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Linear and nonlinear gyrokinetic simulations of collisionless magnetic reconnection in the presence
of a strong guide field are presented. A periodic slab system is considered with a sinusoidally
varying reconnecting magnetic field component. The linear growth rates of the tearing mode in both
the large and small �� regimes are compared to kinetic and fluid theory calculations. In the
nonlinear regime, focusing on the limit of large ��, the nonlinear reconnection rates in the
gyrokinetic simulations are found to be comparable to those obtained from a two-fluid model. In
contrast to the fluid system, however, for Ti�Te and very small initial perturbation amplitudes, the
reconnection in the gyrokinetic system saturates in the early nonlinear phase. This saturation can be
overcome if the simulation is seeded initially with sufficient random noise. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2774003�

I. INTRODUCTION

We present linear and nonlinear gyrokinetic simulations
of collisionless magnetic reconnection in the presence of a
strong guide field. Our simulations are based on the GS2

code,1,2 which time evolves the nonlinear electromagnetic
gyrokinetic equations3 for both electrons and ions. These
equations, together with Maxwell’s equations, govern the
evolution of the electron and ion distribution functions �de-
pending here on 2 spatial and 2 velocity-space coordinates�
and the self-consistent electric and magnetic fields. A sum-
mary of the full system of equations is given in Appendix A.

The GS2 formalism is based on the reduced magnetohy-
drodynamic �MHD� ordering �see, e.g., Ref. 4�, in which the
deviations of the absolute levels of the density, temperatures,
and the magnetic field �for example� are assumed to be small
over the region of interest, though deviations in the gradients
of these quantities can be comparable to or larger than the
equilibrium values. Such an ordering is appropriate to the
study of strong guide field reconnection, in which the com-
ponent of the magnetic field that reconnects is small com-
pared to the total magnetic field strength. The magnetic field
and plasma profile variations associated with reconnection in
this case, even in the nonlinear phase, are small compared to
the unperturbed background values. Similarly, the time varia-
tions associated with reconnection in the large guide-field
regime are slow compared to the ion gyroperiod. These prop-
erties are both necessary for the gyrokinetic approach, in
which one of the three velocity-space coordinates �present in
a full Vlasov treatment, for example� is eliminated from the
system by a gyroangle average. This is computationally an
advantage relative to full-particle simulations because it

avoids the necessity to time-resolve the gyroperiod of the
particles, which in the strong guide field limit is much faster
than the time scale on which the modes of interest evolve. A
similar computational gain is made in GS2 by enforcing total
pressure balance, which eliminates compressional magneto-
sonic waves from the system while preserving the shear-
Alfvén dynamics that are essential to reconnection.

We consider a collisionless periodic slab geometry with
a sinusoidally varying reconnecting magnetic field compo-
nent By�x��sin�kxx�. Depending on the dominant wave-
length of the tearing mode under consideration �i.e., ky

=2� /Ly, where Ly is the length of the system in the
y-direction�, this system allows us to explore reconnection in
either the limits of large �� �relevant to the m=1 mode in
tokamaks, for example, or the GEM Reconnection Challenge
Project5� or small �� �relevant to tokamak tearing modes
with m�1�. We focus on a parameter regime of interest to
magnetic confinement fusion experiments in which �s�de,
where �s=cs /�ci is the ion sound Larmor radius, de=c /�pe

is the collisionless electron skin depth, �pe
2 =4�ne2 /me,

cs
2= �Ti+Te� /mi, �ci=eB / �mic�. Both the linear and nonlin-

ear regimes are considered. In the linear case, we compare
the gyrokinetic growth rates to analytical and numerical cal-
culations based on kinetic and two-fluid models. Although
reasonably good agreement between the two is found in
some cases �small Ti /Te and low 	�, some of the parameters
explored here �Ti
Te and 	�1� fall in a regime in which
existing analytic calculations are not clearly reliable. A rig-
orous treatment of these cases would seem to require the full
gyrokinetic model and include, among other things, both
electron and ion finite Larmor radius �FLR� effects. Although
such an analysis is beyond the scope of the present article,
derivations of some of the analytic results to which we com-a�Electronic mail: barrett.rogers@dartmouth.edu
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pare are given in Appendix B, and the problems with these
calculations are discussed.

In the nonlinear regime, we focus on a large-�� case that
corresponds approximately to the fastest-growing linear
mode evolved into the nonlinear regime. We find the recon-
nection rates in the gyrokinetic system are comparable to
those obtained from simulations based on a two-fluid model.
An exception arises for Ti�Te and very small initial pertur-
bation amplitudes, in which the nonlinear growth of the
mode in the gyrokinetic system saturates in the early nonlin-
ear phase �island widths comparable to �i�. This saturation
can be overcome if small-amplitude random noise is added
to the initial configuration.

The results discussed in this paper build on a number of
other gyrokinetic studies of linear and nonlinear reconnec-
tion. Reference 6 applies gyrokinetic particle simulations to
the study small-scale magnetic islands �widths comparable to
the electron skin depth de=c /�pe� in the presence of a nar-
row �about 10de� current sheet. References 7 and 8 explore
reconnection in the small �� case with gyrokinetic ions and
drift-kinetic electrons. In larger box sizes ��64�i� an insta-
bility with odd parity was found to dominate the system, in
contrast to the expected even parity of the tearing mode. In
the large �� nonlinear simulations described here, such odd-
parity modes have not been observed.

This paper is organized as follows: In Sec. II we describe
the initial equilibrium and numerical simulation model. In
Sec. III we compare the GS2 simulation results to linear
theory calculations. We turn to the nonlinear regime in Sec.
IV, in which we address the reconnection rate and saturation
behavior. Our main conclusions are summarized in Sec. V.
The gyrokinetic equations used in the simulations are de-
scribed in Appendix A, and the derivations of various linear
theory results are given in Appendix B.

II. INITIAL EQUILIBRIUM AND SIMULATION MODEL

The initial, unperturbed equilibrium state we consider is
given by

B� = Bz0ẑ + By0�x�ŷ, By0�x� = By0 max sin�kxx�, Bz0 � By0,

�1�

n = n0 = const, Ti = Ti0 = const, Te = Te0 = const. �2�

For most of the numerical simulations discussed in this work
we take kx�se=0.2 �equivalent to a box size of Lx=2� /kx

=10��se�, where

�se =
cse

�ci
=�Te

mi

mic

eBz0
=�	e

2
di,

di
2 =

c2

�pi
2 =

c2mi

4�n0e2 , �3�

	e =
8�n0Te

Bz0
2 .

Other definitions that will be used later include

�s
2 = �1 + Ti/Te��se

2 =
	

2
di

2,

	 =
8�n0�Ti + Te�

Bz0
2 , �4�

de
2 =

c2

�pe
2 =

me

mi
di

2.

Note that �se is the ion sound Larmor radius based on Te

while �s is based on Te+Ti.
A summary of the gyrokinetic and Maxwell equations

solved by the GS2 code is given in Appendix A. The temporal
discretization in GS2 to solve the linear terms in these equa-
tions is implicit and second order accurate in time. Nonlin-
earities are evaluated using an explicit Adams-Bashforth
time-stepping scheme. In the x and y directions �the 2D plane
of reconnection simulated here� a dealiased pseudospectral
algorithm is used. In the x-direction the simulations include
nx Fourrier modes with 64�nx�8192, depending on param-
eters. In the y direction the nonlinear runs have a box size
Ly =2.5Lx=25��se �corresponding to ky,min�se=0.08� and 64
�ny �256. The grid points in velocity space are chosen us-
ing Gaussian integration rules. Typical runs include 16 grid
points in the particle �ion or electron� energies �
=m
v


2 /2
in the velocity range 0�v
�6vth
, and 10 points in
�
=v�
 /v
. The simulations within this range appear to be
well converged and show little dependence on the velocity-
space resolution. As discussed later, to facilitate parameter
scans using modest numerical resources, an artificial electron
to ion mass ratio is used, either me /mi=1/25 or me /mi

=1/100.

III. LINEAR REGIME

The simulations described in this section address two
main cases

Case I: kx�se = 0.2, mi/me = 100, 	e = 0.2,

Ti/Te = �2.0 � 10−4,5� , �5�

Case II: kx�se = 0.2, mi/me = 25, 	e = 0.3,

Ti/Te = �2.0 � 10−5,5� . �6�

The simulation results in cases I and II are shown in Figs. 1
and 2, respectively. The black “�” symbols denote the GS2

values for very small Ti /Te�1 and the blue triangles repre-
sent Ti /Te=5. Simulations at Ti /Te=1 �not shown� are inter-
mediate between the two, indicating the gyrokinetic growth
rates �though not the eigenmode structure, as we show later�
are only very weakly dependent on Ti /Te. Since 	e is held
fixed in both cases, this is equivalent to an insensitivity to
either the ion 	i or the total plasma 	, which for the param-
eters of case II, for example, varies from 	=0.3 for Ti /Te

�0 to 	=1.8 for Ti /Te=5. Both cases I and II satisfy the
inequality �s

2�de
2 �equivalent to 	�2me /mi�, which, aside

from being relevant to fusion devices, is required to allow
comparison to some analytic calculations discussed below.
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These analytic results are shown in Figs. 1 and 2 as the
dashed and solid lines.

Numerical convergence tests have been carried out
across the full range of ky. The spatial resolution require-
ments in the x-direction for convergence of the growth rates
in the smaller-ky regime are modest �nx�64 for ky�se=0.08
and mi /me=25� but increase strongly as ky is increased
�nx�8192 for ky�se=0.16 and mi /me=100�. Such fine reso-
lution levels in turn lead to severe time-step restrictions.
Consistent with the observed trend in the resolution, the lin-
ear theory calculations discussed later suggest the tearing
layer becomes narrower as ky is increased. The number of
modes required at higher ky exceeds what one might expect
from simple estimates, however, and is still under study.

The ky dependence of � seen in Figs. 1 and 2 is governed
by the tearing mode stability parameter ��.9 This parameter

may be defined in terms of B̃x, the x-component of the mag-
netic field perturbation in the ideal regions outside the

tearing layer. In our system, considering the layer at x=0
�see, e.g., Ref. 10�,

B̃x � cos�D�kx	x	 − �/2��sin�kyy�, D 
 �1 − �ky/kx�2

�7�

where ky is the wavenumber of the linear mode of interest,
and

�� = � �xB̃x

B̃x

�
x=0−

x=0+

= 2kxD tan��D/2� . �8�

A plot of �� /kx is shown in Fig. 3 as a function of ky /kx

�solid curve�. Consistent with Figs. 1 and 2 tearing modes
are unstable in the regime ky �kx �here, ky�se�0.2� in which
���0. For ky �kx, �� /kx�8kx

2 / ��ky
2��1 �dashed curve�.

The small-�� regime lies to the right of the peak � values in
Figs. 1 and 2; in this regime �� is sufficiently small so that
the constant-� approximation is valid across the tearing
layer. The large-�� regime includes the peak growth rates as
well as the regions to the left of the peaks in which the
growth rates increase �at these parameters� linearly with ky.
The ky value of the peak growth rate and the corresponding
value of �� can be estimated, for example, by balancing the
expression for � that applies to the left of the peak �in the
large-�� regime; see Eq. �10�� with the expression for � that
applies to the right of the peak �in the small-�� regime; see
Eq. �11��. This yields

�max� � 21/3�2/3�s
−1/3de

−2/3. �9�

For the parameters of cases I and II this reduces to
�max� �28 and �max� �20, respectively, or �with Fig. 3 and
kx�se=0.2�, ky�se�0.06 for either case, consistent with the
location of the peaks in Figs. 1 and 2.

FIG. 1. �Color online� Linear growth rates � /�A vs ky�se for case I with �A

given by Eq. �10� and �se=cse /�ci. The “�” are GS2 values for Ti /Te�1,
triangles Ti /Te=5. The left and right dashed lines are Eqs. �10� and �11�,
respectively, with Ti=0. The solid lines are the numerical solution of a
reduced four-field fluid model for Ti=0 �lower� and Ti=5Te �upper�.

FIG. 2. �Color online� Linear growth rates for case II with the same notation
as Fig. 1.

FIG. 3. �� /kx given by Eq. �8� vs ky /kx.
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A. Large ��

In the regime �s�de under consideration, various ana-
lytic results have been obtained in the limits of both large
and small ��. At large ��, the analytic results typically apply
in the regions to the left of the peak growth rates in Figs. 1
and 2 where ��ky. The expression for � obtained in Ref. 10,
for example, is given by

� = 
 2

�
�1/3

kyde
1/3�s

2/3�A,

�10�

�A =
1

�4�n0mi
�dBy0

dx
�

x=0
=

kxBy0 max

�4�n0mi

.

This result was obtained in Ref. 10 using an isothermal fluid
electron model and an ion model that includes leading-order
FLR effects for arbitrary Ti /Te but ignores sound-wave cou-
pling under the assumption ��k�cs. �A similar result,
smaller than Eq. �10� by a factor of �2/�1/6�1.17, was also
obtained in Ref. 11 for Ti�Te.� For convenience, a deriva-
tion of Eq. �10� is given in Appendix B, where we also show
that a drift-kinetic electron treatment �along with a Padé ap-
proximation to the electron plasma dispersion function� gives
the same result as the isothermal fluid electron model used in
Ref. 10. In the case of Ti�Te Eq. �10�, shown as dashed
lines on the left-hand sides of Figs. 1 and 2, agrees reason-
ably well with the gyrokinetic results. As we discuss in more
detail later, for small ky Eq. �10� is also approximately
equivalent to an isothermal two-fluid model result shown as
the upper �Ti /Te=5� and lower �Ti /Te=0� solid curves.
These curves were obtained by solving numerically a set of
four coupled reduced fluid equations described in Ref. 12,
which go beyond Eq. �10� to allow for ion sound wave cou-
pling and arbitrary 	, but are formally valid only for
Ti�Te. These curves are also essentially indistinguishable
from a numerical solution �not shown� of the full, nonre-
duced two-fluid model that is discussed in Sec. IV. To gen-
erate the upper �Ti /Te=5� solid curves in the figures, we
have incorporated finite Ti effects into the fluid model of Ref.
12 by the replacement Te→Te+Ti. This is equivalent to as-
suming isothermal ion and electron equations of state and is
consistent with the Ti /Te dependencies of Eqs. �10� and �11�.
It is not, however, consistent with the gyrokinetic growth
rates, which for our parameters show a much weaker depen-
dence on Ti /Te. Indeed, at large �� the analytic and fluid
model growth rates increase with Ti /Te while the gyrokinetic
results display the opposite trend.

B. Small ��

Turning now to the case of small ��, the dashed lines on
the right-hand sides of Figs. 1 and 2 show the following
asymptotic result of Refs. 10 and 13 evaluated at Ti=0:

� =
1

�
ky�s�Ade��. �11�

Like Eq. �10�, for convenience this expression is derived in
Appendix B from a kinetic ion treatment and either an iso-
thermal drift-kinetic or fluid electron model. A similar result

was also obtained in Refs. 14 and 15, aside from the replace-
ment �s→�se and an overall factor of �� /2�1.13. The GS2

results indicate that � increases much more weakly with
Ti /Te than either Eq. �11� or the two-fluid model. We note
that earlier versions of the two fluid model16,17 that neglected
the electron gyroviscous terms in the electron momentum
equation show much poorer agreement with the gyrokinetic
simulations in the collisionless small-�� limit.

C. Limitations of the analytic and fluid model results

The analytic and fluid model results shown in Figs. 1
and 2 rely on some simplifying assumptions that are not
clearly valid in our parameter regime. As we now explain, a
simple isothermal or adiabatic equation of state cannot be
strictly correct in both the innermost electron layer where
�
k�vthe and the outermost zone in which ��k�vthe �note
k� =kyBy�x� /B�k��x is x-dependent within the tearing layer;
see Eq. �B3��. Similarly, the nongyrokinetic calculations ne-
glect electron FLR effects, the electron polarization drift, and
ion sound wave coupling �the fluid model includes the latter
but only in the zero-ion-FLR limit�; all effects that, for
Ti�Te, become non-negligible at essentially the same point.
Since ion FLR and finite-	 effects at Ti=5Te are also non-
negligible, reliable analytic calculations in our higher-Ti pa-
rameter regime are thus a formidable challenge and have yet
to be carried out.

Electron FLR effects are potentially important because
the electron motion �see, e.g., the expression for the current
density given by Eq. �B15��, for either large or small ��,
varies on the scale length

� =
�

k��vth
=

�de

ky�s�A
, vth =�Te + Ti

me
. �12�

The neglect of electron FLR effects requires that this scale,
which at large �� is a weakly decreasing function of Ti /Te,
exceed �e; a condition that for the parameters of cases I and
II and large �� is marginally satisfied at Ti=0 but is violated
at Ti /Te=5. Similarly, at Ti /Te�1, E� and � also exhibits
fine-scale structure for x�� �see Eq. �B21��:

E� � E��0���2 +
Te

Te + Ti
x2

�2 + x2 � . �13�

This expression, similar to the behavior noted in Ref. 18,
predicts that E� for Ti /Te�1 drops by a factor of Te / �Te

+Ti� on the � scale. For larger x�� �see Eq. �B22�� E� then
decays to zero on the �s scale. The consistency of this with
the simulations can be seen in Fig. 4, which shows E� /E��0�
in the linear regime for the case II parameters at ky�se

=0.05 �large ���. The width of the narrow peak at x=0 for
Ti /Te=5 �solid line� is comparable to �e and is broader than
�, consistent with the expectation that �e effects are becom-
ing important. At Ti�Te �dashed line�, such fine-scale struc-
ture is absent as expected from Eq. �13�.

A related effect, which only becomes important at finite
Ti /Te, is the electron polarization drift �see Eqs. �B30� or
�B33��,
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ñe,pol � −
n0e

Te
�e

2�2� . �14�

When k��i�1 and the ions are magnetized, the contribution
of ñe,pol is negligible compared to the ion polarization drift.
At finite Ti, however, the ion response for x����i becomes
adiabatic �see Eq. �B1�, neglecting �0�,

ñi � −
n0e

Ti
� . �15�

Estimating �2��� /�2, the contribution of Eq. �14� is found
to be negligible compared to Eq. �15� when �Ti /Te��e

2��2.
This condition may be combined with the electron FLR re-
striction �e

2��2 to yield

�1 + Ti/Te��e
2

�2 =
	

2

ky
2�s

2�A
2

�2 � 1. �16�

Again, at large ��, this condition for the case I and II param-
eters is marginally satisfied at Ti�Te but is violated for
Ti /Te=5. With the expression for � given by Eq. �10�, it may
also be written as 	 /2� �me /mi�1/4, a condition that was also
emphasized in Refs. 16 and 17. Due to the ky

2 factor in the
numerator, Eq. �16� is even more difficult to satisfy at small
�� �large ky� than at large �� �small ky�. Thus, even for Ti

�Te, we would expect electron FLR effects—absent in Eq.
�11� and the two-fluid model—to play an even greater role.

Two other effects absent from Eqs. �10� and �11�,
�though not the two-fluid curves� are contributions from B̃�,
which become potentially significant for Ti=5Te where
	�1, as well as ion sound wave coupling, which may be
neglected only if �2�k�

2cs
2 for x��s �the outer envelope of

the ion response, see Eq. �B18��. Given k� =k��x this condition
may be written as �2�k��

2�s
2cs

2 or, since �s
2cs

2= �1
+Ti /Te��e

2vth
2 , �2�k��

2vth
2 �1+Ti /Te��e

2. In the latter form, re-
calling that �2=�2 / �k��

2vth
2 �, one sees that this condition is

exactly the same as Eq. �16�. The proper account of ion
sound wave coupling for Ti�Te is difficult because ion FLR
effects are not negligible in this case, since �s �the main
scale-length of the ion motion� is comparable to �i.

In the case of the perpendicular ion dynamics, the im-
portance of ion FLR effects has long been appreciated and
was first studied in detail in Ref. 10. This work, like the
calculations presented in Appendix B, is based on a Padé
approximation of the perpendicular kinetic ion response that
is leading-order accurate in the limits of both k��i�1 and
k��i→0. In view of the role of ion FLR effects in these
calculations, it is perhaps surprising that the resulting disper-
sion relation �Eq. �B19�� for arbitrary Ti /Te may also be
obtained from various two-fluid calculations12,16,17,19,20 in the
limit that isothermal electron and ion fluid equations of state
are used. The reason for this agreement, as we show in Ap-
pendix B, is that the Padé approximation to the perpendicular
kinetic ion response is exactly reproduced by the usual low-
frequency, reduced-MHD-type approach provided that the
ion diamagnetic drift is properly included. The numerical
solution to the four coupled reduced two-fluid equations dis-
cussed in Ref. 12, shown in Figs. 1 and 2 as the upper
�Ti /Te=5� and lower �Ti=0� solid lines, go beyond Eqs. �10�
and �11� to include in the zero-FLR limit ion-sound-wave
coupling and finite 	 effects. While both of these effects are
stabilizing, the fluid predictions for Ti=5Te are still substan-
tially larger than the GS2 values, indicating the kinetic effects
discussed earlier are important.

IV. NONLINEAR REGIME

Turning now to the nonlinear evolution, we again con-
sider the parameters of case II discussed in Sec. III. As noted
earlier the nonlinear runs have a box size Ly =2.5Lx, corre-
sponding to ky min�se=0.08. This minimum ky corresponds
roughly to the fastest growing linear mode. Following the
initialization of the run with small amplitude random noise,
this longest-wavelenth mode dominates the system as the
nonlinear phase is reached. Because this mode falls within in
the large �� regime, the simulations discussed here, aside
from the guide field, are similar to those of the GEM Recon-
nection Challenge Project.5

Figure 5 shows the nonlinear reconnection rates d� /dt

FIG. 4. E� /E��0� for case II with ky�se=0.05 and Ti /Te=5 �solid�, Ti /Te

=2�10−5 �dashed�. Sub-�s structure appears only for Ti /Te�1 or larger.
FIG. 5. �Color online� Gyrokinetic �upper panel� and two-fluid �lower
panel� nonlinear reconnection rates for case II vs �, the reconnected flux
inside the island, for Ti�Te �solid line�, Ti=Te �dotted-dashed�, Ti=5Te

�dashed�.
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for case II as a function of �, the reconnected flux inside the
magnetic island. The upper panel shows the GS2 values for
Ti�Te �solid line�, Ti=Te �dotted-dashed�, Ti=5Te �dashed�.
The nonmonotonic feature in the curve for Ti /Te�1 near
��0.5 is due to the initial noise in the system, which at
early times leads to competition between the dominant mode
with ky�se=0.08 and the next-order harmonic. Here � is nor-
malized to B0,maxdi and t to �A. At the final times shown in
the figure the island widths are roughly half the box size w
�Lx /2. In all three cases the reconnection continues until the
islands span the entire box �w�Lx�, although the reconnec-
tion rates drop sharply at times just beyond those shown in
the figure. The lower panel shows the analogous results ob-
tained from a simple isothermal two-fluid simulation with
the same parameters and a large guide field �Bz�10Bx,max�.
The generalized Ohm’s law in this model includes the Hall
terms and electron inertia.5 The reconnection rates in the
gyrokinetic system are comparable to those in the fluid
model and, like the linear gyrokinetic growth rates, exhibit
little dependence on Ti /Te. Numerical tests also show the

contribution of B̃� in the gyrokinetic equations �see Appendix
A� to both the linear and nonlinear reconnection rates is
small ��5% �, in contrast to what one might expect for the
higher Ti cases in which 	�	i�1.

The fluid code used here was benchmarked in the GEM

reconnection study5 against full-particle simulations and was
found to produce similar rates of reconnection. Subsequent
work with this same fluid code was carried out, e.g. in Ref.
21, that explored the dependence of the reconnection rate on
the guide field strength, the plasma 	, and other parameters.
In the strong guide field regime with �s�de relevant to our
simulations, the reconnection rates were characterized by in-
flow velocities that scale roughly as a small fraction
��0.05� of the Alfvén speed based on the reconnecting com-
ponent of the magnetic field just upstream of the reconnec-
tion region,

Vin �
�

l
Vout � 0.05Vout, Vout �

By,up

�4�nmi

. �17�

Similar rates have also been observed22 in particle simula-
tions of strong guide field reconnection with a realistic mass
ratio, mi /me=1836.

In the present system, the reconnecting component of the
magnetic field near the reconnection layer is given by

By0�x� = By0 max sin�kxx� � By0� x + ¯ , By0� = kxBy0 max

�18�

or in terms of the flux function �By =�� /�x�:

� � 1
2By0� x2. �19�

As reconnection proceeds in the nonlinear phase, the flux
surfaces upstream of the reconnection layer at x=0 are
shifted toward the layer, causing an increase in the local
values of By and �. Denoting this time dependent shift in the
x direction by ��t�, the values of By and � just upstream of
the layer at x=0 can be estimated by replacing x→� in the
equilibrium profiles,

By,up � By0� �, � � 1
2By0� �2. �20�

From the expression for � one finds

1

�

d�

dt
=

2

�

d�

dt
. �21�

An expression for d� /dt may be obtained from the continuity
equation as

d�

dt
= Vin =

�

l
Vout, Vout �

By,up

�4�nmi

, By,up = By0� � �22�

or equivalently,

d�

dt
=

�

l

By0�

�4�nmi

� . �23�

Equation �21� can thus be written as

1

�

d�

dt
=

2

�

d�

dt
=

2�

l

By0�

�4�nmi

=
2�

l
kxVAy . �24�

Estimating � / l�0.05 and normalizing the time units to �A as
in Fig. 5, this expression reduces to

d�

dt
=

2�

l
�A� � 0.1� . �25�

One would therefore expect the slopes of the curves in Fig. 5
at early times to be constant and roughly equal to 0.1, which
indeed they are. The constancy of the slope implies that the
reconnected flux and magnetic island width grow exponen-
tially with time.

Concerning the insensitivity of the gyrokinetic system to
Ti /Te, a caveat must be added regarding the level of noise
that is initially imposed on the simulations. The solid curve
in Fig. 6 shows the island width as a function of time in the
Ti=5Te simulation shown in Fig. 5 �top panel�. The initial
noise level in this simulation is small but finite, such that
values of w smaller than about w�0.01�se �the starting value
of the solid curve� cannot be distinguished from the initial
noise. The island width in this case does not saturate and
reconnection continues until essentially all the flux in the

FIG. 6. Island widths w /�se vs �At for Ti /Te=5 with �solid� and without
�dashed� added initial noise in the simulation. The nonlinear saturation is
avoided for very weak levels of initial noise.
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system is reconnected. When the noise level is drastically
reduced �dashed curve�, however, the growth of the island
halts at about w�2�se��i. Apparently the saturation mecha-
nism, at least for these parameters, is fragile and easily de-
stroyed by the presence of noise in the system—a feature that
may explain why such saturation behavior has not been pre-
viously observed in particle simulations of similar large-
guide-field systems �see, e.g., Ref. 23�. Such early nonlinear
saturation is not observed in the fluid simulation of the same
system, or in the gyrokinetic simulations at smaller Ti /Te.

Saturation behavior superficially similar to that observed
here has been reported in one particle simulation study24 of
reconnection in a high-beta system without a guide field. It
was conjectured the saturation was due to the formation of
electron temperature anisotropies �Te��Te��, which are
known to have a potentially strong stabilizing impact on the
reconnection. In our system the initial plasma equilibrium is
isotropic and in the strong guide-field limit the perturbations
of the plasma temperatures, densities, and pressures are small
�see, e.g., Ref. 25 for discussion�. On the theoretical side, the
saturation of tearing modes has been studied in both low and
high 	 plasmas �e.g., Refs. 26–28�. Consistent with our find-
ings, in Ref. 28 nonlinear saturation in the strong guide field
regime is predicted when w��i due to the interaction of the
ions with the electrostatic field of the reconnecting mode �ion
trapping�. This study, however, considers systems in which
an ambient pressure gradient �absent in the system consid-
ered here� leads to a real-frequency of the mode �also absent
here� that is larger than the linear growth rate. Further study
of this issue is needed, therefore, to determine if the physical
mechanism described in that work is consistent with our
simulations.

V. CONCLUSION

We have explored linear and nonlinear collisionless re-
connection in the �s�de regime using gyrokinetic simula-
tions. In the linear-theory limit, the gyrokinetic growth rates
are compared to analytic calculations across a range of pa-
rameters, including small and large �� and Ti /Te. For the
cases in which the analytic calculations of the growth rate are
theoretically reliable for our parameters �low 	 and small
Ti /Te�, reasonably good agreement between the theory and
simulations is found, while for some other cases �	�1 and
Ti
Te�, further analytic work is needed to provide a sound
benchmark for the simulations. In particular, the insensitivity
of the linear growth rates in the gyrokinetic model to Ti /Te

and the plasma 	, apparently due to the role played by FLR
effects in the parameter regimes considered here, are not well
reproduced by existing analytic calculations. In the nonlinear
regime, the reconnection rates at large �� were explored for
various values of Ti /Te, and found to be similar to those
obtained from a two-fluid model. As in the linear case, the
dependence of the nonlinear reconnection rates on Ti /Te is
quite weak. An exception to this occurs at larger Ti /Te

�Ti /Te=5� and very weak initial perturbations, in which the
growth of the island width in the gyrokinetic system

saturates at the �i-scale. This saturation for our parameters
may be overcome by adding small levels of initial noise to
the simulations.
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APPENDIX A: THE GS2 GYROKINETIC EQUATIONS

The gyrokinetic equations, with species label 
, may be
written as3


 �

�t
+ i�d
 + v����h
�k�� +

c

4�2B

� �
k�� ,k��

�b · �k�� � k�� �� · ��k�� �h
�k�� ��k
�� +k

�� ,k�

= − 
 �

�t
+ i�*
���k��q


�F0


��

+
1

2�
�

−�

�

exp�− iL�C�f
�d� , �A1�

where L= �v�b ·k�� /�c
, � is the gyroangle, �=m
v2 /2 is
the particle energy, �=m
v�

2 /2B is the magnetic moment, �
is the generalized gyrokinetic potential

� = J0
 k�v�

�c

�
� −

v�

c
A�� + J1
 k�v�

�c

� v�

k�c
�B� , �A2�

� is the electrostatic potential, A� is the parallel component
of the vector potential, �B� is the perturbation of the parallel
magnetic field, b is the magnetic-field unit vector, �k�,k�=0
for k��k� and �k�,k�=1 for k�=k�, �c
=q
B� / �m
c�, and
C�f
� is a collision operator �not relevant to the present
work�. The nonadiabatic part of the distribution function
h
=h
�� ,� , t� is related to the total perturbed distribution
function f
= f
�v , t� through f
=q
��F0
 /��+exp�iL�h
, or
�f
��=q
��F0
 /��+J0h
. The frequencies �d
 and �*
 are
defined as

�*
 =
b � k� · �F0


m
�c
�F0
/��
, �A3�

�d
 = k� · b �
m
v�

2b · �b + � � B

m
�c


. �A4�

The ion and electron “background” distribution functions
F0
 are assumed to be isotropic Maxwellians. The gyroki-
netic equations are coupled to the Maxwell equations, which
may be written as

�


� d3vq
�q
�

�F0

��
+ J0h
� = 0, �A5�

��
2 A� = −

4�

c
�


� d3vq
v�J0h
, �A6�
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�B� = −
4�

c
�


� d3v

q
v�

k�

J1h
. �A7�

APPENDIX B: LINEAR THEORY

Assuming ��k�cs, the ion density perturbation ni
˜ is

given by �see, e.g., Ref. 10�

ñi =
n0e

Ti
��0�b� − 1��, �0�b� = I0�b�e−b, b = − �i

2��
2 ,

�B1�

where �i=�Ti /mi /�ci is the ion Larmor radius and I0 is the
modified Bessel function. The perturbed electron continuity
equation gives

ñe �
1

�e
��J̃� = x

c2k��
2

4�e�2A�, A =
�

ik��c
Az, �B2�

where in the linear regime we have assumed

�� = ik��x, k�� =
ky

Bz0
�dBy0

dx
�

x=0
=

ky�A

VA
, J̃� � −

c

4�
Az�.

�B3�

The quasineutrality condition ni
˜ =nẽ can thus be written as

Te

Ti
��0 − 1�� = x

ky
2�se

2 �A
2

�2 A�. �B4�

Finally, the generalized Ohm’s law, assuming an isothermal
electron response, is

−
me�

e
J̃� = − ���Teñe� − n0eE� �B5�

or equivalently, using Eqs. �B2� and �B3�

−
E�

ik�

= x� + A =
ky

2�se
2 �A

2

�2 ��e
2 + x2�A�,

�e
2 =

�2

k��
2vthe

2 , �B6�

vthe
2 =

Te

me
.

To make progress, we introduce the auxiliary variable �i

defined as

Te

Ti
��0 − 1�� 
 �se

2 ��
2 �i �B7�

or equivalently,

� =
�i

2��
2

��0 − 1�
�i. �B8�

We demonstrate below that c�i /B is the ion velocity stream
function in two-fluid theory. Now making the well-known
Padé approximation

�0 �
1

1 − �i
2��

2 , �B9�

Eq. �B8� simply becomes

� = �1 − �i
2��

2 ��i. �B10�

Eliminating � in Eqs. �B4� and �B6� with Eqs. �B7� and
�B10�, respectively, one obtains

�i� = x
ky

2�A
2

�2 A� =
ky

2�A
2

�2 �x�x2�x�A/x�� , �B11�

x�i + A =
ky

2�s
2�A

2

�2 ��2 + x2�A�, �2 =
�e

2

1 + Ti/Te
. �B12�

Note that the contribution of the �i
2�x

2 terms arising from Eq.
�B10� has simply led to the replacements �e→�, �se→�s in
Ohm’s law, or equivalently, Te→Te+Ti. The solutions for �i

and A for x→ +� must be matched to the asymptotic forms

�i � �� = const, A � − ���x + 2/��� . �B13�

With this boundary condition, Eq. �B11� may be integrated
from x=0 to x=� to yield the constraint

− �i��0� =
ky

2�A
2

�2 
2��

��
+ A�0�� . �B14�

The constants in this expression may be related to each other
from the solution to Eqs. �B11� and �B12�. Assuming
�s�de, this solution, discussed for example in Ref. 20, turns
out to have two scales: an inner scale � that determines the
width of the current profile �i.e., A��, and an outer scale �s

that determines the behavior of �i. On the inner scale, the �i

term in Eq. �B12� can be neglected and one can take A=A0

+A1+ ¯ , where A0=A�0� is a constant �that is, the constant
� approximation is valid�, yielding

A� = A1� � �2 A0

��2 + x2�
, � =

�

ky�s�A
. �B15�

Integrating this expression and comparing it to Eq. �B13� for
x�� one obtains

A� � �2A0

�
tan−1�x/�� = − ��

2

�
tan−1�x/�� . �B16�

In the outer region x��, one can neglect the �2 term in Eq.
�B12� and eliminate A� with Eq. �B11�, yielding

x�i + A = x�s
2�i�. �B17�

Differentiating this equation with respect to x, using
A��−��, and noting �i�0�=0, one finds the solution

�i � ���1 − e−x/�s� . �B18�

Finally, returning to Eq. �B14� with this solution, and using
�from Eq. �B16�� A�0�=−2��� / ��2��=−2de�� / ����, one
obtains the dispersion relation
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�3 =
�3

ky
3�s

3�A
3 =

2

�

de

�s

1 −

��

de��
� . �B19�

At ��→� this reduces to Eq. �10� while at small ��, ne-
glecting the left-hand side, it reduces to Eq. �11�.

1. Parallel electric field E¸

From Eq. �B6�, the parallel electric field is given by

E� = − ik���x� + A� = − ik��
ky

2�se
2 �A

2

�2 ��e
2 + x2�A�. �B20�

In the inner zone x��s, the approximate solution for A� is
given by Eq. �B15�,

E� � − ik��
�e
2 + x2

�2 + x2� A0

1 + Ti/Te
= E��0���2 +

Te

Te + Ti
x2

�2 + x2 � .

�B21�

In the outer zone x��s, one may use Eq. �B11� to express A�
in terms of �i�, and then use the expression for �i given by
Eq. �B18�,

E� = − ik��x
�e
2 + x2

x2 ��se
2 �i�

� ik��x��2 +
Te

Te + Ti
x2

x2 ���e−x/�s. �B22�

2. Ion velocity stream function �i

Here we show the variable �i as defined by Eq. �B10� is
proportional to the ion velocity stream function in two fluid
theory. With this interpretation Eq. �B11� becomes, both
physically and mathematically, the ion vorticity equation of
the fluid model. Since Eqs. �B10� and �B11� were con-
structed to be accurate �to leading order� for �i

2��
2 �1 as

well as �i
2��

2 →0, this accounts for why the two-fluid model
yields a correct representation of ion FLR effects in the
former limit.

Operating on the ion momentum equation with B� �, as-
suming an isothermal ion equation of state, and considering
linear perturbations yields

v� i� �
c

B
ẑ � ��� +

1

�ci

�

�t
ẑ � v� i�, �B23�

where

� = � +
Ti

n0e
ñ . �B24�

Here �, aside from a constant factor of c /B, is the ion ve-
locity stream function and with Eq. �B10� we will show in a
moment that �=�i. For � /�t��ci the second term on the
right-hand side of Eq. �B23� is small compared to the first,
leading to the iterative solution

v� i� �
c

B

ẑ � ��� −

1

�ci

�

�t
���� . �B25�

Substituting this into the linearized ion continuity equation
and neglecting the parallel ion motion yields

�

�t
ñ � n0�� · v� i� =

n0c

B�ci

�

�t
��

2 � �B26�

or

ñ =
n0c

B�ci
��

2 � . �B27�

Substituting this into Eq. �B24� yields �=�+�i
2��

2 � or
equivalently,

� = � − �i
2��

2 � . �B28�

Comparing this to Eq. �B10� one sees that �=�i as claimed.

3. Electron drift kinetic treatment

The electrons satisfy the drift kinetic equation,

d

dt
f̃ +

c

B�ce
f0

d

dt
��

2 � =
e

me

�f0

�v�

E�,
d

dt
=

�

�t
+ v��� ,

�B29�

where f = f0+ f̃ , E� =−���−�Az /�t, and the second term
arises from the polarization drift,

�� · v�pf �
c

B�ce
f0

d

dt
��

2 � . �B30�

Defining �e=vthe /�ce, vthe=�Te /me, �ce=eB / �mec�, assum-
ing

f0 �
n0

�2��3/2vthe
3 exp�− �v�

2 + v�
2�/�2vthe

2 �� �B31�

and taking for linear perturbations �� = ik��x, � /�t=�, Eq.
�B29� yields

f̃ = −
ef0

Te

v�

� + ik��xv�

E� −
cf0

B�ce
��

2 � . �B32�

With this expression, the electron density may be written as

nẽ =� d3v f̃ = − �1 − I�
en0

Te

E�

ik��x
−

en0

Te
�e

2�2� , �B33�

where

I =
1

�2�vthe
�

−�

�

dv�

e−v�
2/�2vthe

2 �

1 + ik��xv�/�

=
2

��
�

0

�

dz
e−z2

1 + 
2z2 , 
 = �2
x

�e
. �B34�

Noting that I��� /
 for 
→� and I�1−
2 /2 for 
→0,
one is led to the Padé approximation for 1− I,
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1 − I �
x2

x2 + �e
2 �B35�

with which Eq. �B33� can be written as

nẽ = −
en0

Te

 x2

x2 + �e
2

E�

ik��x
+ �e

2�2�� . �B36�

If one neglects the �e
2 term on the right-hand side, this equa-

tion becomes identical to Ohm’s law, Eq. �B5�, if one ex-

presses J�̃ on the left-hand side of Eq. �B5� in terms of nẽ

using Eq. �B2�. Continuing, setting ni
˜ =nẽ with ni

˜ given by
Eq. �B1� one finds


 x2

x2 + �e
2��x� + A� =

Te

Ti
��0 − 1�� + �e

2�� �B37�

or using Eq. �B9� to eliminate � and rearranging terms,

x�x� + A� = �x2 + �2��s
2�i� − �e

2�i
2�x2 + �e

2��i�. �B38�

If one neglects the electron polarization drift term ��e
2 on the

right-hand side and uses Eq. �B11�, this equation reduces to
Eq. �B12�. Estimating �i���i� /�2 �valid if the �e

2 term is
small� one sees that the ratio of the �i� term to the �i� term
in Eq. �B38� for x�� is �Ti /Te��e

2 /�2. The same conclusion
follows from Eq. �B37�, neglecting �0 under the assumption
���i.
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