ
dx

‖2Lp(Γk,ℓ),
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Then, we use the estimate

‖dpk,ℓ
dx

‖Lp(Γk,ℓ) ≤ cp‖dpk,ℓ
dx

‖
H

1

2 (Γk,ℓ)
,

where c is a constant. Thus we have

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ cp2h3−

2

p ‖dpk,ℓ
dx

‖2
H

1

2 (Γk,ℓ)
.

Now we take p = − logh and thus we obtain

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
0

,xℓ,k
1

[)
≤ c(h

3

2 log(h))2‖dpk,ℓ
dx

‖2
H

1

2 (Γk,ℓ)
.

In a same way we have

‖p̄kℓh − pk,ℓ‖2L2(]xℓ,k
n−1

,xℓ,k
n [)

≤ c(h
3

2 log(h))2‖dpk,ℓ
dx

‖2
H

1

2 (Γk,ℓ)
,

and thus we obtain

‖p1kℓh − pk,ℓ‖L2(Γk,ℓ) ≤ ch
3

2 | log h|‖pk,ℓ‖
H

3

2 (Γk,ℓ)
,

which ends the proof of Lemma 5.

3.3. Error Estimates

Thanks to (3.6), we have the following error estimates:

Theorem 4. Assume that the solution u of (2.1)-(2.2) is in H2(Ω) ∩H1
0 (Ω), and

uk = u|Ωk ∈ H2(Ωk), and let pk,ℓ = ∂uk

∂nk
over each Γk,ℓ. Then, there exists a

constant c independent of h and α such that

‖uh − u‖∗ + ‖p
h
− p‖− 1

2
,∗ ≤ c(αh2 + h)

K
∑

k=1

‖u‖H2(Ωk) + c(
1

α
+ h)

K
∑

k=1

∑

ℓ

‖pk,ℓ‖
H

1

2 (Γk,ℓ)
.

Theorem 5. Assume that the solution u of (2.1)-(2.2) is in H2(Ω)∩H1
0 (Ω), uk =

u|Ωk ∈ H2(Ωk), and pk,ℓ = ∂uk

∂nk
is in H

3

2 (Γk,ℓ). Then there exists a constant c

independent of h and α such that

‖uh − u‖∗ + ‖p
h
− p‖− 1

2
,∗ ≤ c(αh2 + h)

K
∑

k=1

‖u‖H2(Ωk) + c(
h

α
+ h2)| log h|

K
∑

k=1

∑

ℓ

‖pk,ℓ‖
H

3

2 (Γk,ℓ)

Remark 1. Note that in most practical situations the normal traces pℓ are more

regular than what can be expected from the basic trace result that states

‖pℓ‖
H

1

2 (∂Ωℓ)
≤ c‖uℓ‖H2(Ωℓ), (3.40)

this can be due for instance to the fact that we have local regularity for u in the

neighborhood of the interfaces. In such generic cases, Theorem 5 should be used.

Indeed provided that the solution u of (2.1)-(2.2) is in
∏K

k=1H
2
∗ (Ω

k) and pk,ℓ =
∂uk

∂nk

is in H
3

2 (Γk,ℓ) if we choose α as a constant independent of h then

‖uh − u‖∗ = O(h| log(h)|),
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that is quasi optimal. In all these genereric cases, any choice of α in the large range

( C1

log(h) ,
C2

h ) with any positive constants C1 and C2, yields an optimal error bound

‖uh − u‖∗ = O(h).

The above result on the convergence of the discrete method is interesting as it lets

a lot of flexibility to choose α properly for other purpose. Indeed the matching (2.7)

is in practice obtained through an iterative algorithm (see (4.1)-(4.2) in the Section

4), the convergence of which depends on α (not the convergence with h). In this

respect let us remind that in Ref. 16 the optimal choice α = C√
h
is proposed for the

convergence of the iterative algorithm. This is the subject of a future paper.

Note that the value of α = c
h in the expression pk,ℓ + αuk is actually consistent

at the discrete level with the natural norm of the traces of u and the traces of the

normal derivative of u on ∂Ωk.

We want to emphasize however that in some rare and pathological cases where

(3.40) is the best that can be stated on the regularity of p, Theorem 4 is the only

one that can be used in order to get an error estimate:

‖uh − u‖∗ ≤ c(
1

α
+ h)

K
∑

i=1

‖u‖H2(Ωk).

Under such an hypothesis: the solution u of (2.1)-(2.2) is in
∏K

k=1H
2
∗ (Ω

k) and

pk,ℓ =
∂uk

∂nk
is only in H

1

2 (Γk,ℓ) then a choice where α is a constant independent of

h yields,

‖uh − u‖∗ ≤ c

K
∑

i=1

‖u‖H2(Ωk)

which does not provide any convergence. In order to get an optimal convergence

rate, we have to choose a parameter α that satisfies : α = c
h and then

‖uh − u‖∗ ≤ ch

K
∑

i=1

‖u‖H2(Ωk).

3.4. Analysis of the best approximation in 3D

In this section, we prove Theorem 2 and Theorem 3 for a P1-discretization in

3D. The main parts of the proofs of these theorems in section 3.2 are dimension-

independent. Only Lemma 4 and Lemma 5 are dimension-dependent, so we prove

these lemma for a P1-discretization in 3D. We shall use the construction proposed

in Ref. 10. In order to make the reading easy, we shall recall the notations of the

above mentioned paper. The analysis is done on one subdomain Ωk that will be

fixed in what follows. A typical interface between this subdomain and a generic

subdomain Ωℓ will be denoted by Γ. We denote by T the restriction to Γ of the

triangulation T k
h . Let S(T ) denote the space of piecewise linear functions with re-

spect to T which are continuous on Γ and vanish on its boundary. The space of
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the Lagrange multipliers on Γ, defined below, will be denoted by M(T ). In 2D, the

requirement dim M(T ) =dim S(T ) can be satisfied by lowering the degree of the

finite elements on the intervals next to the end points of the interface. In 3D, it is

slightly more complex (see Ref. 4). Thus, we shall use the construction proposed in

Ref. 10 with the following hypothesis

H.1 All the vertices of the boundary of Γ are connected to zero, one, or two

vertices in the interior of Γ.

Making hypothesis H.1, there are four kinds of triangles (see Figure 1):

(1) Inner triangles i.e they don’t touch the boundary of Γ.

(2) Triangles labeled 1 which have only one vertex on the boundary

(3) Triangles labeled 2 which have two vertices on the boundary

(4) Triangles labeled 3 which have three vertices on the boundary

Let V , V0, ∂V denote respectively the set of all the vertices of T , the vertices in

the interior of Γ, and the vertices on the boundary of Γ. The finite element basis

functions will be denoted by Φa, a ∈ V . Thus,
S(T ) = span {Φa : a ∈ V0}.

For a ∈ V , let σa denote the support of Φa,

σa :=
⋃

{T ∈ T : a ∈ T },
and let Na be the set of neighboring vertices in V0 of a:

Na := {b ∈ V0 : b ∈ σa}.
Thus,

N :=
⋃

a∈∂V
Na

Boundary of Γ

T2,a T2,b
T1,c

T3,c′

T1,c′′a

b

c c
′

c
′′

Fig. 1. Two different situations of 2D triangulation of the interface Γ, next to it’s boundary (near
cross points): in light grey (triangle labeled 1) a vertex c is connected to two vertices in the interior
of Γ, in dark grey (triangle labeled 3) a vertex c′ is connected to two vertices on the boundary of
Γ
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is the set of those interior vertices which have a neighbor on the boundary of Γ. If

some triangle T ∈ T has all its vertices on the boundary of Γ, then there exists one

(corner) vertex which has no neighbor in V0. Let Tc be the set of triangles T ∈ T
which have all their vertices on the boundary of Γ. For T ∈ Tc, we denote by cT the

only vertex of T that has no interior neighbor (such a vertex is unique as soon as

the triangulation is fine enough). Let Nc denote the vertices aT of N which belong

to a triangle adjacent to a triangle T ∈ Tc. Now, we define the space M(T ) a by

M(T ) := span {Φ̂a, a ∈ V0},
where the basis functions Φ̂a are defined as follows :

Φ̂a :=























Φa, a ∈ V0 \ N
Φa +

∑

b∈∂V∩σa

Ab,aΦb a ∈ N \ Nc

ΦaT +
∑

b∈∂V∩σaT

Ab,aT Φb +ΦcT a = aT ∈ Nc

the weights Ab,a being defined as in (3.41) :

(i) for all boundary nodes c ∈ ∂V connected to two interior nodes a and b, if T2,a
(resp. T2,b) denote the adjacent triangle to abc having a (resp. b) as a vertex

and its two others vertices on ∂V , then the weights are defined such that (see

Ref. 10)

Ac,a +Ac,b = 1 and |T2,b|Ac,a = |T2,a|Ac,b, (3.41)

(ii) for all boundary nodes c ∈ ∂V connected to only one interior node a, then the

weight is defined by

Ac,a = 1. (3.42)

(note that this case — not covered in Ref. 10 — actually corresponds to the

previous case where the boundary nodes c ∈ ∂V is connected to two coincident

interior nodes a and b = a.

To any u ∈ S(T ), u =
∑

a∈V0
u(a)Φa, we associate v ∈ M(T ) where v =

∑

a∈V0
u(a)Φ̂a. More explicitly, that means that to any u ∈ S(T ), we associate

an element v ∈M(T ) as follows (see Figure 1):

(i) v is a piecewise linear finite element on T
(ii) for all interior nodes a, v(a) := u(a)

(iii) for all boundary nodes c, by assumption we have two situations:

• c is connected to two interior nodes denoted by a and b.

Then, v(c) := Au(a) +Bu(b) where

A+B = 1 and |T2,b|A = |T2,a|B (3.43)

aM(T ) is the notation introduced in Ref. 10, that we use here for the sake of clarity. Corresponding

to our previous notation, M(T ) ≡ W̃ k,ℓ
h
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• c is not connected to any interior point. We consider the triangle adjacent

to the triangle to which c belongs to. This triangle has one interior node

denoted by b. Then, we define v(c) := u(b).

We shall need the following technical assumption:

H.2 For any triangle T3,c′ having all three vertices on the boundary of T (see

Figure 1), we consider the two triangles T1,c and T1,c′′ surrounding T3,c′. We assume

that there exists 1
2 ≤ C ≤ 2

3 such that

7

96
min(|T1,c|, |T1,c′′ |) >

C

2
|T3,c′ |.

We now prove Lemma 4 in 3D :

Lemma 6. We assume hypothesis H.2 and that T is uniformly regular. There exist

two constants c1 > 0 and c2 > 0 independent of h such that for all u in S(T ), there

exists an element v in M(T ), such that
∫

Γ

(u + π(u))v ≥ c1‖u‖2L2(Γ), (3.44)
‖v‖L2(Γ) ≤ c2‖u‖L2(Γ), (3.45)

where π denote the orthogonal projection operator from L2(Γ) onto M(T ).

Let u ∈ S(T ), and the associate v ∈ M(T ) where v =
∑

a∈V0
u(a)Φ̂a. In order

to prove (3.44), we prove the following lemma:

Lemma 7. We assume hypothesis H.2 and that T is uniformly regular. Then, there

exists 1
2 ≤ C ≤ 2

3 and c > 0 such that, for u ∈ S(T ) and v ∈ M(T ) constructed

from u as explained above ((i)-(iii)), we have
∫

Γ

(uv − C

2
(u− v)2) ≥ c

∫

Γ

u2. (3.46)

Proof of Lemma 7: Let us introduce the notation

QΓ :=

∫

Γ

(uv − C

2
(u− v)2).

We have

QΓ =
1

4

∫

Γ

(u+ v)2 − (1 + 2C)(u− v)2.

In order to estimate QΓ, we remark that

QΓ =
∑

T∈T
QT

where

QT =
1

4

∫

T

(u+ v)2 − (1 + 2C)(u− v)2.

We consider the four kinds of triangles introduced above (after hypothesis H.1).
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Inner triangles On an inner triangle T , u = v so that for all C > 0, we have

QT ≥ c

∫

T

u2

for c ≤ 1.

Triangles having only one vertex on the boundary Let T1,c be such a triangle

(see Figure 1). First notice that we have (remember u(c) = 0)

∫

T1,c

u2 =
|T1,c|
12

(

u(a)2+u(b)2+(u(a)+u(b))2
)

=
|T1,c|
12

(

2u(a)2+2u(b)2+2u(a)u(b)

)

see for example Ref. 9 (II.8.4). As for QT1,c , we have

QT1,c =
|T1,c|
48

(

(2u(a))2 + (2u(b))2 + (Au(a) +Bu(b))2

+(2u(a) + 2u(b) +Au(a) +Bu(b))2 − 2(1 + 2C)(Au(a) +Bu(b))2
)

. (3.47)

Thus,

QT1,c =
|T1,c|
48

(

8u(a)2 + 8u(b)2 + 8u(a)u(b) + 4(u(a) + u(b))(Au(a) +Bu(b))

−4C(Au(a) +Bu(b))2
)

.(3.48)

If we take C = 1 in (3.48) and use A+B = 1, we get:

QT1,c =
|T1,c|
48

(

4u(a)2 + 4u(b)2 + 4u(a)u(b) + 4AB(u(a)− u(b))2 + 4(u(a) + u(b))2
)

≥ 1

2

∫

T1,c

u2.

Hence, for all 0 < C ≤ 1, we have:

QT1,c ≥ 1

2

∫

T1,c

u2.

Therefore,

QT1,c ≥ c

∫

T1,c

u2

for 0 < C ≤ 1 and 0 < c ≤ 1
2 . We shall also use in the sequel the estimate:

QT1,c ≥ |T1,c|
48

(

8u(a)2 + 8u(b)2 + 12u(a)u(b)

)

≥ |T1,c|
7

96
u(b)2. (3.49)
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Triangles having two vertices on the boundary Let T2,a be such a triangle

(see Figure 1). As we will sum over all the triangles of type T2,a, we introduce the

following notations: T2,i−1 = T2,a, T2,i = T2,b, ui = u(a) = v(a), ui+1 = u(b) = v(b)

and vi = v(c), see Figure 2.

We consider now a triangle T2,i having two vertices on the boundary of the face

Γ. Let N2 = {i, T2,i has two vertices on the boundary of Γ}. First notice that we

have

∫

T2,i

u2 =
|T2,i|
12

(

2u2i+1

)

.

And we have

QT2,i =
|T2,i|
48

(

4u2i+1 + v2i + v2i+1 + (2ui+1 + vi + vi+1)
2

−(1 + 2C)(v2i + v2i+1 + (vi + vi+1)
2)

)

=
|T2,i|
48

(

8u2i+1 − 4Cv2i − 4Cv2i+1 − 4Cvivi+1 + 4ui+1(vi + vi+1)

)

.

Then,

QT2,i ≥
|T2,i|
48

(

8u2i+1 − 6Cv2i − 6Cv2i+1 + 4ui+1(vi + vi+1)

)

.

Defining Ei := ui+1vi and Fi := ui+1vi+1 (cf. Ref. 10 page 11), we have:

QT2,i ≥
∫

T2,i

u2 +
|T2,i|
48

(

−6Cv2i + 4Ei − 6Cv2i+1 + 4Fi

)

.

Now we sum these terms over all the triangles having two vertices on the boundary

Boundary of Γ

T2,i−1

T2,i

vi

vi+1

vi−1

ui

ui+1

Fig. 2. Notations for the triangles having two vertices on the boundary of Γ (triangle of type 2)
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of Γ.
∑

i∈N2

QT2,i ≥
∫

∪i∈N2
T2,i

u2 +
∑

i∈N2

|T2,i|
48

(

−6Cv2i + 4Ei − 6Cv2i+1 + 4Fi

)

≥
∫

∪i∈N2
T2,i

u2 +
1

48

∑

i∈N2

(|T2,i|(−6Cv2i + 4Ei) + |T2,i−1|(−6Cv2i + 4Fi−1)).

(3.50)

The condition (3.43) leads to the inequality

|T2,i|Ei + |T2,i−1|Fi−1 = (|T2,i|+ |T2,i−1|)v2i
(see equation after (3.19) in Ref. 10), so that we get:

|T2,i|(−6Cv2i + 4Ei) + |T2,i−1|(−6Cv2i + 4Fi−1) = (|T2,i|+ |T2,i−1|)(4− 6C)v2i .

This term is positive for C ≤ 2/3. Hence for 0 < C ≤ 2/3, inequality (3.50) becomes:

∑

i∈N2

QT2,i ≥
∫

∪i∈N2
T2,i

u2.

Therefore, for 0 < C ≤ 2/3 and 0 < c ≤ 1,

∑

i∈N2

QT2,i ≥ c

∫

∪i∈N2
T2,i

u2.

Triangles having all three vertices on the boundary Let T3,c′ be such a

triangle (see Figure 1). We have to control:

QT
3,c′

= −C
2
|T3,c′ ||u(b)|2

by the integrals over the two triangles T1,c and T1,c′′ surrounding T3,c′. This can be

achieved using the assumption H.2 and using that from (3.49), we have

QT1,c∪T
1,c′′

≥ min(|T1,c|, |T1,c′′ |)u(b)2
7

48
.

In conclusion, we have that (3.46) holds with c = 1/4 for a constant C,
1
2 ≤ C ≤ 2

3 .

Proof of Lemma 6: Using the uniform regularity of T , it is easy to check (3.45).

Using the definition of π, as in (2.8), it is straightforward to derive
∫

Γ

(u+ π(u))v =

∫

Γ

uv +

∫

Γ

(π(u))2 +

∫

Γ

π(u)(v − u).

Then, using the relation

π(u)(v − u) ≥ −(π(u))2 − 1

4
(v − u)2

leads to
∫

Γ

(u+ π(u))v ≥
∫

Γ

uv − 1

4

∫

Γ

(v − u)2.
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Thus, for C ≥ 1
2 , we have

∫

Γ

(u+ π(u))v ≥
∫

Γ

uv − C

2

∫

Γ

(v − u)2.

Then, using (3.46), we obtain (3.44) which ends the proof of Lemma 6.

Proof of Lemma 5 in 3D: Let p̄kℓh be the unique element of M(T ) defined

as follows :

(1) p̄kℓh is a piecewise linear finite element on T
(2) for all interior nodes a, p̄kℓh(a) := pk,ℓ(a)

(3) for all boundary nodes c, by assumption we have two situations:

• c is connected to two interior nodes denoted by a and b.

Then, p̄kℓh(c) := Apk,ℓ(a) +Bpk,ℓ(b) where

A+B = 1 and |T2,b|A = |T2,a|B

where T2,a (resp. T2,b) denote the adjacent triangle to abc having a

(resp. b) as a vertex and its two others vertices on ∂V .
• c is not connected to any interior point. We consider the triangle ad-

jacent to the triangle to which c belongs to. This triangle has one

interior node denoted by b. Then, we define p̄kℓh(b) := pk,ℓ(b).

Like for the proof in 2D, we introduce the best approximation p1kℓh of pk,ℓ = ∂uk

∂nk

over Γ in M(T ). Then, we have

‖p1kℓh − pk,ℓ‖2L2(Γ) ≤ ‖p̄kℓh − pk,ℓ‖2L2(Γ).

The right-hand side in the previous inequality can be written in the form

‖p̄kℓh − pk,ℓ‖2L2(Γ) =
∑

T∈T
RT (3.51)

where

RT =

∫

T

(p̄kℓh − pk,ℓ)
2dx.

We consider again the four kinds of triangles introduced above (after hypothesis

H.1).

Inner triangles On an inner triangle T , p̄kℓh =
∑

a∈V∩T pk,ℓ(a)Φa is the P1 finite

element interpolation of pk,ℓ and we use Deny-Lions theorem :

RT ≤ ch3‖pk,ℓ‖2
H

3

2 (T )
. (3.52)
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Triangles having only one vertex on the boundary Let T1,c be a triangle

with only one vertex on the boundary (see Figure 1). Let c be the vertex of T1,c
on ∂V , and a and b the two vertices of T1,c which are interior nodes. Then, for

pk,ℓ ∈ P0(T1,c) we have p̄kℓh = pk,ℓ. For a triangle (or a finite union of triangles)

σ ⊂ T , we need to introduce the space L2,p(σ) of functions that are L2 in the

tangential direction to ∂Γ and Lp in the normal direction to ∂Γ, where ∂Γ is the

boundary of Γ. Then, using Deny-Lions theorem, we have

RT1,c ≤ ch3−
2

p ‖∇pk,ℓ‖L2,p(T1,c). (3.53)

Triangles having two vertices on the boundary Let T2,b be a triangle with

two vertices on the boundary of the face Γ (see Figure 1), T1,c and T1,c′′ the two

triangles surrounding T2,b. We consider p̄kℓh on the polygon σ2 := T2,b∪T1,c∪T1,c′′ .
Then, for pk,ℓ ∈ P0(σ2) we have p̄kℓh = pk,ℓ. Using a piecewise affine transformation

and Deny-Lions theorem, we have

RT2,b
≤
∫

σa2

(p̄kℓh − pk,ℓ)
2dx ≤ ch3−

2

p ‖∇pk,ℓ‖L2,p(σa2
). (3.54)

Triangles having all three vertices on the boundary Let T3,c′ be such a

triangle, and let T2,b be the triangle adjacent to T3,c′ as on Figure 1. Let T1,c
and T1,c′′ be the two triangles surrounding T2,b. We consider p̄kℓh on the polygon

σ3 := T3,c′ ∪ T2,b ∪ T1,c ∪ T1,c′′ . Then, for pk,ℓ ∈ P0(σ3), we have p̄kℓh = pk,ℓ. Using

a piecewise affine transformation and Deny-Lions theorem, we obtain

RT
3,c′

≤
∫

σ3

(p̄kℓh − pk,ℓ)
2dxch3−

2

p ‖∇pk,ℓ‖L2,p(σa3
). (3.55)

We proceed like for the proof of Lemma 5 in 2D and sum up the contribution (3.52)

with those derived from (3.53), (3.54) and (3.55). We obtain

‖p̄kℓh − pk,ℓ‖2L2(Γ) ≤ ch3‖pk,ℓ‖2
H

3

2 (Γ)
+ ch3−

2

p p2‖∇pk,ℓ‖2
H

1

2 (Γ)
.

Then, taking p = −log(h), we get

‖p̄kℓh − pk,ℓ‖2L2(Γ) ≤ c(h3 + h3(log(h))2)‖pk,ℓ‖2
H

3

2 (Γ)
,

which ends the proof of Lemma 5 in 3D.

4. Numerical results

We introduce the discrete algorithm : let (unh,k, p
n
h,k) ∈ Xk

h × W̃ k
h be a discrete

approximation of (u, p) in Ωk at step n. Then, (un+1
h,k , p

n+1
h,k ) is the solution in Xk

h ×
W̃ k

h of
∫

Ωk

(

∇un+1
h,k ∇vh,k + un+1

h,k vh,k

)

dx−
∫

∂Ωk

pn+1
h,k vh,kds =

∫

Ωk

fkvh,kdx, ∀vh,k ∈ Xk
h , (4.1)

∫

Γk,ℓ

(pn+1
h,k + αun+1

h,k )ψh,k,ℓ =

∫

Γk,ℓ

(−pnh,ℓ + αunh,ℓ)ψh,k,ℓ, ∀ψh,k,ℓ ∈ W̃ k,ℓ
h . (4.2)
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The convergence analysis of this iterative scheme is the subject of another paper.

We consider the problem

(Id−∆)u(x, y) = x3(y2 − 2)− 6xy2 + (1 + x2 + y2)sin(xy), (x, y) ∈ Ω,

u(x, y) = x3y2 + sin(xy), (x, y) ∈ ∂Ω,

with exact solution u(x, y) = x3y2+ sin(xy). In section 4.3 we consider the domain

Ω = (−1, 1)× (0, 2π), otherwise the domain is the unit square Ω = (0, 1)× (0, 1).

We decompose Ω into non-overlapping subdomains with meshes generated in an

independent manner. The computed solution is the solution at convergence of the

discrete algorithm (4.1)-(4.2), with a stopping criterion on the jumps of interface

conditions that must be smaller than 10−8.

Remark 2. In the implementation of the method, the main difficulty lies in com-

puting projections between non matching grids. In Ref. 17 we present an efficient

algorithm in two dimensions to perform the required projections between arbitrary

grids, in the same spirit as in Ref. 18 for finite volume discretization with projections

on piecewise constant functions.

4.1. Choice of the Robin parameter α

In our simulations the Robin parameter is either an arbitrary constant or is obtained

by minimizing the convergence factor (depending on the mesh size in that case). In

the conforming two subdomains case, with constant mesh size h and an interface of

length L, the optimal theoretical value of α which minimizes the convergence factor

at the continuous level is (see Ref. 16):

αopt = [((
π

L
)2 + 1)((

π

h
)2 + 1)]

1

4 .

In the non-conforming case, the mesh size is different for each side of the interface.

We consider the following values : αmin = [(( πL )
2 + 1)(( π

hmin
)2 + 1)]

1

4 , αmean =

[(( πL )
2 +1)(( π

hmean
)2 +1)]

1

4 , αmax = [(( πL)
2 +1)(( π

hmax
)2 +1)]

1

4 , where hmin, hmean

and hmax stands respectively for the smallest, meanest or highest step size on the

interface.

4.2. H
1 error between the continuous and discrete solutions

In this part, we compare the relative H1 error in the non-conforming case to the

error obtained on a uniform conforming grid.

Definition of the relative H1 error : Let K be the number of subdomains. Let

ui = u|Ωi , 1 ≤ i ≤ K (where u is the continuous solution), and let (uh)i = (uh)|Ωi

where uh is the solution of the discrete problem (2.10). Now, let Eex = ‖u‖∗ and

let Ei = ‖(uh)i − ui‖H1(Ωi), 1 ≤ i ≤ K. Let E = (
∑K

i=1 E
2
i )

1/2. The relative H1
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error is then E/Eex.

We consider four initial meshes : the two uniform conforming meshes (mesh 1 and

4) of Figure 3, and the two non-conforming meshes (mesh 2 and 3) of Figure 4. In

the non-conforming case, the unit square is decomposed into four non-overlapping

subdomains numbered as in Figure 4 on the left.

Figure 5 shows the relative H1 error versus the number of refinement for these

four meshes, and the mesh size h versus the number of refinement, in logarithmic

scale. At each refinement, the mesh size is divided by two. The results of Figure 5

show that the relative H1 error tends to zero at the same rate than the mesh size,

and this fits with the theoretical error estimates of Theorem 5. On the other hand,

we observe that the two curves corresponding to the non-conforming meshes (mesh

2 and mesh 3) are between the curves of the conforming meshes (mesh 1 and mesh

4). The relative H1 error for mesh 2 is smaller than the one corresponding to mesh

3, and this is because mesh 2 is more refined than mesh 3 in subdomain Ω4, where

the solution steeply varies. More precisely, let us compare for mesh 2, the relative

H1 error in the domain Ω1 ∪ Ω2 ∪ Ω3 to the relative H1 error in the subdomain

Ω4 (which is the subdomain where the solution steeply varies). This comparison is

done in Table 1. We observe that, as expected, the relative H1 error in the domain

composed by subdomains Ω1, Ω2 and Ω3 (second column of table 1) is balanced
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Fig. 3. Uniform conforming meshes : mesh 1 (on the left), and mesh 4 (on the right)
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Fig. 4. Domain decomposition (on the left), and non-conforming meshes: mesh 2 (on the middle),
and mesh 3 (on the right)
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Table 1. Comparison, in the case of mesh 2, for different re-
finements (column one), of the relative H1 error in the domain
composed by subdomains Ω1, Ω2 and Ω3 (column 2) to the
relative H1 error in the subdomain Ω4 (column 3). The fourth
column is the relative H1 error in the whole domain.

Refinement (E2

1
+ E2

2
+E2

3
)1/2/Eex E4/Eex E/Eex

0 1.45e-01 1.46e-01 2.06e-01

1 7.17e-02 7.02e-02 1.004e-01

2 3.59e-02 3.49e-02 5.01e-02

3 1.79e-02 1.73e-02 2.49e-02

4 8.73e-03 8.46e-03 1.21e-02

with the relative H1 error in the subdomain Ω4 (third column of table 1). Indeed,

the mesh 2 is more refined in the subdomain Ω4 where the solution steeply varies.

Let us now do the same comparison in the case of mesh 3. This mesh is coarser in

the subdomain Ω4 where the solution steeply varies. In table 2, we observe that as

expected, the H1 relative error in the domain composed by subdomains Ω1, Ω2 and

Ω3 (second column of table 2) is smaller (almost half) than the H1 relative error

in the subdomain Ω4 (third column of table 2). That one is close to the H1 relative

error in the whole domain (fourth column of table 2).
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Fig. 5. Relative H1 error versus the number of refinements for the initial meshes : mesh 1, (diamond
line), mesh 2 (solid line), mesh 3 (dashed line), and mesh 4 (star line). The triangle line is the
mesh size h versus the number of refinements, in logarithmic scale
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Table 2. Comparison, in the case of mesh 3, for different re-
finements (column one), of the H1 relative error in the domain
composed by subdomains Ω1, Ω2 and Ω3 (column 2) to the
H1 relative error in the subdomain Ω4 (column 3). The fourth
column is the H1 relative error in the whole domain.

Refinement (E2

1
+ E2

2
+ E2

3
)1/2/Eex E4/Eex E/Eex

0 1.26e-01 2.04e-01 2.40e-01

1 5.57e-02 1.04e-01 1.18e-01

2 2.74e-02 5.22e-02 5.90e-02

3 1.36e-02 2.59e-02 2.93e-02

4 6.64e-03 1.26e-02 1.43e-02

4.3. Error estimates for a solution with minimal regularity

In this section we propose an example where the assumptions of Theorem 4 hold, but

not the one of Theorem 5, to illustrate the optimality of Theorem 4 in the minimal

regular case. The first difficulty is to construct such a solution. We propose, for

J ≥ 1 a given integer, the solution uJ defined on Ω = (−1, 1)× (0, 2π) by

uJ(x, y) =

{

φJ (2x, y)− φJ (x, y), x ≥ 0

−(φJ (−2x, y)− φJ (−x, y)), x ≤ 0
,

with

φJ (x, y) =

J
∑

j=1

sin(jy)
sinh(j(x− 1))

j2 cosh(j)
.

The interface Γ is located at x = 0. For J sufficiently high, tidious computations

show that there exists c > 0 such that

‖∂uJ
∂x

‖2
H

1

2 (Γ)
≤ c log(J), ‖∂uJ

∂x
‖2
H

3

2 (Γ)
≤ c J2, ‖uJ‖2H2(Ω) ≤ c log(J).

Therefore, for J sufficiently high, from Theorem 4 and Theorem 5, we have

‖uJ,h − uJ‖∗ ≤ ch
√

log(J) + cmin(
1

α

√

log(J),
h

α
| log(h)|J). (4.3)

Thus, considering the case

J =
c1

h
3

2

, α =
c2
hθ
, (4.4)

with θ > 0 given, the assumptions of Theorem 4 hold uniformly in J . This is not

the case for the assumptions of Theorem 5, and from (4.3), there exists a constant

c independent of J and h such that

‖uJ,h − uJ‖∗ ≤ ch
√

−log(h) + cmin(hθ
√

−log(h), hθ− 1

2 |log(h)|). (4.5)

Remark 3. For numerical simulations, c1 and c2 must be tuned carefully. First,

the frequencies are restricted to J ≤ π
hI

where hI is the mesh size over the interface.

From the definition of J in (4.4), the condition hI ≥ ( c1π )2 ensures that J ≤ π
hI
.
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Then, on one hand c2 must be choosen not too small so that, in the right-hand side

of (4.3), the second term does not become too small than the first term. On the

other hand c2 must be small enough to observe the error estimates.

In order to illustrate the error estimate (4.5), we consider the non-conforming

meshes represented on Figure 6. Then the meshes are refined four times, by cutting

each triangle into four smaller ones (e.g. the mesh size is divided by 2 at each

refinement). To compute the H1 error, we consider a finest grid obtained from the

initial one with the mesh size divided five times by a factor 2 (with 744401 vertices

in domain 1 and 1090065 vertices in domain 2). The non-conforming solutions are

interpolated on the finest grid to compute the error. We take c1 = 0.08 and c2 =
1

1.2 105 . We start with J = 1 on the initial mesh. Then the values of J at each

refinement are 2, 7, 22 and 63. The computations of the H1 norms are done on a

grid obtained from the finest one with the mesh size divided by a factor 2. The

non-conforming converged solution, at each refinement, is such that the residual is

smaller than 10−7.

Figure 7 (left) shows the relative H1 error versus the mesh size. We observe that

the error tends to zero at the same rate than hθ, for θ = 1
2 (star curve). This result

fits with (4.5) and thus illustrates the optimality of the theoretical error estimates of

Theorem 4. Figure 7 (right) illustrates the dependance of the error versus the Robin

parameter α defined by (4.4). We represent on the interface the difference of the

exact solution and the computed solution in absolute value, after three refinements

(i.e. h = 0.0233), for θ = 1
4 and for θ = 1

2 . We observe that decreasing θ increases

the error as expected.

4.4. Convergence : Choice of the Robin parameter

Let us now study the convergence speed to reach the discrete solution, for different

values of the Robin parameter α, which is taken constant on the interfaces. The unit

square is decomposed into four non-overlapping subdomains with non-conforming

meshes (with 189, 81, 45 and 153 nodes respectively) generated as shown in Figure

8. The Schwarz algorithm can be interpreted as a Jacobi algorithm applied to an

interface problem 34. In order to accelerate the convergence, we can replace the

Jacobi algorithm by a Gmres 35 algorithm. On Figure 9 we represent the relative

H1 error between the discrete Schwarz (left part) and Gmres (right part) converged

solution and the iterate solution, for different values of the Robin parameter α.

We observe that the optimal numerical value of the Robin parameter is close to

αmean and near αmin and αmax defined in Section 4.1. Moreover the convergence

is accelerated by a factor 2 for Gmres, compared to Schwarz algorithm, and the

Gmres algorithm is less sensitive to the choice of the Robin parameter.
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Fig. 6. Initial non-conforming meshes: global meshes (left) with a zoom at corners (right)
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4.5. Conclusions of the numerical results

The numerical results on the relative H1 error between the continuous and discrete

solutions correspond to the theoretical error estimates of Theorems 4 and 5. As

seems natural, we also observe that, for a fixed number of mesh points, the relative

H1 error between the continuous and discrete solutions is smaller for a mesh refined

in the region of the domain where the solution steeply varies, than for a mesh which

is coarser in that region. Note finally that, in term of convergence speed to reach

the discrete solution, the Robin parameter α must depend of the mesh size, and our

simulations show that α = αmean is close to the optimal numerical value.
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Fig. 8. Domain decomposition in 4 subdomains with non-conforming grids
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Appendix A. Inf-sup condition

The purpose of this appendix is to show that for Lemma 2, the proof of Ref. 3

can be extended to the 3D situation. Indeed the main ingredients required for the

extensions have been proven in Ref. 10. Let us first recall a standard stability result

in higher norms of the L2 projection operator π̄k,ℓ from L2(Γk,ℓ) onto Yk,ℓ
h ∩H1

0 (Γ
k,ℓ)

orthogonal to W̃ k,ℓ
h .

Lemma 8. Making the hypothesis that the triangulation T k
h is uniformly regular,

there exists a constant c > 0 such that

∀v ∈ H
1

2

00(Γ
k,ℓ), ‖π̄k,ℓv‖

H
1

2

00
(Γk,ℓ)

≤ c‖v‖
H

1

2

00
(Γk,ℓ)

.

Proof of Lemma 8: From (3.46) we deduce a uniform inf-sup condition between

Yk,ℓ
h ∩H1

0 (Γ
k,ℓ) and W̃ k,ℓ

h in L2(Γk,ℓ). It results that the projection operator π̄k,ℓ is

stable in L2(Γk,ℓ) and thus there exists a constant c1 > 0 such that

∀v ∈ H
1

2

00(Γ
k,ℓ), ‖v − π̄k,ℓv‖L2(Γk,ℓ) ≤ c1h

1

2 ‖v‖
H

1

2

00
(Γk,ℓ)

.

Let π̃k,ℓ denote the orthogonal projection operator from H
1

2

00(Γ
k,ℓ) onto Yk,ℓ

h ∩
H1

0 (Γ
k,ℓ) for H

1

2

00(Γ
k,ℓ) inner product. Then, for all v in H

1

2

00(Γ
k,ℓ),

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ ‖π̃k,ℓv‖
H

1

2

00
(Γk,ℓ)

+ ‖π̄k,ℓv − π̃k,ℓv‖
H

1

2

00
(Γk,ℓ)

.

Then, with an inverse inequality, there exists a constant c2 > 0 such that

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ ‖v‖
H

1

2

00
(Γk,ℓ)

+ c2h
− 1

2 ‖π̄k,ℓv − π̃k,ℓv‖L2(Γk,ℓ).

Thus,

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ ‖v‖
H

1

2

00
(Γk,ℓ)

+ c2h
− 1

2 c′h
1

2 ‖v‖
H

1

2

00
(Γk,ℓ)

,

and then, with c = 1 + c′c2 ,we have

‖π̄k,ℓv‖
H

1

2

00
(Γk,ℓ)

≤ c‖v‖
H

1

2

00
(Γk,ℓ)

, ∀v ∈ H
1

2

00(Γ
k,ℓ),

which ends the proof of Lemma 8.

Proof of Lemma 2: From the definition of the (H
1/2
00 (Γk,ℓ))′ norm, for any

ph,k,ℓ in W̃
k,ℓ
h , there exists an element wk,ℓ in H

1

2

00(Γ
k,ℓ) such that

∫

Γk,ℓ

ph,k,ℓw
k,ℓ =

(H
1/2
00

(Γk,ℓ))′
< ph,k,ℓ, w

k,ℓ >
H

1/2
00

(Γk,ℓ)
= ‖ph,k,ℓ‖

(H
1

2

00
(Γk,ℓ))′

‖wk,ℓ‖
H

1

2

00
(Γk,ℓ)

,

and wk,ℓ can be chosen such that

‖wk,ℓ‖
H

1

2

00
(Γk,ℓ)

= ‖ph,k,ℓ‖
(H

1

2

00
(Γk,ℓ))′

.
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We apply now the projection operator on wk,ℓ from Lemma 8. We derive that

π̄k,ℓ(w
k,ℓ) = wk,ℓ

h ∈ Yk,ℓ
h ∩H1

0 (Γ
k,ℓ) and

‖wk,ℓ
h ‖

H
1

2

00
(Γk,ℓ)

≤ c‖ph,k,ℓ‖
(H

1

2

00
(Γk,ℓ))′

,

and
∫

Γk,ℓ

ph,k,ℓw
k,ℓ
h =

∫

Γk,ℓ

ph,k,ℓw
k,ℓ = ‖ph,k,ℓ‖2

(H
1

2

00
(Γk,ℓ))′

.

It remains to lift wk,ℓ
h over Ωk, this is done by prolongating wk,ℓ

h by zero over

∂Ωk \Γk,ℓ and lifting this element of H
1

2 (∂Ωk) over Ωk as proposed in Ref. 6, which

ends the proof of Lemma 2.
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