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1. Introduction

A central question in nonequilibrium statistical mechanics is: how do large-scale evo-

lution laws emerge from the deterministic or stochastic dynamics of many-particle sys-

tems [1]? Descriptions of linkages of particle models to full continuum theories lie at

the heart of computational physics [2]. Related themes date back to classic works for

the Boltzmann equation; see, e.g., [3–6].

Recently, one of us analyzed a stochastic model for the motion of many line defects

(steps) on a vicinal crystal when material is deposited from above [7]. This setting

is characterized by a constant average surface slope. The same system was studied

in [8], where the increase of deposition rate was found to cause narrowing of the terrace

width probability density (TWD), in qualitative agreement with kinetic Monte Carlo

simulations. The starting point in [7, 8] is a large system of stochastic differential

equations (SDEs) for the terrace widths. This is formulated by addition of ad hoc

white noise to the Burton-Cabrera-Frank (BCF) model of step flow [9]. In [7] a self-

consistent ‘mean field’, which reduces the SDEs to a single Langevin-type equation [8],

is defined systematically via kinetic hierarchies for terrace correlation functions.

Three assumptions permeating [7] are: (i) steps are straight; (ii) steps are

energetically non-interacting; and (iii) the white noise is non-conservative. These

hypotheses have enabled simplifications in the analysis, yet are not entirely physical.

For instance, enforcing (iii) yields a variance of the TWD that diverges at long

times. Improvements of the stochastic model are offered in [10], where steps interact

entropically and as force dipoles under conservative noise, albeit in the absence of

growth. The step fluctuations are suppressed for sufficiently strong step interactions [10].

In this article, we relax assumptions (ii) and (iii) above, extending the analysis to

straight steps that interact entropically and as force dipoles in the presence of growth

and conservative white noise. For a given terrace, the noise is attributed to fluctuations

in the number of atoms that attach to step edges. In the limit of small fluctuations, the

corresponding (nonlinear) SDEs are linearized around the average terrace width. This

approximation yields a prototypical linear model for asymmetric kinetic processes with

conservative noise, which captures certain correlations (but leaves out nonlinearities).

We solve this model exactly, and thereby quantify how the step interaction strength and

deposition rate combined influence the TWD.

In accord with the BCF theory [9], the major kinetic processes incorporated in the

model are: (a) diffusion of adsorbed atoms (adatoms) on terraces; (b) attachment and

detachment of atoms at step edges; and (c) external deposition with (given) rate F . For

the sake of simplicity, we impose diffusion-limited (DL) kinetics, in which the diffusion

of adatoms on terraces is the slowest process. In this case, the adatom density at each

step edge attains an equilibrium value [8, 11].

The kinetic process for the motion of terraces is asymmetric because of a drift

(average lateral step velocity) proportional to F (see section 2.2). As a result, on every

terrace the flux of deposited atoms toward an upstep is different from the flux at a
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downstep. A similar kinetic effect can arise by the Ehrlich-Schwoebel barrier [12–18],

electromigration currents [19, 20], differences of atomistic origin in attachment rates

[14, 21] and impurities [22, 23].

In our stochastic model, we account for a deposition-dependent noise that reflects

the above kinetic asymmetry. In the spirit of Williams and Krishnamurthy [24], we

include fluctuations in the number of deposited atoms that attach to step edges. For

macroscopic times, such fluctuations are described by conservative white noise with a

diffusion coefficient that expresses asymmetric attachment of atoms to step edges via a

parameter, p(F ). The resulting SDEs are consistent with a fixed system size, i.e., the

total length of the step system remains constant (and does not fluctuate).

Assuming small fluctuations of each terrace, induced by “small noise terms”, we

linearize the SDEs. The ensuing terrace width stochastic process is Gaussian. The

average terrace width is fixed at its initial value (consistent with a vicinal crystal and

set by the crystal miscut angle in experiments). We compute the variance analytically

by allowing N → ∞ while keeping the time t independent of N (see section 3).

In particular, we derive a relatively simple formula for the variance in the steady

state. By comparing our result to the mean field approach introduced in [8] and further

discussed in [7], we indicate the role of noise in terrace correlations at the steady state

(see section 4.1). Plausible implications of our predictions are discussed in section 4.2.

Because of our assumed dependence of the noise on the deposition rate (F ), the effect

of this rate on the TWD is found to be weaker than the respective effect found in [8]

where the noise is flux-independent.

Our model, being amenable to basic analysis, is limited in its applicability. A

limitation is due to the one-dimensional (1D) geometry. Because steps are straight,

meandering is suppressed and the noise has a relatively simple form. This setting

contrasts the two-dimensional (2D) geometry invoked e.g., in [15, 25, 26]. For instance,

in [15, 25] Langevin forces are added to both the adatom diffusion equation and the

boundary conditions for atom attachment-detachment at steps. For many steps, the

resulting stochastic equations appear to have a complicated structure. In [26], the

noise is white in both time and space (position along the step). Here, we resort to a

tradeoff. On the one hand, we circumvent complications of 2D, aiming to capture effects

(interaction and deposition growth) onmany steps that cause narrowing of the TWD [8].

On the other hand, we exclude richer (more realistic) effects such as meandering.

Another limitation, which is a consequence of our approximation, is that steps can

cross. This feature is unphysical. However, it has a negligibly small likelihood provided

(ga/T )(a/$)(a%0) � 1 (see section 4.3) where g is the step interaction strength in units

of energy per length, T is the Boltzmann energy (or absolute temperature in units where

kB = 1), $ is the initial terrace width, %0 is a typical adatom density (in units of inverse

length), and a is the atomic step height; a%0 < 1.

Throughout this paper, we assume familiarity with basic concepts of epitaxial

systems. For reviews on the subject, the reader may consult, e.g., [11, 18, 27–30].

The organization of this paper is summarized as follows. In section 2, we formulate
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Figure 1. Schematic (cross section) of step geometry: x = xi(t) is the ith step

position, a is the step height, and h is the surface height.

the governing SDE system for 1D step motion in the presence of growth and step

interactions in the spirit of BCF [9]. In section 3, we solve the SDEs and compute the

corresponding TWD. In section 4, we discuss implications of our results: we compare

our prediction with a mean field approach, indicate conditions for the validity of our

linearized model, and discuss comparisons to related past works and possible connections

to experiment. The appendices contain technical derivations needed in the main text.

Notation and terminology. The symbol B(t) denotes Brownian motion, while

η(t) = dB/dt is white noise (where the time derivative is interpreted in the sense of

distributions) [31]. The probabilistic terms “average”, “mean” and “expectation” are

used interchangeably. Matrices and vectors are boldface. A matrix C is denoted by

[Ck,l] where Ck,l is the entry at the kth row and lth column. The norm squared of the

N × N circulant matrix C is |C|2 =
∑N−1

l=0 |C0,l|2 =
∑N−1

k=0 |Ck,0|2. By f = O(g) we

imply that f/g is bounded as a parameter or variable approaches an extreme value.

2. Formulation: Geometry, kinetics, energetics and noise

In this section we formulate SDEs for terrace widths in the spirit of the BCF theory [9].

The step flow model accounts for: (i) material deposition from above; (ii) nearest-

neighbor force dipole and entropic step interactions; and (iii) deposition-related noise.

The resulting SDEs are linearized via stochastic perturbations, i.e, when the noise term

is sufficiently small (in some appropriate sense).

2.1. Deterministic model

We focus on deterministic motion. The geometry consists of straight steps at x = xi(t)

(see figure 1). The ith terrace is the region xi < x < xi+1, where wi(t) = xi+1(t)−xi(t) >
0 and i = 0, . . . , N − 1. Apply screw periodic boundary conditions so that steps are

mapped onto point particles on a ring. We set wi(0) = $.

The formulation of equations for xi(t) is outlined in [7], and summarized here with

a more precise description of step interactions. In the presence of material deposition

from above, steps have a typical (drift) velocity v = Fa$ where F is the deposition rate.

By a Galilean transformation in the comoving frame [8, 32], the adatom concentration
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%i(x, t) on the ith terrace satisfies (D∂2x̃ + v∂x̃)%i + F = ∂t̃%i, where D is the terrace

diffusion constant and (x̃, t̃) = (x − vt, t). By the quasi-steady approximation we set

∂t̃%i ≈ 0, which holds if deviations of the actual step velocity from v are much smaller

than the diffusive speed D/$. Now remove the tildes for ease of notation (x̃⇒ x).

By linear kinetics, the atom attachment-detachment at the steps bounding the ith

terrace is expressed by [11] −Ji(xi) = k [%i(xi)− %eqi ] and Ji(xi+1) = k [%i(xi+1)− %eqi+1],

where Ji(x) = −D∂x%i − v%i is adatom flux on the ith terrace, %eqi is the equilibrium

adatom concentration on the ith step edge, and k is a constant rate. The quantity %eqi
encapsulates energetics, e.g., force dipole step interactions [11, 33, 34]. Distinct rates

ku, kd for up- and down-step edges (Ehrlich-Schwoebel effect [12]) can also be included.

We enforce the conditions v/k � 1 and D/k � $, which amount to DL kinetics1.

This means that we let k → ∞ in the attachment-detachment conditions at step edges

so that %i(xi) → %eqi since the flux is finite [8].

Each step advances or retreats in response to the total mass flux incident on it, by

mass conservation. Thus, the step velocity reads ẋi = dxi/dt = (Ω/a)[Ji−1(xi)− Ji(xi)]

where Ω is the atomic area, Ω ≈ a2. By solving the diffusion equation for %i (treating

the positions xi and densities %eqi as fixed), and thus determining Ji(x), we obtain a

system of ordinary differential equations (ODEs) for xi(t), and in turn for wi(t) [7]:

ẇi =
dwi
dt

=
aF

2

{
wi+1e

vwi+1

2D

sinh(vwi+1

2D
)
− 2wi cosh(

vwi

2D
)

sinh(vwi

2D
)

+
wi−1e

vwi−1

2D

sinh(vwi−1

2D
)

+ a$

[
%eqi+2

e
vwi+1

2D

sinh(vwi+1

2D
)
− %eqi+1

(
e−

vwi+1

2D

sinh(vwi+1

2D
)
+

2e
vwi

2D

sinh(vwi

2D
)

)

+ %eqi

(
2e−

vwi

2D

sinh(vwi

2D
)
+

e
vwi−1

2D

sinh(vwi−1

2D
)

)
− %eqi−1

e−
vwi−1

2D

sinh(vwi−1

2D
)

]}
, (1)

where i = 0, 1, . . . , N − 1. It remains to express each %eqi in terms of positions xi.

The step interactions are introduced explicitly in the ith-step chemical potential,

µi, through the relation %eqi = %0(1 + µi/T ) [11]. If EN({xi}) is the total energy per

unit length of the step system, we have µi = Ω(δEN/δxi). For entropic and force dipole

interactions, this EN reads [11, 33, 34]

EN = g
∑

i

(
a

wi

)2

⇒ µi = ga

[(
a

wi

)3

−
(

a

wi−1

)3]
(g > 0). (2)

Equation (1) is rewritten accordingly. We leave this task to the interested reader.

Evidently, wi(t) ≡ $ is a solution for all t > 0 if wi(0) = $.

2.2. Stochastic perturbation

Next, we add noise to ODEs (1) in view of (2). Features of this extension are suggested

via perturbations of these ODEs around a constant, c (e.g., c = $).

1For v = O(1) > 0, a more precise condition on v reads v/k � tanh[v$/(2D)].
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Set wi(t) = c[1 + ξi(t)], |ξi| � 1. By (1) and (2), the linearized equations are

ξ̇i = aF{(1− p)(ξi+1 − ξi) + p(ξi − ξi−1) + ğ[−(1 + ß)(ξi+2 − 3ξi+1

+ 3ξi − ξi−1) + ß(ξi+1 − 3ξi + 3ξi−1 − ξi−2)]}, (3)

where (abusing notation) we use the same symbol (ξi) for the approximation of ξi, i.e.,

the solution of the linearized equations. The parameters p, ß and ğ are defined by

p =
1

2

(
ν

sinh2 ν
− e−ν

sinh ν

)
, ß =

1

2

e−ν

sinh ν
, ğ = 3

ga

T
m3

0(a%0), (4)

with ν = v$/(2D), m0 = a/$ (slope) and 0 < p < 1/2; cf. (34) in [7] where g = 0.

Let us pause for a moment and take a closer look at (3). For ğ = 0 (no step

interaction), this equation reduces to ẇi ≈ Fa[(1 − p)(wi+1 − wi) + p(wi − wi−1)]. We

can consider p as the fraction of deposited atoms from above that attach to the downstep

of terrace i, in the setting of figure 1. So, 1− p is the fraction of atoms that move to an

upstep. Hence, the number of atoms per unit time that cause increase of the ith terrace

size is pF (wi − wi−1) by competition with the upper terrace, and (1 − p)F (wi+1 − wi)

from the lower terrace. For a similar model see the early work by Gossmann, Sinden and

Feldman for step motion in a diffusion bias [35] (see also [36] for an effect of impurities).

To add noise, we inspect the linearized deterministic equations for ğ = 0 [24]. The

idea is to consider the number of atoms arriving at each step edge as fluctuating in accord

with the p-induced asymmetry, i.e., allow lateral fluxes that cause noise to distinguish

downsteps from upsteps. Let N±
i (t) be the (random) number of atoms attaching to an

upstep (+) or a downstep (−) of the ith terrace. For macroscopic times and each i,

we posit that the increments N±
i (tn+1)−N±

i (tn) are independent, normally distributed

and stationary random variables, with mean zero and variance proportional to 1−p (+)

or p (−) times (tn+1 − tn)Fwi, where 0 < tn < tn+1.

Accordingly, we perturb (3), or (1), for the ith terrace motion by: (i) the

noise
√

(1− p)Fwi+1Ω ηi+1 (which has the dimension of speed where Ω ≈ a2) for

fluctuations in the number of atoms attaching to the upstep bounding the (i + 1)th

terrace; (ii)
√
pFwi−1Ω ηi−1 regarding the downstep of the (i − 1)th terrace; and (iii)

[
√
pFwiΩ−

√
(1− p)FwiΩ] ηi for mass conservation purposes. Here, (η0, . . . , ηN−1) is a

vector white noise–having independent, identically distributed components ηi = dBi/dt
with dimension of (time)−1/2. We propose the SDEs (i = 0, . . . , N − 1)

ξ̇i = aF{(1− p)(ξi+1 − ξi) + p(ξi − ξi−1) + ğ[−(1 + ß)(ξi+2 − 3ξi+1

+ 3ξi − ξi−1) + ß(ξi+1 − 3ξi + 3ξi−1 − ξi−2)]}
+
a

$

√
F$

[√
1− p (ηi+1 − ηi) +

√
p (ηi − ηi−1)

]
, (5)

where ξi = (wi − $)/$ is now a stochastic process. We assume that fluctuations are

small in probability, 1−Pr[supt>0 |ξi(t)| � 1] � 1 for all i (Pr denotes the probability)2.

2In (5), notice the replacement of wi and wi±1 by the initial terrace width, $, in the noise diffusion

coefficients. A formal argument for this approximation can be made by adding to ODEs (1) the “small

noises” εηi
√
Fwia2(

√
p−√

1− p), εηi+1

√
Fwi+1a2 and −εηi−1

√
Fwi−1a2 where 0 < ε � 1. Then, use

the expansion wi(t) = $[1 + εξi(t) + . . .]. Equations (5) are viewed as the lowest-order equations in ε.
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Equation (5) is fully non-dimensionalized via t 7→ t̃ = tFa and ηi 7→ η̃i =

ηi(Fa)
−1/2. Hence, we formulate the SDEs

dξi

dt̃
= (1− p)(ξi+1 − ξi) + p(ξi − ξi−1) + ğ[−(1 + ß)(ξi+2 − 3ξi+1

+ 3ξi − ξi−1) + ß(ξi+1 − 3ξi + 3ξi−1 − ξi−2)]

+
√
m0

[√
1− p η̃i+1 −

√
p η̃i−1) + (

√
p−

√
1− p)η̃i

]
, ξi(0) = 0,(6)

where each ξi has zero expectation, Eξi = 0.

Remark 1. The choice of signs of the noise terms is not unique, but guarantees∑
i ẇi(t) = 0, i.e., a constant, non-fluctuating, system size. Further, the overall noise

is first-order conservative. Indeed, let η̃i(t̃) = ℵ(χ, t̃) for χ = iδ with δ appropriately

small, e.g., δ = O( a
N$

), and (space-)continuous ℵ(·, t̃). The Taylor expansion in δ for the

overall noise yields δ∂χℵ +O(δ2). Similar terms come from the ξi’s via ξi(t) = Ξ(χ, t).

In the limit N → ∞ with fixed m0, SDEs (6) reduce to a continuum conservation law,

∂tΞ + ∂χΦ[Ξ,ℵ] = 0 where Φ is an appropriate “flux” (depending linearly on Ξ and ℵ).

3. Solution of linearized stochastic system

In this section we solve SDEs (6) with particular emphasis on the single-terrace width

variance, σ(t;N)2 = Eξi(t)
2. The SDEs are recast to the matrix form

dξ

dt̃
= −A · ξ +Q · η̃ , (7)

where ξ = (ξ0, . . . , ξN−1), η̃ = (η̃0, . . . , η̃N−1), andA andQ are sparse circulant matrices

with first-row entries [1− 2p+ 3ğ(1 + 2ß),−1 + p− ğ(3 + 4ß), ğ(1 + ß), 0, . . . , 0, ğß, p−
ğ(1 + 4ß)] and

√
m0[

√
p−√

1− p,
√
1− p, 0, . . . , 0,−√

p], respectively.

By integrating (7), we obtain

ξ(t) =

∫ t̃

0

e−A(t̃−τ)Q · η̃(τ) dτ, t̃ = tFa. (8)

Evidently, for every t > 0, (8) describes a vector Gaussian variable with zero expectation.

The variance of each component, ξi, is

σ(t;N)2 =

∫ tFa

0

∣∣∣e−AτQ
∣∣∣
2

dτ . (9)

The probability density for each ξi is
3

P (ξ, t) =
1√

2π σ(t;N)2
exp

[
− ξ2

2σ(t;N)2

]
, −∞ < ξ <∞, t > 0, (10)

by which the TWD for the dimensional terrace width is obtained via ξ = (w − $)/$,

−∞ < w < ∞. Within this approximation Pr[wi < 0] > 0: there exists a nonzero

probability of step crossing. This can be controlled by the step interaction strength,

deposition rate and initial terrace width (see section 4.3). We consider Pr[wi < 0] as

negligibly small.

3By abusing notation, we use the same symbol, ξ, to denote both the independent real variable of

the TWD and the stochastic process associated with each terrace width.
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3.1. Terrace width variance

Next, we compute σ(t;N)2 by (9). First, we derive an equivalent expression valid for

finite N and t. Second, we take the limit as N → ∞ and thereby extract a single-integral

formula for σ(t;∞)2. By this formula, we find a simple expression for σ(t;∞)2 at long

times, 1 � tFa < O(N). In our study, tFa is treated as large yet independent of N .

By a property of circulant matrices (see appendix A) [10], we write (9) as

σ(t;N)2 =

∫ tFa

0

N−1

N−1∑

k=0

ϑk e
−λk τ dτ = N−1

N−1∑

k=0

ϑkλ
−1
k (1− e−λkFat), (11)

where λk and ϑk are the eigenvalues of A + AT and QQT , respectively (CT is the

transpose ofC). The eigenvalues of (square) circulant matrices can be evaluated directly

via the discrete Fourier transform [37]. A simple calculation yields the eigenvalues

λk = 2
[
1− 2p+ 2ğ(1 + 2ß)

(
1− cos

2πk

N

)](
1− cos

2πk

N

)
,

ϑk = 2m0

[
1 + 2

√
p(1− p) cos

2πk

N

](
1− cos

2πk

N

)
.

Consequently, we obtain the formula

σ(t;N)2 = m0
1

N

N−1∑

k=0

[
1 + 2

√
p(1− p) cos

2πk

N

]

× 1− e−2[1−2p+2ğ(1+2ß)(1−cos 2πk

N
)](1−cos 2πk

N
)tFa

1− 2p+ 2ğ(1 + 2ß)
(
1− cos 2πk

N

) . (12)

As N → ∞, let φ = 2πk
N

and N−1
∑N−1

k=0 (·) → 1
2π

∫ 2π

0
(·) dφ. By periodicity we have

σ(t;∞)2 =
m0

2π

∫ π

−π

[1 + 2
√
p(1− p) cosφ]

× 1− e−2[1−2p+2ğ(1+2ß)(1−cos φ)](1−cos φ)tFa

1− 2p+ 2ğ(1 + 2ß)(1− cosφ)
dφ. (13)

We have not been able to evaluate this integral in simple closed form in terms of

elementary functions if 0 < p < 1/2 and ğ > 0. In the special (idealized) case with

ğ ↓ 0 (vanishing step interaction), we obtain [38]

σ(t,∞)2|ğ↓0
m0

=
1

1− 2p

{
1− e−t̆[I0(t̆) + 2

√
p(1− p) I1(t̆)]

}
, (14)

where t̆ = 2(1− 2p)tFa. In the limit t̆→ ∞, σ(t,∞)2|ğ↓0 → m0(1− 2p)−1.

For tFa→ ∞ with ğ, ν = O(1) > 0, (13) becomes (see appendix B)

σ(t,∞)2

m0
→ σst(p, ğ)

2

m0
=

1√
1− 2p+ 4ğ(1 + 2ß)

1√
1− 2p

×
{
1 +

8ğ(1 + 2ß)
√
p(1− p)

[
√
1− 2p+

√
1− 2p+ 4ğ(1 + 2ß)]2

}
. (15)
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Figure 2. Steady state variance σ2
st/m0 as function of p for different values of

interaction parameter ğ (ğ = 0.1, 1, 10). The narrowing of the TWD with F (decreasing

p) is evident but is suppressed for large values of ğ.

Recall that, by (4), ß = ß(p) through ν. Figure 2 shows plots for σst(p, ğ)
2/m0 as

function of p for different values of ğ. Notably, (15) differs from the corresponding value

obtained within the mean field approximation of [7, 8], as discussed in section 4.1.

Remark 2. If ν = Fa$2/(2D) ↓ 0 (p ↑ 1/2) and ğ = O(1) > 0, by (13) the variance

approaches zero for any time t. This behavior is derived by use of ß = O(ν−1) as ν ↓ 0,

and is consistent with SDEs (5) since these become (deterministic) ODEs as F ↓ 0.

Details for the precise role of time t in this limiting case are provided in appendix C.

Remark 3. The limits ν ↓ 0 and t → ∞ of (13) do not commute: the steady state

result (15) approaches the finite value (2ğ/3)−1/2 as ν ↓ 0 (see section 4.2) whereas

σ(t)2 → 0 as p ↑ 1/2 for fixed t and ğ (remark II). To resolve this apparent paradox,

we point out a transition in the asymptotics for σ(t)2 if tFa = O(ğν−3). If ν is small,

(15) is recovered from (13) if aF t is large enough to suppress the singularity in the

time-independent term of the integrand in (13). For νaF t � 1 the major contribution

to integration comes from the vicinity of φ = 0. Thus, to extract the finite limit of (15)

we require 1 − 2p > O[ğ(1 + 2ß)φ2] and (1 − 2p)φ2aF t = O(1), by which tFa � ğν−3.

By contrast, if aF t � ğν−3 the variance can be arbitrarily small (see appendix C for

further technical details).

Remark 4. Consider the steady state variance σst(p, ğ)
2 by (15) for 1 − 2p > 0 (see

figure 2). For fixed p, σ2
st decreases with ğ. For finite and fixed ğ, σ2

st increases with

p, thus decreasing with F . Recall that ß decreases with F and becomes exponentially

small (compared to unity) if ν = v$/(2D) � 1. Therefore, (15) predicts a narrowing



Small fluctuations in epitaxial growth via flux-induced conservative noise 10

of the TWD with increasing step interaction or deposition rate (see section 4.2).

4. Discussion

In this section we discuss implications of (15). In particular, we compare this result to

a mean field approach [7, 8]; outline a plausible connection to experiments; and state

conditions on the validity of our linearized model.

4.1. Mean field approach and decorrelation hypothesis

Heuristically speaking, the main goal with a mean field is to reduce the SDE system to

a single Langevin-type equation that produces the same TWD as the starting, coupled

system [7, 10]. For SDEs of the form

ξ̇i = G(ξi−2, ξi−1, ξi, ξi+1, ξi+2) +

N−1∑

k=0

Qi,kηk (16)

(where ηk: independent white noises and Q = [Qi,k]: circulant), this task is pursued via

the replacements ξi ⇒ ξmf and ξi±1, ξi±2 ⇒ f(ξmf , t) where f is a (deterministic) field to

be determined [7, 10]. In principle, this f depends on the joint probability density, p5,

of five terraces. This p5 satisfies a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)

hierarchy (involving the joint probability densities, pn, of n terraces) [10].

Since the ηk are independent, it can be argued that the term
∑N−1

k=0 Qi,kηk should

be replaced by q η where q2 =
∑N−1

k=0 Q
2
i,k = |Q|2. A formal justification comes from

considering the first equation of the BBGKY hierarchy, which is an evolution equation

for p1 = P (ξ, t), where the coefficient of ∂ξξP (ξ, t) is
1
2
|Q|2. Thus, (16) is reduced to

ξ̇mf = G(f(ξmf , t), f(ξmf, t), ξmf , f(ξmf , t), f(ξmf, t)) + q η. (17)

By comparison of the Fokker-Planck equation for (17) with the first equation of

the BBGKY hierarchy for (16), one obtains a (self-consistent) formula for f [10]. For

linear G, such a self-consistent f requires knowing the pair correlation. Specifically, one

needs to know the conditional expectation for a terrace width, i.e., the average width

of a terrace in a pair of terraces given the value of the width of the other terrace [7].

To avoid complications of solving the BBGKY hierarchy, it is tempting to apply the

decorrelation ansatz pn(~wn, t) =
∏n

j=1 P (wj, t) where ~wn = (w0, . . . , wn) [7, 10]. For a

linear SDE system, i.e., when G is linear, the ensuing f is the expectation Eξi = 0 [7,10].

In [10], where the first-row entries for Q are set to [2,−1, 0 . . . , 0,−1] (second-order

conservative noise scheme), it was verified for the linearized SDEs that the long-time

limit of the mean field variance coincides with that of the exact solution.

Motivated by these previous studies, we compute the mean field variance for SDEs

(6). By taking f = Eξi = 0, these equations are reduced to the Langevin equation

dξ̂

dt̃
= −[1− 2p+ 3ğ(1 + 2ß)]ξ + q η̃(t̃), q2 = 2m0[1−

√
p(1− p)], (18)
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where ξ̂ is the mean field stochastic process for a terrace width under the decorrelation

ansatz. Thus, ξ̂ is a Gaussian random variable with zero mean and variance

σ̂(t)2 = m0

1−
√
p(1− p)

1− 2p+ 3ğ(1 + 2ß)
{1− e−2Fa[1−2p+3ğ(1+2ß)]t} , (19)

which approaches σ̂(∞)2 = m0[1−
√
p(1− p)][1 − 2p+ 3ğ(1 + 2ß)]−1 as t→ ∞.

Since the long time limit of (19) differs from (15), terrace correlations persist at

large times. For strong enough step interactions, i.e., ğ(1 + 2ß) � 1 − 2p, we have

σ̂(∞)2 = O(ğ−1) while by (15) σ2
st = O(ğ−1/2). The decorrelation hypothesis exaggerates

the narrowing of the TWD, and correlations favor broadening of the TWD.

4.2. Related past works and possible connection to experiments

Next, we point out features of our prediction for the variance σ2
st that may be

experimentally testable, and compare these to results of [8, 24].

(i) Narrowing of TWD [8]. By (15) for large ν = aF$2/(2D), σst becomes

σst →
√
m0 (1 + 4ğ)−1/4 as ν → ∞, (20)

under the assumption that the quasi-steady approximation is meaningful. This

prediction should be contrasted to the one in [8] where σ = O(F−1/2) for large F .

For small deposition rate F (p ↑ 1/2), (15) yields (see appendix C)

σst →
√
m0 (2ğ/3)

−1/4 as ν ↓ 0, (21)

in contrast to the behavior σ = O(F−1) predicted in [8]. Hence, the deposition-

dependent noise of our model significantly tones down the narrowing of the TWD

reported in [8] where deposition is the only source of TWD narrowing and the noise

is F -independent. Other models of noise in SDEs for terrace widths can be built by

“mixing” elements of the diffusion matrix Q used here with F -independent elements

while retaining the overall conservative character of the noise.

(ii) Comparison to [24]. In the model of [24] the deterministic equations account

for the same kinetic (flux-induced) asymmetry in step motion but steps are non-

interacting. The noise used in [24] for every terrace, wi, appears to have the form√
Fpwi−1 ηi,1 +

√
Fpwiηi,2 +

√
F (1− p)wiηi,3 +

√
F (1− p)wi+1ηi,4 where ηi,k (k =

1, . . . , 4) are independent white noises and units with a = 1 are apparently used. In the

mean field approximation (under the decorrelation ansatz for terrace widths), this model

yields the (scaled by $2) steady state variance σ̂(t→ ∞)2 = (1−2p)−1 [24]. In [24] this

prediction is found to appreciably overestimate the variance produced by kinetic Monte

Carlo simulations for small rate F (see figure 4 in [24]). Since the simulations do not

allow for step crossing, it is expected that these simulations include entropic repulsions

between steps. On the other hand, our analytical model does contain the effect of step

repulsion explicitly (via ğ) and predicts a lower value of the variance for small F .

(iii) Experiment on Si(111) [39]. As mentioned in [8], experimental techniques that

enable observation of equilibrium TWD can in principle probe narrowing due to the
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combined influence of growth and step interactions. An example is the reflection electron

microscopy applied in [39]. In this experiment [39], TWD narrowing is observed on

vicinal Si(111) at 1100 oC and attributed solely to electromigration (which also causes

a drift in the adatom flux) although a deposition flux from above and step interactions

are present.

4.3. On validity of linearized model

We repeat that a limitation of our model is connected to its 1D character. Another

limitation is related to the perturbation expansion for “small” noise, which underlies

our linearization. Within this approximation, an indication that the linearization may

not be valid arises if σ2
st > 1: then, the negative tail of the (approximate) TWD P (ξ, t)

of (10) may have an appreciable effect on moments. This possible pathology is more

pronounced for zero step interaction, and is worsened as the rate F approaches small

values. Indeed, for ğ(1 + 2ß) � 1 − 2p, (15) yields σ2
st ≈ m0(1 − 2p)−1 which may be

significantly greater than unity if p is close enough to 1/2 (cf [24] and section 4.2).

To provide a condition necessary for the validity of our model, we require that

σ2
st < 1. In view of (21), this condition is satisfied if ğ > (3/2)m2

0 or, by (4),

ga

T
m0(aρ0) >

1

2
,

which is a condition for small fluctuations on the basis of strong step interactions so

that the linearization makes sense. A systematic study of the underlying perturbation

scheme lies beyond our present purposes.

5. Conclusion

In this paper, we studied a model for small stochastic fluctuations of line defects on a

crystal surface when material is deposited from above in 1+1 dimensions. This work

has been inspired by [24], and aims to complement recent studies in the steady state

distribution of terrace widths on vicinal crystals [7,8]. Noteworthy features of the model

are the conservative character of noise, a deposition-flux-induced kinetic asymmetry in

the noise coefficients, and the inclusion of step repulsion effects.

Our perturbation analysis led to a Gaussian TWD and a simple closed form for

the associated variance. This TWD, which is symmetric about the expectation of the

terrace width, is plausibly valid for values of terrace widths near the peak of the actual

TWD. On the basis of this result, we inferred that growth combined with the noise

kinetic asymmetry and step interaction sustain a reduced narrowing of the TWD with

the deposition rate, F , in juxtaposition to the corresponding (more exaggerated) F -

dependence of [8]. Furthermore, we applied a previous mean field approach [7, 8], and

thereby indicated (but not analyzed) the role of terrace correlations at long times.

Our analysis points to several open questions. For example, terrace correlations,

although evident, have not been described explicitly. The nonlinearities left out from our
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stochastic scheme should cause the TWD to be non-symmetric about the mean [10]. The

derivation of such a modified TWD remains unresolved. The model with multiplicative

noise (where the noise coefficients depend on terrace widths) is left for future work.

Another open question concerns 2D geometries, which were not considered here. In

real systems, edge atoms also diffuse along steps (besides diffusing on terraces and

attaching/detaching at step edges). In addition, kinks on steps influence the form of

noise. Many-step interacting systems in 2D are the subject of work in progress.
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Appendix A. On norm of circulant matrices

In this appendix, we derive (11) from (9). So, we prove the following statement [10].

Proposition 1. For N ×N circulant matrices X and Y , the norm squared of XeY is

|XeY |2 = |eY X|2 = N−1

N−1∑

k=0

ϑke
ψk , (A.1)

where {ϑk}N−1
k=0 and {ψk}N−1

k=0 are sets of eigenvalues of XXT and Y +Y T , respectively.

Proof. Note that any two (square) circulant matrices commute. Consider the

relations [37] |XeY |2 = N−1tr[XXT eY
T+Y ] and F−1 exp(C)F = exp(F−1CF ). Here,

F = [Fk,l] is the N ×N discrete Fourier transform matrix, with entries Fk,l = e−i2π(kl)/N

(i2 = −1), andC is a square circulant matrix, e.g., C = Y +Y T . Since F−1(XXT )F =

diag(ϑk) and F−1(Y + Y T )F = diag(ψk), we assert that

|XeY |2 = N−1tr[(F−1XXTF )(F−1eY +Y
T

F )]

= N−1tr[diag(ϑke
ψk)]. (A.2)

The last identity concludes our proof, cf (11). �

Appendix B. Steady-state variance

In this appendix, we derive steady-state formula (15) from exact expression (13) for the

variance. We assume that ğ > 0 and 0 < p < 1/2.

First, we split integral (13) into two terms. For the integral containing the

time-dependent exponential, change the variable of integration to z = sin(φ/2) for
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φ ∈ (−π, π], and apply the even symmetry of the integrand. By a steepest-descent

argument [40], we assert that

lim
t→∞

∫ 1

0

[1 + 2
√
p(1− p)(1− 2z2)]

e−4[1−2p+4ğ(1+2ß)z2]tFa z2

1− 2p+ 4ğ(1 + 2ß)z2
dz√
1− z2

= 0,

if 1−2p, ğ(1+2ß) = O(1) > 0. Note in passing that the major contribution to integration

comes from a vicinity of z = 0. Thus, the integral behaves as O(t−1/2) as t→ ∞.

So, we are left with the integral

σ2
st

m0
=

1

2π

∫ π

−π

1 + 2
√
p(1− p) cos φ

1− 2p+ 2ğ(1 + 2ß)(1− cosφ)
dφ. (B.1)

We proceed to compute σ2
st by contour integration. By the change of variable ζ = eiφ

(i2 = −1) and analytic continuation in the ζ complex plane, integral (B.1) becomes

σ2
st

m0
=

1

2πi

∮

|ζ|=1

1 +
√
p(1− p)(ζ + ζ−1)

1− 2p+ 2ğ(1 + 2ß)[1− 1
2
(ζ + ζ−1)]

dζ

ζ
, (B.2)

where ζ is viewed as a variable in the complex plane, C. By the residue theorem, we

can evaluate (B.2) from contributions of simple poles of the integrand in the interior of

the unit disk, {ζ ∈ C : |ζ | < 1}. The poles are located at the points ζ = 0 and

ζ± =
1− 2p+ 2ğ(1 + 2ß)±

√
(1− 2p)[1− 2p+ 4ğ(1 + 2ß)]

2ğ(1 + 2ß)
,

where 0 < ζ− < 1 and ζ+ > 1. Thus, only ζ− lies inside the unit disk. By computing

the residues at ζ = 0, ζ− we find

σ2
st

m0

=
1

ğ(1 + 2ß)

[
ζ− +

√
p(1− p)(1 + ζ2−)

(ζ+ − ζ−)ζ−
−

√
p(1− p)

]
, (B.3)

which yields (15) after some algebra.

Appendix C. Limit of time dependent variance as ν → 0

In this appendix, we evaluate integral (13) for small ν = Fa$2/(2D) and ğ = O(1).

For algebraic convenience, we set m0 = 1 (only in this appendix).

By the change of the integration variable to z = sin(φ/2), the integral becomes

σ(t)2 =
1

2π

1

ğ(1 + 2ß)

∫ 1

0

dz√
1− z2

[1 + 2
√
p(1− p)(1− 2z2)]

× 1− e−(α2
1
+z2)α2

2
z2

z2 + α2
1

, (C.1)

where α2
1 = (1 − 2p)[4ğ(1 + 2ß)]−1 and α2

2 = 16tFağ(1 + 2ß). For ν ↓ 0 with fixed ğ

and tFa ≥ O(1), we have α2
1 = O(ν2) while α2

2 ≥ O(ν−1). Thus, the task is to evaluate

σ(t)2 by (C.1) for small α1 and large α2 (where α1, α2 > 0).

By inspection of the integrand in (C.1), we distinguish the following cases.
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(i) α−1
2 � α2

1, i.e., tFa � ğ(1 + 2ß)(1 − 2p)−2: The major contribution to integration

comes from a neighborhood of width O(α
−1/2
2 ) around z = 0, and α2

1 is neglected

compared to z2. Specifically, we have

σ(t)2 ≈ 1

π

1

ğ(1 + 2ß)

∫ 1

0

√
1− z2

1− e−α
2
2
z4

z2
dz

=
1

π

1

ğ(1 + 2ß)

(∫ A

0

+

∫ α2
2

A

)∫ 1

0

√
1− z2 z2 e−yz

4

dz dy (C.2)

where A is any fixed yet large positive number. Thus, the y in
∫ α2

2

A
is large and the

respective integral in z is evaluated by expanding the integrand near z = 0. Finally, we

obtain

σ(t)2 ≈ 2

π
Γ(3

4
) [ğ(1 + 2ß)]−3/4 (tFa)1/4, (C.3)

where Γ(ζ) is the Gamma function [41]. So, if tFa is fixed as ν ↓ 0, then σ(t)2 vanishes as

O(ν3/4). However, if instead 2Dt/$2 is kept fixed as ν ↓ 0, then σ(t)2 = O(ν) = O(F ).

(ii) α−1
2 � α2

1, i.e., tFa � ğ(1 + 2ß)(1 − 2p)−2: The major contribution to integration

in the time dependent term of (C.1) arises from a vicinity of width O((α1α2)
−1) =

O((νtFa)−1/2) around z = 0. Thus, we obtain

σ(t)2 ≈ 1

2π

1

ğ(1 + 2ß)

∫ 1

−1

√
1− z2

z2 + α2
1

dz. (C.4)

To evaluate this integral to leading order in ν, we apply analytic continuation of the

integrand to complex z. So, deform the path of integration to the upper complex z-plane

so as to pick up the residue from the simple pole at z = iα1 (i2 = −1). Thus, compute

σ(t)2 = (2ğ/3)−1/2 +O(ν) = σst(p ↑ 1/2, ğ), (C.5)

which is the limit of (15) for small ν = Fa$2/(2D), cf (21).
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