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The Burton-Cabrera-Frank (BCF) theory of crystal growth has been successful in describing
a wide range of phenomena in surface physics. Typical crystal surfaces are slightly mis-oriented
with respect to a facet plane; thus, the BCF theory views such systems as composed of staircase-
like structures of steps separating terraces. A continuous density of adsorbed atoms (adatoms)
diffuses on the terraces, and steps move by absorbing or emitting flux of adatoms. In this paper,
we shed light on the microscopic origins of the BCF theory by deriving a simple, 1D version of
the theory from an atomistic, stochastic lattice-gas (SLG) model. We define the time-dependent
adatom density and step position as appropriate ensemble averages in the SLG model, thereby
exposing the non-equilibrium statistical mechanics origins of the BCF theory. Our analysis reveals
that the BCF theory is valid in a low adatom-density regime, much in the same way that an ideal
gas approximation applies to dilute gasses. We find conditions under which the surface remains in
a low-density regime and discuss the microscopic origin of corrections to the BCF model.

I. INTRODUCTION

The controlled growth and etching of crystals is an im-
portant process that has applications in a variety of set-
tings, including the fabrication of microprocessors, quan-
tum dots, and nanowires, to name a few.8 Since these
processes often involve the assembly of structures at the
nanoscale, where the misplacement of a few atoms can
have large effects, it is important to develop theoretical
models that improve our understanding and control of
such evolution processes. In particular, mesoscale mod-
els at the 10 nm – 100 µm range have gained considerable
attention due to the fact that they provide a computa-
tionally tractable means to study discrete elements (e.g.
defects) of nanoscale systems without tracking every indi-
vidual atom.9 Formulating methods to connect atomistic
and mesoscale models of crystalline surfaces is therefore
a critical task in theoretical physics.
In this paper, we discuss the derivation of one

such mesocale model, the Burton-Cabrera-Frank (BCF)
theory.10 In 1951, BCF postulated an important mech-
anism of surface evolution that came to be known as
step-flow. They viewed crystal surfaces as composed of
staircase-like structures, i.e. systems of steps separating
terraces (cf. Fig. 1). Adsorbed atoms (adatoms) dif-
fuse on the terraces until arriving at and attaching to
a step. Such attachment (and the corresponding detach-
ment) processes cause the steps to move, which can lead

to large scale morphological changes in the crystal over
long times.

FIG. 1. A 1D step system with multiple steps (labeled sj)
separating terraces. Adatoms, represented by the densities cj ,
diffuse on each terrace. The velocity of a step is proportional
to the net current of adatoms arriving at the step.

Mathematically, Burton, Cabrera, and Frank chose to
formulate this microscopic picture in terms of a Stefan-
type free boundary problem.10,11 Adatoms are repre-
sented by a density c that obeys a diffusion equation;
boundary conditions at the step account for the physics
of attachment/detachment processes, and the velocity of
a step, which is a free (or movable) boundary, is propor-
tional to the net flux of adatoms arriving at the step.10

While this perspective is physically appealing, BCF did
not derive their model from an atomistic theory of sur-
face diffusion. Thus, many questions remain about the
underlying assumptions of the theory. Is there an un-
ambiguous relationship between the mesocale parameters
of the BCF theory the atomistic parameters describing
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adatom motion? How far from equilibrium can a system
be and still be well described by the BCF theory? How
does the theory break down?
Our goal in this paper is to heuristically answer these

questions by deriving a one-step, 1D version of the BCF
theory from an idealized, atomistic model of surface dif-
fusion. Our discussion here is largely formal; a full treat-
ment of this problem requires a significant foray into set
theory and functional analysis.1 Nonetheless, a key ob-
servation allows for a simplification that makes the prob-
lem easily accessible: experiments and simulations show
that the number of adatoms on many surfaces is typi-
cally very small. Thus, we choose as our starting point a
one-adatom stochastic lattice-gas (SLG) master equation
that describes the probability of finding the adatom at a
particular location on the surface.
Our main task amounts to reconciling the stochastic

and discrete nature of the SLG model with the notions of
a deterministic and continuous adatom density and step
position. This reconciliation can be achieved by defining
the adatom density and step position as time-dependent
expectation values taken over the master equation solu-
tion; the BCF theory, plus corrections, then describes
the time evolution of these averages. This approach in
particular has the benefit of showing how the BCF the-
ory extends ideas of equilibrium statistical mechanics to
non-equilibrium systems.
We caution, however, that the BCF theory (as we de-

rive it) is not always valid out of equilibrium. Indeed,
an important aspect of our analysis is to determine the
“near-equilibrium” conditions under which the BCF the-
ory reproduces the predictions of the SLG picture. To
this end, we derive a maximum principle (often found in
analysis of the heat equation)12 to show when corrections
to the BCF theory can be neglected. We also describe,
but do not derive, corrections, due to adatom correla-
tions, that arise from a multi-particle SLG model (as in
Ref. 13) and discuss the conditions under which they can
be neglected.
Several works have addressed questions related to the

derivation of the BCF model.14–17 Here it suffices to note
that these works only derived isolated parts of the BCF
theory, whereas we aim to derive all of its elements to-
gether. However, the 1D, one-step SLG model that we
invoke brings its own set of limitations. In particular, real
crystal surfaces are 2-dimensional (2D), and steps usually
have profiles that are not perfectly straight. These two
facts greatly complicate the formulation of an atomistic
model, and to the best of our knowledge, no derivation
of a fully 2D BCF theory has been achieved. Nonethe-
less, we believe that our analysis sheds light on the key
atomistic processes that give rise to the BCF theory.
The rest of the paper is organized as follows. In

Sec. II, we present the mathematical elements of the BCF
theory. In Sec. III, we present our one-step, 1D SLG
model. In Sec. IV, we formulate an averaging procedure
by which the SLG master equation can be transformed
into discrete, BCF-type equations, plus corrections. In

Sec. V, we provide a maximum principle that yields con-
ditions under which we can neglect the corrections, and
in Sec. VI we take the continuum limit of the discrete
BCF equations. In Sec. VII, we discuss corrections that
arise from a multi-particle SLG model, and in Sec. VIII
we present our main conclusions. Appendix A provides
a proof of the maximum principle that we invoke in Sec-
tion V.

II. A ONE-STEP BCF MODEL

We consider the one-step system illustrated in Fig. 2.
A step at position ς(t) separates an upper and a lower ter-
race. Adatoms, represented by the density c(x, t), obey
the diffusion equation

∂tc(x, t) = D∂2
xc(x, t), 0≤x<ς(t), ς(t)<x≤L, (1)

whereD is a constant diffusivity and L is the length of the
system. We apply screw periodic boundary conditions at
x = 0 and x = L.

Boundary conditions at the steps are of the form

J± = −D∂xc
∣∣
± = ∓κ±(c

± − ceq), (2)

where J± is the adatom flux at the right (+) or left(–)
edge of the step, κ± is an attachment/detachment rate
at the right (+) or left (–) edge of the step,2 and c± is the
adatom concentration to the right (+) or left (–) of the
step; ceq is an equilibrium adatom concentration. Equa-
tion (2) states that the step will emit or absorb adatoms
until the densities c± attain their equilibrium values. The
density ceq is generally assumed to be of the form

ceq ∝ e−µ/kBT , (3)

where µ is a step chemical potential, i.e. the energy added
to the system when an atom attaches to the step.18

Because the step can move, we require an additional
equation to describe its motion. We set the step velocity
ς̇(t) equal to the net current

ς̇(t) = a(J− − J+), (4)

where a is the lattice spacing. Equation (4) is a mass
conservation constraint; adatoms attaching to (detaching
from) a step cause it to advance (retreat).

Our goal in the remainder of this paper is to derive
Eqs. (1)–(4). In particular, an important part of our
analysis is to identify κ± and µ in terms of the processes
in our SLG model.

III. STOCHASTIC LATTICE-GAS MODEL

In the context of surfaces, a SLG model is a prob-
abilistic representation of the system that accounts for
the random motion of individual atoms. Solutions to a
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FIG. 2. The single-step system that we consider; the step po-
sition is denoted ς(t). The values c± are the adatom densities
on the right (+) and left (−) sides of the step; L is the length
of the system.

SLG model are the time-dependent probabilities of find-
ing the system in each of its atomistic configurations.
Given some initial state, the model describes how the
system transitions between its accessible configurations.
In general, a SLG model allows for an arbitrary number

of particles to move; see, for example, Refs. 13,17–19.
However, in many experiments and simulations, one finds
that few lattice sites are occupied by adatoms, which
instead spend most of their time attached to a step. This
observation motivates a key simplification of our SLG
model: we only consider a system in which one adatom is
ever allowed to move. While this simplification may seem
drastic, Ref. 13 shows that, to good approximation, the
behavior of a multi-particle model is often well described
by the one-particle (1-p) model that we consider here.
As we show in Sec. V, this 1-p model also contains the
essential physics of the BCF theory.
Thus consider the system illustrated in Fig. 3. A

surface with a single step is divided into N lattice sites
indexed by j, where 0 ≤ j ≤ N − 1. For definiteness, we
pick a lattice site s0 and use it to define amicroscopic step
position as follows:3 We call every site j 6= s0 a “terrace
site.” Whenever the adatom is at any site j 6= s0, the
microscopic step is at position s0−1; when the adatom is
at site s0, it becomes part of the step, whose position is
then also s0.

4 The SLG model is the following set of rules
that describe how the atom hops between lattice sites.

Rule 1 The adatom can only hop to one of its two ad-
jacent lattice sites.

Rule 2 The adatom hops from a terrace site to any adja-
cent terrace site with a probability proportional to a con-
stant rate D (described below).

Rule 3 The adatom hops to the step (i.e. j = s0) from
the left (–) or right (+) with probability proportional to
an attachment rate Dφ± (defined below).

Rule 4 The adatom detaches from the step to the left (–)
or right (+) with probability proportional to a detachment
rate Dkφ± (defined below).

Analytically, these rules are expressed via a master
equation, a system of ordinary differential equations de-
scribing the probabilities of finding the atom at each lat-
tice site. If pj(t) is the probability that the atom is at
site j, then the corresponding master equation is

ṗj=D[pj+1−2pj+pj−1], j 6=0, s0, s0±1, N−1, (5)

ṗs0±1 = D[kφ±ps0 − (1 + φ±)ps0±1 + ps0±2], (6)

ṗs0 = D[φ−ps0−1 − k(φ− + φ+)ps0 + φ+ps0+1], (7)

ṗ0 = D[p1 − 2p0 + pN−1], (8)

ṗN−1 = D[pN−2 − 2pN−1 + p0], (9)

where Eqs. (8) and (9) are screw periodic boundary con-
ditions, e.g. when the adatom hops off of the right side
of the system (j = N − 1) it reappears on the left side of
the lattice (at j = 0). Equations (5), (8), and (9) encode
Rule 2, while Eqs. (6) and (7) encode Rules 3 and 4, re-
spectively. Rule 1 is expressed by each of Eqs. (5)–(9),
since ṗj(t) only depends on pj(t) and pj±1(t).

FIG. 3. The 1-p SLG model. A single atom (blue) is allowed
to hop on the surface, whose lattice sites are indexed by j,
where 0 ≤ j ≤ N − 1. When the atom is at site s0 it is a part
of the step; otherwise it is an adatom.

The parameters D, φ±, and k are often expressed as
Arrhenius functions of the temperature.18,20 Specifically,

D = τ−1e−Eh/kBT , (10)

φ± = e−E±/kBT , (11)

k = e−Eb/kBT , (12)

where kBT is the temperature in units of energy, τ−1

is a hopping frequency that is usually assumed to be
1013 s−1, Eh is an energy barrier to adatom hopping, E±
is an attachment barrier from the left (–) or right (+) of
the step,5 and Eb is a bond energy (i.e. the energy in-
crease of the system when an adatom detaches from the
step). Physically, Eqs. (10)–(12) arise from the idea that
an adatom must overcome an energy barrier in order to
move to a new lattice site. In particular, an adatom that
attaches to a step may form a bond that must be broken
in a subsequent detachment process, while the barriers
E± account for the idea that adatom motion can be hin-
dered when attaching to a step from above or below.

Equations (5)–(9) are supplemented by initial data sat-
isfying the condition

∑
j pj(0) = 1; i.e. there is unit prob-

ability of finding the particle somewhere on the surface.
Summing Eqs. (5)–(9) then implies that

∑
j pj(t) = 1 for

all times (probability is conserved). It is also possible to
show that (i) the system satisfies ergodicity (any config-
uration is accessible to any other configuration in a finite
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number of transitions), (ii) there is a unique solution for
any real initial data, and (iii) all initial data converges to
the same steady state solution in the long-time limit. See
Ref. 13 for a proof of statements (i)–(iii). It is also pos-
sible to solve Eqs. (5)–(9) exactly for all t, although we
do not pursue this goal further. In the next section, we
propose a procedure for averaging the master equation
in such a way that yields the BCF model.

IV. AVERAGING THE SLG MODEL

Our goal in this section is to develop a suitable proce-
dure by which we can transform the SLG master equation
into a form resembling Eqs. (1)–(4). We must reconcile
two differences between the SLG model and the BCF the-
ory: (i) the adatom and step positions are represented
as discrete quantities in the SLG model but continuous
variables in the BCF theory, and (ii) coordinates on the
terrace are represented by a discrete index j in the SLG
model but a continuous variable x in the BCF theory. In
this section, we address the first of these differences.
In statistical mechanics, measurable quantities are of-

ten defined as expectation values taken over an appropri-
ate probability distribution, e.g. the Boltzmann distri-
bution. Importantly, the expectation value of a random
variable can be a continuous quantity, even though the
random variable itself may only take discrete values. We
employ this idea in defining the step position and adatom
density of the BCF theory.
We begin by noting that ṗj = 0 if pj = k/Z for j 6= s0

and ps0 = 1/Z, where Z = [1 + (N − 1)k] is a normal-
ization constant. In light of Eq. (12), we conclude that
this solution is in fact the Boltzmann distribution, which
we now denote peqj ; consequently, Z is the partition func-
tion. Since the steady state is unique, the system always
approaches equilibrium at long times.
These observations motivate us to define time-

dependent expectation values ς(t) and cj(t) of the micro-
scopic step position and adatom number-density at site j:

ς(t) =

∑
j 6=s0

a(s0 − 1)pj(t)

+ as0ps0(t), (13)

cj(t) = pj(t)/a j 6= s0, (14)

where a = L/N , and L is the length of the system. As
t → ∞, the step position and adatom densities converge
to their respective equilibrium expectation values, so
that definitions (13) and (14) extend the notion of
ensemble averaging to out-of-equilibrium systems.
If we apply a time derivative to Eqs. (13) and (14) and

use Eqs. (5)-(9) to simplify the resulting expressions, we
find the (discrete) step velocity law,

ς̇(t) = a2Dφ−(cs0−1 − kps0/a)

+ a2Dφ+(cs0+1 − kps0/a), (15)

and discrete diffusion-type equation,

ċj(t) = D[cj−1 − 2cj + cj+1], j 6= s0, s0 ± 1, (16)

ċs0±1 = D[kφ±cs0 − (φ± + 1)cs0±1 + cs0±2], (17)

ċs0 = D[φ+cs0+1 − 2k(φ+ + φ−)cs0 + φ−cs0−1]. (18)

Equation (16) already has the form of Eq. (1) if we iden-
tify ∂2

x with the second-order difference scheme. How-
ever, Eqs. (17) and (18) do not have the same structure as
Eq. (16); this fact allows us to determine boundary con-
ditions for cj(t) corresponding to Eq. (2). Specifically, we
add and subtract a new quantityDc±s0 to Eq. (17) to force
the appearance of a second-order difference scheme plus
some corrections, which we then require to vanish. This
procedure may be interpreted as picking the boundary
conditions for c1(t) such that the discrete diffusion-type
equation (16) is valid all the way up to the step. Phys-
ically, then, we identify c±s0 as the discrete analogues of
c± appearing in Eq. (2)

Following through with this procedure yields

ċs0±1 = D(c±s0 − 2cs0±1 + cs0±2)

+D[(1− φ±)cs0±1+(kφ±)ps0/a− c±s0 ], (19)

where we treat the second line as the remainder term.
Setting this equal to zero yields the discrete kinetic rela-
tions

∓J± = aD[cs0±1 − c±s0 ] = Dφ±[cs0±1 − kps0/a], (20)

where we identify J± = ±(a2D)[cs0±1−c±s0 ]/a as the dis-
crete flux of adatoms on the right (+) and left (-) of the
step. Note that J± corresponds to J± = −D∂xc(x, t),
but with a first order difference scheme instead of a par-
tial derivative in x.

V. MAXIMUM PRINCIPLE

At this point, we have all of the essential ingredients
from which to derive the BCF theory: a step velocity law
(15), a discrete diffusion equation (16), and discrete ki-
netic relations (20). It is tempting to take the continuum
limit, but we must first acknowledge that Eq. (20) has no
(constant) term corresponding to ceq; the only possible
candidate is kps0/a, which is a function of time.

This observation motivates the following idea: if ps0 re-
mains approximately constant for all times, then to good
approximation, the term kps0 in Eq. (20) can be replaced
with a constant that we identify as the discrete analogue
of ceq in the linear kinetic relation [Eq. (2)]. To this end,
we invoke a maximum principle (cf. Appendix A):
Proposition. Let pj(t) be the solution to (5)–(9) with
initial data pj(0), and define p̂j = pj/k for j 6= s0 and
p̂s0 = ps0 . Then the greatest value in the set {p̂j(t)} is
less than or equal to the greatest value in the set {p̂j(0)}
for every t > 0.

Physically speaking, this maximum principle states
that the (rescaled) p̂j(t) will not spontaneously form
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localized regions with high probabilities of finding an
adatom.6 For our purposes, it implies the following corol-
lary:
Corollary. If pj(0) ≤ O(k/Z) for j 6= s0 and ps0(0) =
O(1/Z), then pj(t) ≤ O(k/Z) for j 6= s0 and ps0(t) =
O(1/Z) for all times t.
In essence, the corollary allows us to identify ps0(t) =

1−O(kN) in Eq. (20) for all times, provided that pj(0) =
O(k/Z) for j 6= s0 and kN � 1 [recall Z = 1+(N−1)k].
Physically, the corollary states that if the systems starts
sufficiently close to equilibrium (i.e. the Boltzmann dis-
tribution), it will remain so for all times. The addi-
tional constraint kN � 1 implies a low total number of
adatoms on the surface for all times. We henceforth re-
fer to the hypotheses of the corollary as near-equilibrium
conditions.

VI. CONTINUUM LIMIT AND THE
LOW-DENSITY REGIME

In order to take the continuum limit of Eqs. (15), (16),
and (20), we first identify the macroscopic parameters

D = a2D, (21)

ceq = k/a, (22)

κ± = aDφ±. (23)

We also enforce near-equilibrium conditions on the pj(0)
and require kN � 1. Next, we assume that finite dif-
ferences can be approximated in terms of a continuous
density c(x) via

cj+1(t)−cj(t)

a
= ∂xc(x, t)|x=ja +O(a), (24)

cj+1(t)−2cj(t)+cj−1(t)

a2
= ∂xxc(x, t)|x=ja +O(a). (25)

Neglecting corrections that are O(a) or O[(kN)2], we
find that Eq. (15) reduces to the continuum step veloc-
ity law [Eq. (4)], Eq. (16) reduces to a diffusion equation
[Eq. (1)], and Eq. (20) reduces to the linear kinetic rela-
tion at a step edge [Eq. (2)].
Because of the identity κ± = aDφ±, the boundary

conditions at the step edge depend strongly on the be-
havior of φ± as N → ∞. In the case that φ± = O(1)
as N → ∞, κ± → ∞, which forces the Dirichlet bound-
ary condition c± = ceq; physically, this boundary con-
dition corresponds to diffusion-limited kinetics, in which
adatom hopping (as opposed to attachment/detachment)
is the rate limiting process for the system to reach equi-
librium. If, however, φ± = O(1/N) as N → ∞, κ± re-
mains finite, and Eq. (2) gives the appropriate boundary
conditions at the step edge.
A key benefit of this limiting procedure is the identifi-

cation of the parameters entering the BCF theory (D, κ±,
and ceq) with the parameters of the microscopic model
(D, k, φ±, and a). It is possible to test the correctness

FIG. 4. Comparison of linear kinetic relation (2) (solid line)
and kinetic Monte Carlo simulations (data points with error
bars). (Top) Simulations with φ+ = 1, i.e. E+ = 0. (Bottom)
Simulations with φ+ = 1/e, i.e. E+/kBT = 1. We take the
mean of 10 ensemble averages, with each ensemble consisting
of: (a) 107 simulations, and (b) 106 simulations. The 3σ
values are indicated by vertical lines (error bars) centered
at the mean flux values. In both plots, we take k ≈ 0.025,
D = 1010 s−1, and N = 50 (so a = L/50); note that aceq = k.
The slopes of the solid lines are (a) J+/[D(ac+ − k)] = −1
and (b) J+/[D(ac+ − k)] = −1/e, in agreement with our
BCF-type model. See Sec. VI for discussion.

of these relations via kinetic Monte Carlo simulations.
The main idea of such simulations is to follow many (106

or more) elements of the statistical ensemble describing
the system and then compute ensemble averages with re-
spect to those elements; assuming one samples enough
elements of the ensemble, the simulated averages should
approximate the true ensemble averages.

In Fig. 4 we compare our predictions of the parameters
in the linear kinetic relation (solid line) versus kMC sim-
ulations (points) whose input parameters are the same
as the atomistic SLG model. Importantly, our BCF-
type model has zero free parameters, since Eqs. (21)–(23)
are determined entirely by the microscopic parameters
of the kMC simulations. The figures show that when
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c ≈ ceq, the linear kinetic relation J± = ∓κ±(c
±−ceq) =

∓(aDφ±)[c
± − k/a] does a remarkable job of describing

the atomistic behavior of the system.

VII. DISCUSSION

A. Derivation in the context of real materials

The derivation of our BCF-type model depends on sev-
eral assumptions about the scaling of the microscopic pa-
rameters: (i) kN � 1 (ii) D = O(N2) s−1, and (iii)
N � 1. In this section, we consider the validity of these
assumptions in the context of real materials.
The hopping rate D is usually defined as the Arrhenius

function D = τ−1e−Eh/kBT , where τ−1 = 1013 s−1 is an
attempt frequency and Eh is an activation energy that
is extracted from measurements.18 Typical values for Eh

range from 0.04 eV for Al(111) to 0.97 ± 0.07 eV for
Si(111).18 At temperatures between 300 K and 1000 K,
we estimate that 1012 s−1 ≥ D ≥ 106 s−1, depending on
the material. As an example, we consider Ni(110), for
which Eh = 0.41 eV18,21; taking T ≈ 500 K (or kBT ≈
1/24 eV), we estimate that D = 108 s−1. For a terrace
with N = 1000 lattice sites and L = 0.1 µm (i.e. atomic
length a ∼ 0.1 nm), we find D = D/(a2) = 1 µm−2 s−1.
Experiments can also estimate the energy Eb

[cf. Eq. (12)]. Typical values range from approximately
0.3 eV for Ni(110)21 up to 1 eV or 2 eV for Si(111)22–24.
The use of the value Eb = 0.3 eV for Ni(110) [cf. Eq. (12)]
yields k ≈ 10−4 at 500 K. By combining this result with
the assumption that N = 1000 (corresponding to L that
is a few hundred nanometers), we find that Nk ≈ 10−1,
which suggests that the low-density approximation is rea-
sonable for this system at 500 K. In addition to these for-
mal estimates, both experimental and numerical results
have verified that Ni(110) is in a low-density regime at
this temperature; see Ref. 21. In this work, significant
adatom detachment on Ni(110) only began when the tem-
perature was raised above 650 K; at 900 K, simulations
show that roughly 1.5% of the lattice sites are occupied
by adatoms (see also Ref. 19).7

Experimental estimates of E± are also available
[cf. Eq. (11)]. Often (but not always) the Ehrlich-
Schwoebel barrier25,26 E− is larger than the attachment
barrier E+. See, e.g., Table 6 in Ref. 18 for a detailed
list of attachment/detachment barriers. For Ni(110),
one finds E− = 0.9 eV and E+ ≈ 0 eV, which implies
φ− � 1/N and φ+ = 1 at 500 K. In a BCF model
for this system, we therefore expect that κ− ≈ 0 and
κ+ = O(N), corresponding to J− = 0 and c+ = ceq.
Therefore, for this system, our analysis predicts different
boundary conditions on the two sides of the step edge.

B. Corrections due to multiple-particle states

The SLG master equation that we invoke in Sec. III
only allows a single adatom to ever be on the surface.
We comment here on corrections that can arise between
multi-adatom states. Note that generally, the particular
form of corrections will depend on precise rules of the
multi-particle SLG model; here we only discuss only a
few types. However, we always expect that an m-adatom
state should be O[(kN)m] (provided the system is near-
equilibrium), since mEb is the energy cost to create m
adatoms. Thus, corrections from multi-particle states
should always be small; see Ref. 13.

FIG. 5. A convection-type process that contributes correc-
tions to the BCF theory. Here the adatom moved relative to
the step because another atom detached from the step.

FIG. 6. Another process that yields corrections to the BCF
theory: a transition between states in which the step changes
its position by more than one lattice site.

In Fig. 5 transitions between the two states illustrated
cause the adatom furthest from the step to move rel-
ative to the step. This is an example of a convection-
type process. If the definition of the adatom density in a
multi-particle model is taken relative to the step position,
then such convective effects will appear in the diffusion
equation for adatoms. Importantly, this process will not
contribute a simple convection term ς̇∂xc(x, t) to the dif-
fusion equation (1) because the probabilities that both an
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adatom is at some site and another atom detaches from
the step are not independent; see Ref. 13.
In Fig. 6, transitions between the two states illustrated

cause the step to move forwards or backwards by two lat-
tice sites, as opposed to one. Any such process in which a
single attachment (or detachment) event causes the step
to move by more than one lattice site will introduce cor-
rections to the step velocity law. Formally, this can be
understood by examining Eq. (4): a single factor of a,
as opposed to 2a, 3a,... etc., multiplies the net flux to
the step. In the BCF theory, attachment of adatoms to
a step causes it to move by a fixed amount.

C. Limitations

Our SLG model has limitations because we only con-
sider a single step in 1D. In this setting, it is not possible
to derive step interactions. In many formulations of the
BCF theory, such interactions introduce an additional
energy into the step chemical potential, so that the en-
ergy cost of adatom detachment depends on the widths
of the terraces adjacent to the step.18,27–29 We speculate
that in an appropriate multi-step SLG model, this energy
penalty should appear as an additional, configuration-
dependent contribution to Eb.
Because our SLG model is only 1D, we cannot ac-

count for the effects of anisotropy in the crystal lat-
tice. Such effects could be important in systems such
as Si(001), where diffusion rates depend on both direc-
tion and position.22,23 We speculate that an appropriate
SLG model incorporating these features would lead to a
BCF model with an anisotropic and (potentially) posi-
tion dependent diffusion coefficient.
Our analysis is also unable to determine the role that

kinks (i.e. bends in the step) play in the derivation of
BCF-type models. In 2D SLG models, it is known that
kinks, which alter the microscopic step profile, play an
important role in determining the rates of adatom attach-
ment/detachment processes.14,15 Moreover, in 2D BCF-
type models, the chemical potential (i.e. the energy cost
to remove an adatom from a step), and consequently the
linear kinetic relations are typically assumed to depend
on the local step curvature.27 However, a derivation that
expresses this dependence remains an open question.

VIII. CONCLUSIONS

In this paper, we showed how a 1+1D, single-step ver-
sion of the BCF model can be derived from an atomistic,
stochastic lattice-gas model of the surface. We used an

averaging procedure to connect the atomistic system con-
figurations to the notions of a continuous adatom density
and step position; we then showed that the BCF theory
(plus corrections) describes the time evolution of these
averages. Via a maximum principle, we also showed that
corrections are negligible when the system is sufficiently
close to equilibrium. Our use of an averaging procedure
and maximum principle reveals the sense in which the
BCF theory can be viewed as a model of mesoscale phe-
nomena in non-equilibrium statistical mechanics.
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Appendix A: Proof of the Maximum Principle

Proposition. Let pj(t) be the solution to (5)–(9) with
initial data pj(0), and define p̂j = pj/k for j 6= s0
and p̂s0 = ps0 . Let max

j
{·} be the greatest value in the

set {·}. Then p̂j satisfies the maximum principle that
max

j
{p̂j(t)} ≤ max

j
{p̂j(0)} forall t > 0.

Proof. We proceed by reductio ad absurdum. Writing
(5)–(9) in terms of p̂j yields

k ˙̂pj = Dk[p̂j+1 − 2p̂j + p̂j−1], j 6= s0, s0 ± 1,

k ˙̂ps0±1 = Dk[φ±p̂s0 − (1 + φ±)p̂s0±1 + p̂s0±2],

˙̂ps0 = Dk[φ−p̂s0−1 − (φ− + φ+)p̂s0 + φ+p̂s0+1]. (A1)

Assume that at some time t there is an l such that
˙̂pl(t) ≥ 0 and p̂l(t) ≥ p̂j(t) for all j 6= l. But by virtue of
Eq. (A1),

p̂l(t) ≥
θ1p̂l−1(t) + θ2p̂l+1(t)

θ1 + θ2
,

where θ1,2 are 1 or φ±, depending on the value of l. By
assumption, it is impossible that p̂l±1(t) > p̂l(t), so that
either p̂l is not a maximum or p̂j is constant for all j.
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Ref. 13.
2 The original BCF formulation10 amounts to κ± → ∞, so
that c = ceq at the step edge.

3 The actual value of s0 is not important for our derivation.
In fact, s0 does not appear in the final form of the step
velocity law.

4 Later we will define the step position in the BCF theory
as the expected microscopic step position.

5 The barrier for an adatom to attach to the step from
the upper terrace (in this case, E−) is referred to as the
Ehrlich-Schwoebel barrier.

6 Maximum principles are often invoked in the analysis of
diffusion equations of the form ∂tc(x, t) = D∂2
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