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Abstract

We present a comparison of two discretization methods for the shallow water equa-
tions, namely the finite volume method and the finite element scheme. A reliable
model for practical interests includes terms modelling the bottom topography as
well as the friction effects. The resulting equations belong to the class of systems of
hyperbolic partial differential equations of first order with zero order source terms,
the so-called balance laws. In order to approximate correctly steady equilibrium
states we need to derive a well-balanced approximation of the source term in the
finite volume framework. As a result our finite volume method, a genuinely multidi-
mensional finite volume evolution Galerkin (FVEG) scheme, approximates correctly
steady states as well as their small perturbations (quasi-steady states). The second
discretization scheme, which has been used for practical river flow simulations, is
the finite element method (FEM). In contrary to the FVEG scheme, which is a
time explicit scheme, the FEM uses an implicit time discretization and the Newton-
Raphson iterative scheme for inner iterations. We show that both discretization
techniques approximate correctly steady and quasi-steady states with bottom to-
pography and friction and compare their accuracy and performance.
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1 Introduction

Description of natural river processes is very complex. The main aim is to determine the
water level at a specific place and time. Reliable mathematical models as well as robust,
fast and accurate numerical simulations are very important for predictions of floods and
have large economical impact. One of the main difficulty of the reliable calculation is the
determination of the friction which counteracts the river flows. Numerical simulation of
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natural river flows is based on the two-dimensional shallow water equations. The shallow
water system consists of the continuity equation and the momentum equations

∂u

∂t
+

∂f1(u)

∂x
+

∂f2(u)

∂y
= b(u), (1.1)

where

u =




h
hu
hv


 , f 1(u) =




hu
hu2 + 1

2
gh2

huv


 ,

f 2(u) =




hv
huv

hv2 + 1
2
gh2


 , b(u) =




0
−gh( ∂b

∂x
+ Sfx)

−gh( ∂b
∂y

+ Sfy)


 .

Here h = h(x, y) denotes the water depth, u = u(x, y, t), v = (x, y, t) are vertically aver-
aged velocity components in x− and y−direction, g stands for the gravitational constant,
b = b(x, y) denotes the bottom topography and Sfx, Sfy are the friction terms in x− and
y− directions.

In practice even the one dimensional analogy of (1.1), the so-called Saint-Venant equa-
tions, are often used

∂w

∂t
+

∂f1(w)

∂x
= b(w), (1.2)

where

w =

(
A
Q

)
, f 1(u) =

(
Q

Q2/A

)
, b(w) =

(
0

−gA( ∂z
∂x

+ Sfx)

)
.

Here A = A(h(x, t), x) denotes the cross section area, Q = Q(x, t) = Au is the discharge
and z = h + b stands for the water surface.

The determination of the friction slopes Sfx, Sfy is a very complex problem. The friction
law for the river flow is often approximately modelled by the friction law of pipe flow, but
the pipe flow is much simpler than natural river flow. In fact, the main difficulty of the
evaluation of friction slope is the reflection of various characteristics of natural river flow
into one parameter. Typical characteristics of natural rivers are:

• structured cross sectional area with mass and momentum exchange at the bound-
aries

• complex cross sectional area as a function of depth of water

• vegetation of different kind

• different roughness at the same cross sectional area

• meandering

• retention effects.
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A good overview of the theory of friction slope in natural river flow can be found in [17]
and the references therein. For one dimensional steady flow situation Sfx can be expressed
by an integral relation

ρg

∫ x2

x1

Sfx A(h(x), x)dx =

∫

Abot

τbot(x)dxdy . (1.3)

The right hand side term describes a part of the weight of the fluid element with the cross
section A(x). Here τbot is the shear stress at the river bottom at the bottom area Abot

and x1 and x2 are the boundaries of the fluid element in the x-direction. The bottom
composition of a river can vary rapidly, especially when vegetation is taken into account.
In the literature several methods in order to determine the friction slope can be found, cf.,
e.g. [16] and [19]. Basis for our calculation is the friction law of Darcy-Weisbach. Thus,
the friction slopes are calculated by, see, e.g. [17],

Sfx(h, u, v, x, y, t) =
λu

√
u2 + v2

8g h
, Sfy(h, u, v, x, y, t) =

λv
√

u2 + v2

8g h
, (1.4)

where λ stays for the so-called resistance value. This is determined according to the
simplified form of the Colebrook-White relation

1√
λ

= −2.03log

(
ks/h

14.84

)
,

which was originally found for pipe flow. In the case of one-dimensional flow the friction
slope Sf is given in the analogy to (1.3) as

Sf (A,Q, x, t) =
λ

8grhy

|Q|Q
A2

,
1√
λ

= −2.03log

(
ks/rhy

14.84

)
,

where rhy stays for the hydraulic radius. When the above listed characteristics of natural
rivers have to be reflected more complex models for the resistance value λ are necessary.
Here ks denotes the Nikuradse grain roughness size, which depends on the composition
of the river bottom, especially of the sediment size. Typically, ks can vary from 1 mm
for beton until 300 mm for bottom with dense vegetation, or sometimes in an even wider
range.

One possible and simple way to solve a system of balance laws (1.1) or (1.2) is to apply
the operator splitting approach and solve separately the resulting homogenous system of
hyperbolic conservation laws, e.g. by using the finite volume or finite element method, and
the system of ordinary differential equations, which includes the right-hand-side source
terms. However, this can lead to the structural deficiencies and strong oscillations in
the solutions, especially when steady solutions or their small perturbations are to be
computed numerically. In fact, most of the geophysical flows, including river flows, are
nearly steady flows, that are closed to the equilibrium states of the dynamical system
(1.1). Consider a steady flow, i.e. we have for material derivatives dh/dt = 0, du/dt =
0, dv/dt = 0. In this case the rest of the gradient of fluxes is balanced with the right-
hand side source term, which yields the following balance condition in the x-direction
∂x(gh2/2) = −gh(∂xb + Sfx). Assume that R is a primitive to Sfx. Then the balance
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condition can be rewritten as gh∂x(h + b + R) = 0. An analogous condition holds in the
y− direction. These equilibrium conditions yield the well-balanced approximation of the
source term. The resulting schemes are called the well-balanced schemes, cf., e.g. [1], [4],
[6], [8] and the references therein for other well-balanced schemes in literature.
Our aim is to study the approximation of steady equilibrium states for balance law (1.1), or
(1.2), in the framework of the finite element as well as finite volume methods. In the case
of the finite volume method we use a genuinely multidimensional finite volume evolution
Galerkin scheme, which has been shown to perform very accurately in comparison to
classical finite volume methods, e.g. dimensional splitting schemes, cf. [10], [11].

2 Finite element method

The finite element method is a well known method for solving differential equations.
Numerous research and applications have shown good results in the area of structural
as well as fluid mechanics. Our approach uses a formulation based on the method of
weighted residuals to develop the discrete equations.
The method presented here has been used for practical applications in hydrology. Let
qe be the lateral inflow per unit length and β denote the momentum coefficient for flows
with the velocity, which is not uniform, i.e.

β =
A

Q2

∫

A

u2(y, z)dxdy . (2.1)

Then the continuity equation (1.2)1 is equivalent to

∂A

∂t
+

∂Q

∂x
− qe = 0 . (2.2)

Applying the rule for derivation of fraction Q2/A in (1.2)2 we obtain the following formu-
lation of the momentum equation, which is equivalent to (1.2)2 for smooth solutions

∂Q

∂t
+

Q2

A

∂β

∂x
+ 2β

Q

A

∂Q

∂x
− β

Q2

A2

∂A

∂x
+ gA

∂z

∂x
+ gASf − qevex = 0 . (2.3)

Here vex is the velocity component of the inflow in the x-direction. For the detailed
derivation of (2.2) and (2.3) see [17].
The finite element approximation with the basis functions Ni(x) for the independent
variables h and Q gives

Q(x) =
n∑

i=1

QiNi(x) , h(x) =
n∑

i=1

hiNi(x) , (2.4)

where i is the index of a node, n is the total number of nodes, hi approximates the water
depth and Qi the discharge at the node i. The cross section A(h, x) is a given function
depending on h and x. The differential equations (2.2) and (2.3) are weighted with
weighted functions (i.e. test functions) over the whole domain Ω yielding the following
equations

G ≡
∫

Ω

Wi

(
∂A

∂t
+

∂Q

∂x
− qe

)
dx = 0 , i = 1, 2, ..., n , (2.5)
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F ≡
∫

Ω

Wi

(
∂Q

∂t
+

Q2

A

∂β

∂x
+ 2β

Q

A

∂Q

∂x
− β

Q2

A2

∂A

∂x
+ gA

∂z

∂x
+ gASf − qevex

)
dx = 0,

i = 1, 2, ..., n. (2.6)

We have chosen the weighted functions Wi(x) to be the same functions as the basis
function Ni(x). Equations (2.5) and (2.6) represent the classical Galerkin Method.

2.1 Time integration scheme

In the time integration scheme we follow the approach of King [5]. The variation with
time will be described by the following function

y(t) = a + bt + ctγ (2.7)

with a constant coefficient γ. It can be shown that the following equation

dy(t + ∆t)

dt
= γ

y(t + ∆t) − y(t)

∆t
+ (1 − γ)

dy(t)

dt
(2.8)

holds [17]. In our numerical experiments for steady or quasi-steady, i.e. perturbed steady
flows, we have tested several values of γ, γ ∈ [1, 2], and found only marginal differences in
accuracy as far as the method is stable. Therefore we set γ = 1. In this case the scheme
reduces to the conventional linear integration scheme, i.e. the implicit Euler method. For
γ = 2 the time discretization is formally second order and we get a semi-implicit scheme.
Unfortunately, this choice yields an unstable scheme as we will show below.

2.2 Newton Raphson Procedure

Since the equations (2.5) and (2.6) are nonlinear we have used the Newton-Raphson
procedure in order to solve them iteratively




∂F1

∂h1
· · · ∂F1

∂hn

∂F1

∂Q1
· · · ∂F1

∂Qn
∂G1

∂h1
· · · ∂G1

∂hn

∂G1

∂Q1
· · · ∂G1

∂Q1
...

. . .
...

...
. . .

...
∂Fn

∂h1
· · · ∂Fn

∂hn

∂Fn

∂Q1
· · · ∂Fn

∂Qn
∂Gn

∂h1
· · · ∂Gn

∂hn

∂Gn

∂Q1
· · · ∂Gn

∂Qn



·




(hnew
1 − hold

1 )
...

(hnew
n − hold

n )
(Qnew

1 − Qold
1 )

...
(Qnew

n − Qold
n )




+




F1

G1
...
...

Fn

Gn




=




0
0
...
...
0
0




. (2.9)

Most of the derivatives in the Jacobian matrix are zeros, which is a consequence of the
used basis functions, i.e. the Jacobian is a sparse matrix. Equations (2.9) have to be
simplified further. The integrals F1, ..., Fn and G1, ..., Gn as well as their derivatives,
cf. (6.2) - (6.6), have to be approximated by a suitable numerical integration. In our
method we have used the Gauss quadrature rule with four points [5]. Let us point out
that the resulting linear system has been solved here by means of the Gauss elimination.
Actually, in typical practical problems arising in river flow industry the number of degrees
of freedom is not very high and the Gauss elimination behaves reasonably with respect to
time complexity, cf. [17]. However, for more precise computations yielding large algebraic
systems suitable iterative methods should be used.

5



3 Finite volume evolution Galerkin method

In our recent works [9], [10], [11] we have proposed a new genuinely multidimensional finite
volume evolution Galerkin method (FVEG), which is used to solve numerically nonlinear
hyperbolic conservation laws. The method is based on the theory of bicharacteristics,
which is combined with the finite volume framework. It can be also viewed as a predictor-
corrector scheme; in the predictor step data are evolved along the bichracteristics, or along
the bicharacteristic cone, in order to determine approximate solution on cell interfaces.
In the corrector step the finite volume update is done. Thus, in our finite volume method
we do not use any one-dimensional approximate Riemann solver, instead the intermediate
solution on cell interfaces is computed by means of an approximate evolution operator.
The reader is referred to [3], [7], [14] and the references therein for other recent genuinely
multidimensional methods.

To point out multidimensional features of the FVEG scheme we will give the description
of the method for two-dimensional situations. Our computational domain Ω will be
divided into a finite number of regular finite volumes Ωij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] =

[xi −~/2, xi + ~/2]× [yj −~/2, yj + ~/2], i, j ∈ Z, ~ is a mesh step. Further, we denote by
Un

ij the piecewise constant approximate solution on a mesh cell Ωij at time tn and start

with initial approximations obtained by the integral averages U 0
ij =

∫
Ωij

U(·, 0). The

finite volume evolution Galerkin scheme can be formulated as follows

Un+1 = Un − ∆t

~

2∑

k=1

δxk
f̄

n+1/2
k + Bn+1/2, (3.1)

where ∆t is a time step, δxk
stays for the central difference operator in the xk-direction,

k = 1, 2, and f̄
n+1/2
k represents an approximation to the edge flux at the intermediate

time level tn + ∆t/2. Further Bn+1/2 stands for the approximation of the source term

b. The cell interface fluxes f̄
n+1/2
k are evolved using an approximate evolution operator

denoted by E∆t/2 to tn + ∆t/2 and averaged along the cell interface edge denoted by E,
i.e.

f̄
n+1/2
k :=

1

~

∫

E
fk(E∆t/2U

n)dS. (3.2)

The well-balanced approximate evolution operator E∆t/2 for system (1.1) will be given in
the Section 3.2.

3.1 A well-balanced approximation of the source terms in the
finite volume update

As already mentioned above we want to approximate source terms in the finite volume
update in such a way that the balance between the source terms and the gradient of fluxes
will be exactly preserved. This can be done by approximating the source term by using
its values on interfaces, cf. [15].
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Let us consider a steady flow,

du

dt
≡ ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0,

dv

dt
= 0,

dh

dt
= 0, (3.3)

gh
∂(h + b + R)

∂x
= 0, gh

∂(h + b + T )

∂y
= 0 ,

where R and T are primitives to Sfx and Sfy, respectively. Note that the stationary state,
the so-called lake at rest, i.e. u = 0 = v, and h+b = const., is a special equilibrium state,
that is included here.

Assume that (3.3) holds, then the second equation of (3.1) yields

g

2~2

∫ yi+1/2

yi−1/2

(
(h

n+1/2
i+1/2 )2 − (h

n+1/2
i−1/2 )2

)
dSy

=
g

2~2

∫ yi+1/2

yi−1/2

(
h

n+1/2
i+1/2 + h

n+1/2
i−1/2

)(
h

n+1/2
i+1/2 − h

n+1/2
i−1/2

)
dSy. (3.4)

This and the equilibrium condition gh∂x(h + b + R) = 0 imply the well-balanced approx-
imation of the source term

1

~2

∫

Ωij

B2(U
n+1/2) =

1

~2

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

−ghn+1/2(∂xb
n+1/2 + ∂xR

n+1/2)

≈ −g

~

∫ yi+1/2

yi−1/2

h
n+1/2
i+1/2 + h

n+1/2
i−1/2

2

(bi+1/2 + R
n+1/2
i+1/2 ) − (bi−1/2 + R

n+1/2
i−1/2 )

~
dSy.

Integrals along vertical cell interfaces are approximated by the Simpson rule similarly to
the cell interface integration used in (3.4). An analogous approximation of the source
term is used also in the third equation for the y− direction.

3.2 Well-balanced approximate evolution operator

In order to evaluate fluxes on cell interfaces we need to derive an approximate evolution
operator which gives suitable time approximation of the exact integral equations that are
implicit in time. The exact integral equations describe time evolution of the solution to
the linearized system and can be obtained by exploring the hyperbolic structure of the
shallow water system (1.1) and applying the theory of bicharacteristics, cf. [2], [9, 10, 11].
In [12] the well-balanced approximate evolution operators for the shallow water equations
with bottom topography have been derived. The friction terms will be approximated in
an analogous way as the Coriolis forces in [13]. We have shown in [13] that these operators
preserve stationary equilibrium states, i.e. u = 0 = v, z = h+b = const. as well as steady
flows.
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The well-balanced approximate evolution operator Econst
∆ for piecewise constant data reads

h (P ) = −b(P ) +
1

2π

2π∫

0

(h (Q) + b(Q))− c̃

g
u (Q) sgn(cos θ) − c̃

g
v (Q) sgn(sin θ)dθ

+ O
(
∆t2

)
,

u (P ) =
1

2π

2π∫

0

−g

c̃
(h (Q) + b (Q) + R (Q)) sgn(cos θ) + u (Q)

(
cos2 θ +

1

2

)

+v (Q) sin θ cos θdθ + O
(
∆t2

)
, (3.5)

v (P ) =
1

2π

2π∫

0

−g

c̃
(h (Q) + b (Q) + T (Q)) sgn(sin θ) + u (Q) (sin θ cos θ)

+v (Q) (sin2 θ +
1

2
)dθ + O

(
∆t2

)
.

If the continuous piecewise bilinear data are used the well-balanced approximate evolution
operator, which is denoted by Ebilin

∆ , reads

h (P ) = −b(P ) + (h(Q0) − b(Q0)) +
1

4

2π∫

0

((h(Q) − h(Q0)) + (b(Q)− b(Q0))) dθ

− 1

π

2π∫

0

(
c̃

g
u(Q) cos θ +

c̃

g
v(Q) sin θ

)
dθ + O

(
∆t2

)
,

u (P ) = u(Q0) −
1

π

2π∫

0

g

c̃
(h(Q) + b(Q) + R(Q)) cos θdθ

+
1

4

2π∫

0

(
3u(Q) cos2 θ + 3v(Q) sin θ cos θ − u(Q)− 1

2
u(Q0)

)
dθ (3.6)

+O
(
∆t2

)
,

v (P ) = v(Q0) −
1

π

2π∫

0

g

c̃
(h(Q) + b(Q) + T (Q)) sin θdθ

+
1

4

2π∫

0

(
3u(Q) sin θ cos θ + 3v(Q) sin2 θ − v(Q)− 1

2
v(Q0)

)
dθ

+O
(
∆t2

)
.

The approximate evolution operators (3.5) and (3.6) are used in (3.2) in order to evolve
fluxes along cell interfaces. Thus, the first order method is obtained using the approximate
evolution operator Econst

∆

f̄
n+1/2
k =

1

~

∫

E
f k(E

const
∆t/2 Un)dS, k = 1, 2,
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whereas in the second order FVEG scheme a suitable combination of the approximate
evolution operator Ebilin

∆ and Econst
∆ is used. We apply Ebilin

∆ to evolve slopes and Econst
∆

to evolve the corresponding constant part in order to preserve conservativity

f̄
n+1/2
k =

1

~

∫

E
f k

(
Ebilin

∆t/2RhU
n + Econst

∆t/2 (1 − µ2
xµ

2
y)U

n
)
dS.

Here RhU denotes a continuous bilinear recovery and µ2
xUij = 1/4(Ui+1,j +2Uij + Ui−1,j);

an analogous notation is used for the y−direction.

4 Numerical experiments

In this section we compare the behavior of both FEM and FVEG schemes through several
test problems.

Example 1: channel flow with friction
In this example we simulate a steady uniform flow in a regular rectangular channel of
` = 1 km length and w = 6 m width. The bottom profile is given by

b(x, y) = −0.001x + 1 0 < x < 1000, y ∈ [0, 6].

For the FVEG method the initial data are chosen as a stationary state

h(x, y, 0) + b(x, y) = 2, u(x, y, 0) = 0 = v(x, y, 0).

At the inflow, i.e. x = 0m, the volume rate flow is taken to be Q ≡ w hu = 3m3s−1.
The inflow velocity in the y− direction is 0ms−1. At the outflow, i.e. x = 1000m, we
have imposed for the FVEG method absorbing boundary conditions by extrapolating the
data in the outer normal direction. We have tested several friction parameters of the
bottom, ks = 0.1, 0.2 and 0.3m . In order to evaluate friction slopes the hydraulic radius
rhy is to be computed. For a regular rectangular channel it is computed by the formula
rhy = w h/(2h + b).
Solutions computed by the FVEG method is evolved in time until the steady equilibrium
state is achieved, i.e. until ‖hn+1 − hn‖ ≤ 10−8. Since the FVEG method is explicit
in time, the CFL stability condition needs to be satisfied. We set CFL number to 0.8
in all our experiments. The FVEG method (3.1) solves two-dimensional shallow water
equations (1.1), the solution in the y−direction is constant.
The FEM computes directly solution of the stationary equations, i.e. ∂w

∂t
= 0 in (1.2), i.e.

(2.2) and (2.3). The FEM method (2.5), (2.6) approximates the one-dimensional Saint-
Venant equations (1.2), i.e. (2.2), (2.3). The comparisons of the shallow water depths
are given for different values of ks in the Table 1. The results indicate clearly very good
agreement of both methods, the second order FVEG scheme as well as FEM.
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h[m]
ks[m] FEM FVEG
0.1 0.6395567 0.640179
0.2 0.7113167 0.712090
0.3 0.7626931 0.763592

Table 1: Comparison of water depths for a steady flow with different friction parameters
for the bottom.

Example 2: channel flow with friction and varied topography
In this example we simulate again a steady flow in a channel having a varying bottom
topography. We take a non smooth bottom having discontinuity in the first derivative,
the profile is given as

b(x, y) =

{
−0.001(x − 500) + 0.5 if 0 < x < 500, y ∈ [0, 6],
0.5 if 500 < x < 1000, y ∈ [0, 6].

The length of the channel is ` = 1 km and width is w = 6 m. The grain roughness size
parameter of the bottom is set to ks = 0.1m. We take again for the FVEG a stationary
state as the initial data, i.e. h(x, y, 0) + b(x, y) = 2, u(x, y, 0) = 0 = v(x, y, 0). Other
parameters, inflow and outflow boundary conditions, are the same as in the previous
experiment. The solution is evolved in time until a steady state is obtained. Our steady
state solutions obtained by different methods, i.e. the FVEG method as well as the FEM
are in a very good agreement, see Figures 1. No singular corner effects on smoothness of
the solution can be noticed.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
ShalowWater FVEGM
WasserBau data
bottom elevation

0 100 200 300 400 500 600 700 800 900 1000
1.85

1.9

1.95

2
ShalowWater FVEGM
WasserBau data

Figure 1: Comparison of the two-dimensional solution of water depth h obtained by the
FVEG scheme (solid line) and the one-dimensional steady solution obtained by the FEM
scheme (boxes).

Example 3: propagating waves with bottom topography
In this example small perturbations of a stationary flow are simulated. It is well-known
that this is a hard test for methods which do not take care on a well-balanced approxi-
mation of the bottom topography and friction terms. In this case strong oscillations can
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appear in solutions as soon as small perturbations propagate over topographical changes.
We consider here a problem analogous to that proposed by LeVeque, cf.[8].
The bottom topography consists of one hump

b(x) =

{
0.5(cos(π(x− 50)/10) + 0.5) if |x− 50| < 10
0 otherwise

and the initial data are u(x, 0) = 0,

h(x, 0) =

{
2 − b(x) + ε if 10 < x < 20
2 − b(x) otherwise.

The parameter ε is chosen to be 0.2 and 0.02. The computational domain is [0, 100]. The
reflection boundary conditions, i.e. fixed wall conditions, have been imposed on x = 0 m
and x = 100 m. In the FEM the Dirichlet boundary conditions, i.e. Q = 0, are imposed,
which is an alternative to model fixed walls. The value of ks is set to 0.1 m.
Firstly the perturbation parameter is taken to be ε = 0.2. In Figures 2,3,4 we can see
propagation of small perturbations of the water depth h for different times until t = 19
seconds. Solution is computed on a mesh with 500 cells with the second order FVEG
method as well as FEM.
The FVEG method uses a time step ∆t computed directly according to the CFL condition,
CFL = 0.8. In the FEM time step ∆t was set to ∆t = 0.015 for ε = 0.2 and ∆t = 0.02
for ε = 0.02. For ε = 0.02 the time step is of the same order as the time step used by
the FVEG method. In the case ε = 0.2 the time step given automatically by the CFL
condition is ∆t ≈ 0.18. In this case we have decided to suppress the time step for the
FEM in order to reduce its numerical diffusion; as mentioned above ∆t = 0.02 was used.
In our numerical experiments we have seen that it was enough to take approximately 10
inner iterations in the Newton-Raphson method.
In Figure 5,6,7 the perturbation parameter is ε = 0.02, which is of the order of the dis-
cretization error being O(10−2). We can notice correct resolution of small perturbations
of the steady state by both methods even if the perturbations are of the order of the trun-
cation error. Small initial oscillations can be noticed in the FEM, which is also slightly
more dissipative than FVEG scheme. Since the flow is relatively slow, the Froude number
is less than 1, no upwinding technique was necessary in the FEM. It would be however im-
portant to stabilize the finite element approximation by some type of upwinding technique
or streamline diffusion technique, if flows with higher Froude numbers will be modelled.
The FVEG method is constructing in such a way that it exactly balances influence of fluxes
and the source terms. Although we have used just standard finite element approximation
in the case of our FEM method, presented in the Chapter 2, no unbalanced oscillations
can be noticed as perturbed waves propagate over the bottom topography even for small
perturbations. The reason is the formulation (2.3) where we have modelled the water level
z, instead of separating height h and topography b. Note also that the FEM discretizes
also the friction term in the same way as the water level z. Thus the equilibrium condition
(3.3) is preserved here as well.
For a two-dimensional analogy of this experiment similar results have been obtained by
the FVEG method, cf. [13], which is a truly multidimensional scheme. The approach
presented here, which is based on the FEM, is designed only for one-dimensional shallow
flows, i.e. Saint Venant equations (2.2), (2.3). The generalization to fully two-dimensional
case is possible as well. In practice the one-dimensional FEM computation of nearly one-
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dimensional river flows are often satisfactory and moreover more effective and less time
consuming.

Example 4: accuracy and performance
In this experiment we compare accuracy and computational time of both the FVEG and
FE methods. First, we test the experimental order of convergence for a smooth solution.
We consider the same geometry as in the previous Example 3 and take a smooth initial
data:

h(x, 0) =

{
2 − b(x) + ε cos(π(x− 15)/10) if 10 < x < 20
2 − b(x) otherwise,

(4.1)

u(x, 0) = 0. (4.2)

In order to reduce effects of boundary conditions we have used periodic boundary condi-
tions. Although an exact solution is not known, we can still study the experimental order
of convergence (EOC). This is computed in the following way using three meshes of sizes
N1, N2 := N1/2, N3 := N2/2, respectively

EOC = log2

‖Un
N2

− Un
N3
‖

‖Un
N1

− Un
N2
‖ .

Here Un
N is the approximate solution on the mesh with N × N cells at time step tn. The

computational domain [0, 100] was consecutively divided into 20, 40, . . . , 640 mesh cells.
It should be pointed out that this one-dimensional problem was actually computed by the
two-dimensional FVEG scheme on a domain [0, 100] × [0, 1] by imposing the tangential
velocity v = 0. Discrete errors are evaluated on a half of the computational domain, i.e.
for x ∈ [25, 75]. The final time was taken to be t = 2, parameter ε = 0.2, the friction
parameter ks = 0.1m and CFL=0.8. The following three tables show the experimental
order of convergence computed in the L1 norms, analogous results have been obtained for
the L2 errors1.
Table 2 demonstrates clearly the second order convergence of the FVEG scheme, which
is consistent with theoretical investigations in [10]. See also [13] for further details on
analysis of the FVEG scheme for hyperbolic balance laws.
For the FEM with parameter γ = 1, cf. (2.7), (2.8), the order is clearly one, due to
the first order time approximation, see Table 3. We have obtained analogous results for
γ = 1.5, which is a parameter oft used in practical engineering computations, cf. [5],
[17]. In Table 4 we see a lost of the accuracy for the FEM with the parameter γ = 2,
which indicates instability and would be seen more clearly on a finer mesh or for longer

1We work here with the discrete norms defined in the usual way. Assume that UN is a piecewise linear
function on a mesh with N cells. Then

‖UN‖Lq :=

(
N∑

i=1

∫ xi+1/2

xi−1/2

|UN (x)|q
)1/q

, q ∈ Z, q ≥ 1.

The integral on each mesh cell [xi−1/2, xi+1/2] can be computed exactly or by a suitable numerical
quadrature. For example, the midpoint or the trapezoidal rule suffice for the second order EOC tests
using the L2 norm. In the case of the discrete L1 norm we have evaluated the cell integrals exactly since
the absolute value is a non-smooth function, which can have a possible singularity within the mesh cell.
Thus, the classical quadrature rules do not apply anymore.
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computations. In order to illustrate the instability behaviour of FEM for γ = 2 we have
used for this experiment a fixed ∆t = 0.02, which is always below a time step ∆t ≈ 0.18
dictated by the CFL stability condition for CFL=0.8. This point should be investigated
in future in more details, it would be desirable to have both the second order accuracy as
well as stability for the FE approach.

Table 2: FVEG scheme: Convergence in the L1 norm.

N ‖hn
N/2 − hn

N‖ EOC ‖un
N/2 − un

N‖ EOC

20 1.798e-003 1.819e-002
40 2.091e-002 - 8.779e-003 1.0510
80 5.151e-003 2.0213 1.437e-003 2.6109
160 1.273e-003 2.0166 4.701e-004 1.6123
320 3.20e-004 1.9921 9.60e-005 2.2916
640 8.10e-005 1.9821 2.40e-005 2.0000

Table 3: FEM (γ = 1): Convergence in the L1 norm.

N ‖hn
N/2 − hn

N‖ EOC ‖un
N/2 − un

N‖ EOC

20 1.2391e-002 2.2149e-002
40 2.4786e-002 - 1.6170e-002 0.4539
80 8.0255e-003 1.6269 8.4591e-003 0.9348
160 2.4713e-003 1.6994 4.2324e-003 0.9990
320 1.0268e-003 1.2671 2.1488e-003 0.9779
640 4.8403e-004 1.0849 1.0821e-003 0.9897

In Table 5 we compare the computational efficiency of both numerical scheme. The results
were obtained with a personal computer having 3,06 GHz Pentium 4 processor and 1,5
GB RAM. Figure 8 illustrates the CPU/accuracy behaviour graphically. We use the
logarithmic scale on x−, y− axis. On the y− axis the sum of L1 relative errors in both
components h and u is depicted. We should point out that no attempt has been made
in order to optimize the codes with respect to its CPU performance. We can notice that
for practical meshes of about 80 to 160 mesh points the FVEG method is about 5 to 10
times faster yielding approximately 2.5 to 4 times smaller relative error than the FEM. In
fact, the FEM code was written for general industrial applications and might behave not
optimal here. For example, one can include some iteration method for solving the linear
algebraic system in the FEM instead of the Gauss elimination, which might be too much
time consuming as we are approaching fine meshes. Moreover, it is clear that concerning
the accuracy the second order FVEG method clearly should overcome the first order FE
scheme.
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Table 4: FEM (γ = 2): Convergence in the L1 norm.

N ‖hn
N/2 − hn

N‖ EOC ‖un
N/2 − un

N‖ EOC

20 1.311e-002 2.5916e-002
40 2.6245e-002 - 2.0578e-002 0.3327
80 9.4017e-003 1.4806 1.4343e-002 0.5208
160 4.7951e-003 0.9714 7.3215e-003 0.9701
320 2.8851e-003 0.7329 5.9924e-003 0.2890
640 2.1097e-003 0.4515 4.3990e-003 0.4459

Table 5: CPU times for the FVEGM and FEM on meshes with N cells.

N FVEGM FEM

10 0.031 s 0.22 s
20 0.093 s 0.47 s
40 0.235 s 0.94 s
80 0.469 s 2.25 s
160 0.86 s 10.39 s
320 1.61 s 1 min. 23.6 s
640 3.93 s 17 min. 43.15 s

5 Concluding remarks

In the present paper we have compared two different discretization techniques for ap-
proximation of the system of shallow water equations with bottom topography terms and
friction terms. The first method, the FEM, is based on a classical finite element approach
using conforming linear finite elements for approximation of water depth h and for the
volume rate Q. Discretization in time is done by the backward Euler scheme yielding
the implicit finite difference scheme in time. We have illustrated that a formal second
order time discretization yields an unstable scheme. In future a stable fully second or-
der FEM discretization should be studied. The resulting nonlinear system of algebraic
differential equations is solved iteratively by the Newton Raphson method. It should be
pointed out that the presented scheme has already been used successfully for real river
flow calculations in practice.

The second method, the finite volume evolution Galerkin method (FVEG), belongs to the
class of multidimensional finite volume methods and it is a genuinely multidimensional
variant of classical finite volume schemes. Thus, the FVEG method is a time explicit
scheme and it resolves correctly also strong (multidimensional) shocks due to its upwinding
character, cf. [9], [10], [11]. In order to obtain a higher order resolution a recovery step
is included in the computation of cell interface fluxes. It should be pointed out that in
contrast to the finite element scheme, the FVEG method uses discontinuous (bi-)linear
discrete functions. Thus, the FEM as well as the FVEG scheme are second order accurate
in space.
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In order to resolve correctly steady equilibrium states a special, the so-called well-balanced,
approximation of terms modelling the bottom topography as well as the friction effects
was necessary. The FEM approximates these terms directly in the same way as other
momentum terms and no special approximation was implemented. Both principally dif-
ferent discretization schemes have been extensively tested on various one-dimensional test
problems, the representative choice of them is presented here. We have found in all our
experiments a good agreement of both methods. Only relatively marginal differences can
be found even on hard well-balanced problems, cf. Example 3. As far as the CPU time
concerns we have found that the time explicit FVEG scheme was generally faster than
the implicit FEM. Moreover, the FVEG scheme is second order in time as well as in space
and thus it performs more efficiently than the FEM, cf. Figure 8. However, the CPU-
efficiency needs to be consider relatively since it depends on the optimality and robustness
of a code. We think that our comparative study can initiate an interest of engineers, who
deal with the river flow simulations, to use new modern methods coming from other fields.

It is fair to mention that we have not yet deal with other interesting problems like the
resonance phenomenon and roll waves. In the case of resonance phenomenon two eigen-
values of the propagation matrix (Jacobian matrix) collapse. In the shallow water system
with topography the resonance phenomenon appears when speed of gravity waves van-
ishes. Assume for example a decreasing topography, then the fluvial (subcritical) flow can
change to the torrential (supercritical) flow through a stationary shock, the so-called hy-
draulic jump, the Bernoulli’s law can be violated and the uniqueness of the weak entropy
solution is lost.
Further, it is known that roll waves can occur in a uniform open-channel flow down an
incline, when the Froude number is larger than two. It has been shown by [18] that
the initial value problem for the Saint-Venant system including topography and friction
is then linearly unstable. For steep channels the uniform flow can break to a series of
waves or bores that are separated by smooth flow in a staircase pattern. These are the
roll waves, i.e. discontinuous periodic travelling waves. The reliable and robust numerical
schemes should produce correct approximations of these complex situations, too. This is
a topic for further study.

6 Appendix

For the Newton-Raphson scheme equations (2.5) and (2.6) has to be differentiated. The
corresponding derivatives, which are the entries of the Jacobian matrix in (2.9) are for
each node i = 1, . . . , n:

∂G

∂Qi

=

L∫

0

NT

(
dNi

dx

)
dx , (6.1)

∂G

∂hi
=

L∫

0

NT Ni

(
∂2A

∂h2

∂h

∂t
+

∂A

∂h

γ

∆t

)
dx , (6.2)

∂Sf

∂hi
= −2Ni

SEQ2

Q3
Sch

(
∂QSch

∂h

)
, (6.3)
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∂F

∂Qi
=

L∫

0

NTNi

(
γ

∆t
+

2Q

A

∂β

∂x
+

2β

A

(
∂Q

∂x
+

Q

Ni

∂Ni

∂x

)
− 2

βQ

A2

∂A

∂x
+ 2g

A

Q
Sf

)
dx . (6.4)

Here QSch describes the stage flow relationship for each cross section for steady uniform
flow with the bottom slope SE. In the described model we have approximated this rela-
tionship by polynomials in a preprocessing process. If there is no discharge Q = 0 than
the last term of (6.4) vanishes, i.e.

2g
A

Q
Sf = 0 , (6.5)

for more details see [17].

∂F

∂hi
=

L∫

0

{
NT

[
Ni

Q2

A2

(
A

∂2β

∂h∂x
− ∂β

∂x

∂A

∂x

)
+ Ni

2Q

A2

∂Q

∂x

(
A

∂β

∂h
− β

∂A

∂h

)

−Ni
Q2

A2

(
∂β

∂h

∂A

∂x
+ β

∂2A

∂h∂x
− 2

β

A

∂A

∂h

∂A

∂x

)
(6.6)

+ g

(
Ni

∂A

∂h

∂h

∂x
+ A

∂Ni

∂x

)
+ gNi

(
Sf

∂A

∂h
+ A

∂Sf

∂h

)
−gNiS0

(
∂A

∂h

) ] }
dx

In the examples presented in the paper the momentum coefficient β was set to unity and
no lateral inflow qe was considered.

We would like to point out that for arbitrary cross sections A the following relationship
is often used

∂A

∂hi

= Ni(x)
∂A

∂h
, (6.7)

see [17] for more detailed discussion.
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Figure 2: Propagation of small perturbations, ε = 0.2, T = 0, 1, . . . 7 seconds; computed
by the FVEG method (solid line) and by the FEM (dotted line).
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Figure 3: Propagation of small perturbations, ε = 0.2, T = 8, 9, . . . 15 seconds; computed
by the FVEG method (solid line) and by the FEM (dotted line).
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Figure 4: Propagation of small perturbations, ε = 0.2, T = 16, 17, 18, 19 seconds; com-
puted by the FVEG method (solid line) and by the FEM (dotted line).
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Figure 5: Propagation of small perturbations, ε = 0.02, T = 0, 1, . . . 7 seconds; computed
by the FVEG method (solid line) and by the FEM (dotted line).
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Figure 6: Propagation of small perturbations, ε = 0.02, T = 8, 9, . . . 15 seconds; computed
by the FVEG method (solid line) and by the FEM (dotted line).

23



0 50 100
1.99

2

2.01

2.02

2.03
Top surface at time t=16.0

h+
b

0 50 100
1.99

2

2.01

2.02

2.03
Top surface at time t=17.0

h+
b

0 50 100
1.99

2

2.01

2.02

2.03
Top surface at time t=18.0

h+
b

0 50 100
1.99

2

2.01

2.02

2.03
Top surface at time t=19.0

h+
b

Figure 7: Propagation of small perturbations, ε = 0.02, T = 16, 17, 18, 19 seconds; com-
puted by the FVEG method (solid line) and by the FEM (dotted line).
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