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We propose a solution to the problem of quickly and accurately predicting gravitational waveforms
within any given physical model. The method is relevant for both real-time applications and in more
traditional scenarios where the generation of waveforms using standard methods can be prohibitively
expensive. Our approach is based on three offline steps resulting in an accurate reduced-order model
in both parameter and physical dimensions that can be used as a surrogate for the true/fiducial
waveform family. First, a set of m parameter values is determined using a greedy algorithm from
which a reduced basis representation is constructed. Second, these m parameters induce the selection
of m time values for interpolating a waveform time series using an empirical interpolant that is
built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for
the waveform’s value at each of these m times. The cost of predicting L waveform time samples
for a generic parameter choice is of order O (mL+mcfit) online operations where cfit denotes the
fitting function operation count and, typically, m � L. The result is a compact, computationally
efficient, and accurate surrogate model that retains the original physics of the fiducial waveform
family while also being fast to evaluate. As a proof of concept we generate accurate surrogate
models for Effective One Body (EOB) waveforms of non-spinning binary black hole coalescences
with mass ratios from 1 to 2 and 9 to 10. We find that these surrogates are more than three orders
of magnitude faster to evaluate as compared to the cost of generating EOB waveforms in standard
ways. Surrogate model building for other waveform families and models follow the same steps and
have the same low computational online scaling cost. For expensive numerical simulations of binary
black hole coalescences we thus anticipate extremely large speedups in generating new waveforms
with a surrogate. As waveform generation is one of the dominant costs in parameter estimation
algorithms and parameter space exploration, surrogate models offer a new and practical way to
dramatically accelerate such studies without impacting accuracy.

I. INTRODUCTION

A direct detection of gravitational waves generated by
the coalescence of a compact binary system is among the
most anticipated discoveries to be made in gravitational
wave physics. The signal from such an event will codify
perhaps the only attainable information about the exis-
tence, dynamics, and underlying physics of the strongest
gravitating objects in the universe. Currently, there are
few, if any, direct observations pertaining to gravity in
the strong field regime but there is enough data to show
agreement with the predictions of general relativity when
gravitational fields and speeds are not too large [1, 2].

In the case of binary black holes, where the fields and
speeds can be large, one must rely on numerical simu-
lations of the Einstein equations to discover how these
systems evolve. The resulting solution depends on the
choice of initial data. The parameter space of binary
black holes in quasi-circular orbit is seven dimensional,
consisting of the mass ratio and the three spin angular
momentum components for each black hole. Different
choices of parameters can lead to qualitatively different
outcomes, such as the final speed of the merged black hole
due to a “kick” from the asymmetric emission of gravi-
tational waves [3–12]. In addition, potentially interest-
ing effects due to strong precession from highly spinning

black holes are waiting to be discovered and understood.
Unfortunately, each numerical relativity (NR) simulation
typically involves the use of large scale supercomputers,
making an exploration of the parameter space a currently
computationally intractable problem. For example, one
might employ a uniform or random sampling strategy of
the parameter space that, for a mere 4 points per dimen-
sion, requires 47 ≈ 16,000 expensive numerical solutions
of binary black hole coalescences. This number, while
still being a very coarse survey of the parameter space,
is substantially greater (by more than an order of mag-
nitude) than all the simulations performed by all of the
numerical relativity groups to date [13–16].

To help alleviate this computational bottleneck, mod-
els of the inspiral, merger, and ringdown phases of a
binary black hole (BBH) coalescence have been devel-
oped over the last decade [17–27]. The purpose of these
phenomenological models is to provide a sufficiently ac-
curate representation of a BBH waveform within some
range of parameters by fitting certain coefficients and
functions to a set of waveforms extracted from numeri-
cal simulations. In doing so, the models help to reduce
the amount of information needed to represent NR wave-
forms. While these models are significantly faster than
solving the Einstein field equations they remain com-
putational bottlenecks for parameter estimation studies,
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which typically require generating millions of waveforms
on the fly. Additionally, they still rely on waveforms com-
puted from numerical simulations of binary black hole
mergers and are thus unable, at least currently, to ac-
curately model gravitational waveforms throughout the
entire seven-dimensional parameter space, although ef-
forts to attack this problem are underway [16, 28].

Other important considerations come from precess-
ing inspirals of compact binaries such as binary neutron
stars. Generating the corresponding waveforms requires
solving a set of ordinary differential equations (ODEs)
and substituting the solutions into the post-Newtonian
expressions for the phase and amplitude corrections.
Given that around 520,000 to 860,000 waveforms are
needed to build template banks for just non-precessing,
slowly spinning binary neutron stars for advanced LIGO
[29], which would already be a computational challenge,
it follows that the large number of ODE solves would
be prohibitively expensive in the general precessing case.
Waveform generation for precessing compact binary in-
spirals constitutes the main computational bottleneck for
both template bank construction and parameter estima-
tion studies.

In this paper we offer a solution to the need for cheap
and accurate generation of gravitational waveforms, that
may otherwise be too expensive to compute for the ap-
plication of interest. To achieve this, it is crucial to take
advantage of the rich structure underlying the waveforms
of interest. Importantly, our method builds accurate sur-
rogate models that do not sacrifice the underlying physics
but instead combines the efficiency and power of reduced
order modeling techniques with high accuracy sparse rep-
resentations and an offline-online decomposition of the
problem.

Work over the last few years has shown that gravita-
tional waveforms exhibit redundancy in the parameter
space [30–35], suggesting that the amount of informa-
tion necessary to represent a fiducial waveform model is
smaller than might be anticipated. This reduction can be
captured accurately using only a remarkably few number
m of representative waveforms. These m representative
waveforms can be found using a greedy algorithm and
comprise a reduced basis [32] from which all other wave-
forms within the same physical model can be represented
provided one can compute their projections onto the ba-
sis. In practice, this is neither feasible nor worthwhile be-
cause projecting onto the basis requires already knowing
the waveform that one is seeking to represent in the first
place. This is particularly the case for waveform fami-
lies that are expensive to generate, such as those from
numerical relativity (NR) simulations of the full Einstein
equations. Instead, we aim to use only the information
provided by the m representative waveforms of the re-
duced basis to predict waveforms accurately and cheaply
for any desired parameter values.

To accomplish this goal we first build the reduced ba-
sis as mentioned above and described in more detail in
Sec. III A and Appendix A. Second, we construct a tem-

poral interpolant [36] whereby any fiducial waveform is
fully specified through its evaluation at m appropriately
chosen times. While this may seem like a remarkable
consequence it is important to recall that there are only
m independent pieces of information in the waveform
family as indicated by the m waveforms that comprise
the reduced basis. Indeed, we will show that the m re-
duced basis uniquely specify these m specially chosen
times. The interpolation method outlined above, which
is called empirical interpolation because it generates an
interpolant specific to the given fiducial waveform fam-
ily, takes advantage of this nearly optimal representation
strategy in parameters to provide a corresponding repre-
sentation strategy in time. See Sec. III B and Appendix
B for more details. Finally, at each empirical interpola-
tion time we perform a fit in the parameter dimension of
the waveform’s amplitude and phase. Evaluating these
fits yield m time samples from which the waveform is ac-
curately recovered through its empirical interpolant rep-
resentation. Remarkably, the outlined method allows for
a waveform within any physical model to be predicted for
any parameter value of interest based solely on a knowl-
edge of m fiducial waveforms.

Combining these pieces of information yields a surro-
gate model for the fiducial waveform family. The method
to build the surrogate has several useful properties. First,
the method is entirely hierarchical, i.e. the accuracy of
the surrogate model can be improved, if necessary, by
adding fiducial waveforms without discarding any of the
previous ones. Second, the surrogate model can be eval-
uated using only O (mL+mcfit) computational opera-
tions, where L is the number of time samples at which
the model is evaluated and cfit is the typical fitting func-
tion operation count. This provides a significant speedup
compared to the usual way that fiducial waveforms are
generated, as we demonstrate below with a surrogate
model for non-spinning Effective One Body (EOB) wave-
forms. The speedup compared to numerical simulations
of the full Einstein equations is expected to be signifi-
cantly larger.

II. SURROGATE WAVEFORM MODELS

We denote the gravitational waveform produced from
a fiducial model by h(t;λ). Here, t denotes time and λ
is the waveform parameterization (e.g., mass ratio and
spins). We denote the surrogate model of the fiducial
waveform family by hS(t;λ) and describe its construction
in this section.

When numerically generating waveforms, by solving
partial or ordinary differential equations, one typically
solves an initial (or initial-boundary) value problem for
a fixed λi thereby generating h(t;λi) on a densely sam-
pled grid in time. In this paper we develop a procedure
for building hS(t;λ) through judicious choices of λi and
the corresponding output h(t;λi) found by solving the
relevant equations defining the fiducial problem. Cru-
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FIG. 1. A schematic of the method for building and eval-
uating the surrogate model. The red dots show the greedy
selection of parameter points for building the reduced basis
(Step 1, offline), the blue dots (Step 2, offline) show the asso-
ciated empirical nodes in time from which a waveform can be
reconstructed by interpolation with high accuracy, and the
blue lines (Step 3, offline) indicate a fit for the waveform’s
parametric dependence at each empirical time. The yellow
dot shows a generic parameter, which is predicted at the yel-
low diamonds and filled in between for arbitrary times using
the empirical interpolant, represented as a dotted black line
(Step 4, online).

cially, given the complexity of existing numerical solvers,
our approach to surrogate modeling is intentionally non-
intrusive to legacy codes.

We seek a minimal number of λi selections for a tar-
get accuracy such that the surrogate has a comparable
or smaller error than that associated with the underlying
waveform model. This is important both for the speed of
evaluating the surrogate model and for overcoming com-
putational challenges with building it in cases where one
cannot generate h(t;λi) for arbitrarily many values of λ.
Naturally, if more data is available it should be possible
to include it and improve the surrogate’s quality. This
means that the surrogate model should be hierarchical
by construction, improving as more simulations become
available and without discarding previous ones.

The algorithm for building and evaluating a surrogate

for a given fiducial family or model of gravitational wave-
forms is schematically depicted in Fig. 1 and outlined
below:

1. (Offline) Described in Section III A. Select the
most relevant m points in parameter space (shown
as red dots in Fig. 1). The waveforms associated
with these selections (shown as red lines) provide
a nearly optimal reduced basis (RB) for this wave-
form family [32]. The resulting points and wave-
forms will be referred to as greedy data.

2. (Offline) Described in Section III B. Identify m
time samples of the full time series, which we
call empirical nodes or times, to build an inter-
polant that accurately reconstructs any fiducial
waveform. This step, called the Empirical Inter-
polation Method (EIM), only requires knowing the
reduced basis. The number of empirical nodes m
(shown as blue dots on the vertical axis in Fig. 1)
exactly equals the number of basis elements m.

3. (Offline) Described in Section III C. At each em-
pirical node perform a fit (e.g., least squares) in the
parameter dimension for the amplitude and phase
of the waveform using the greedy data from Step 1.
The fits are indicated by blue lines in Fig. 1.

4. (Online) Described in Sec. III D. Evaluate the sur-
rogate model constructed in Steps 1-3 at any pa-
rameter value λ0, shown as the yellow dot on the
horizontal axis in Fig. 1. This is accomplished by
computing the values of the amplitude and phase
fits from Step 3 at each empirical node in time for
λ = λ0 (yellow diamonds). The full time series
of the surrogate waveform is then generated using
the empirical interpolant from Step 2 (dotted black
vertical line).

We quantify the accuracy of the offline steps through
the convergence rates in (9) and (20). The accuracy of
the fast online step for the complete surrogate is esti-
mated through the errors in (31) and (32). If each offline
step is carried out with sufficiently good accuracy then
the surrogate will satisfy

hS(t;λ) ≈ h(t;λ) (1)

for all t and λ in the given ranges and retain the physics
of the original fiducial waveform family, whatever that
might be. As discussed in Sec. IV, the waveform predic-
tions by our surrogate model are indeed expected to have
a small error with respect to the fiducial one.

III. SURROGATE MODEL BUILDING

The following four subsections expand on the steps out-
lined above. Each of these steps is illustrated with an
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application to non-spinning EOB waveforms. For sim-
plicity we consider the (2, 2) mode of waveforms with
mass ratios in the range q ∈ [1, 2] and about 12,000M
in duration. We also consider a similar example with
mass ratios in [9, 10] so as not to bias toward equal mass
considerations. The multi-mode case for a large range
of mass ratios will be presented elsewhere. Important
technical details describing how these EOB waveforms
were generated are discussed in Appendix E. Figure 2
shows the q = 1 EOB waveform. Despite its complicated
structure, we shall demonstrate that waveforms such as
this one can be represented accurately by relatively little
information.

A gravitational waveform h(t;λ) is represented in
terms of its two fundamental polarizations h+(t;λ) and
h×(t;λ) by h(t;λ) = h+(t;λ) + ih×(t;λ). A natural in-
ner product is given by the complex scalar product

〈h(·;λ1), h(·;λ2)〉 =

∫ tmax

tmin

dt h∗(t;λ1)h(t;λ2), (2)

with an inherited norm given by ‖h(·;λ)‖2 =
〈h(·;λ), h(·;λ)〉. Here, h∗(t;λ) is the complex conjugate
of h(t;λ). Other inner products might be more natu-
ral for different applications [37]. Throughout this paper
we shall assume the waveforms are normalized such that
‖h(·;λ)‖ = 1.

The overlap integral of two normalized waveforms, say,
of a fiducial waveform and its surrogate model prediction,
is given by Re〈h(·;λ), hS(·;λ)〉,

Re〈h(·;λ), hS(·;λ)〉 = 1− 1

2
‖h(·;λ)− hS(·;λ)‖2 . (3)

This equality is useful to translate the error in approx-
imating a fiducial waveform by its surrogate model pre-
diction into an overlap integral that is used in some grav-
itational wave applications (c.f., Eq. (11)).

A. Step 1: Greedy selection of parameter samples
and reduced basis

We use a greedy algorithm (see Appendix A for more
details) to select m parameter points {Λi}mi=1 and cor-
responding waveforms hi(t) = h(t; Λi). The greedy
algorithm provides a nearly optimal solution to the
Kolmogorov n-width approximation problem [38, 39],
namely, given a set of waveforms

{h(t;λ) : λ ∈ T } , (4)

where T denotes a compact parameter domain, find an
m-dimensional function space that best approximates
any h(t;λ) from this set.

More precisely, if the waveforms are known at a dis-
crete set of M training points TM = {λi}Mi=1, the greedy
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FIG. 2. Time series of a normalized (2, 2) mode of an EOB
waveform for an equal mass, non-spinning black hole binary
coalescence. This waveform, corresponding to about 70 grav-
itational wave cycles, is representative of the structure en-
countered when building a surrogate model.

algorithm identifies a set of parameter values

{Λ1,Λ2, . . . ,Λm} ⊂ TM (5)

and an associated set of waveforms

{h1(t), h2(t), . . . , hm(t)} (6)

that constitutes the reduced basis. The basis is hierar-
chical in the sense that if {hi}m

′

i=1 is the basis for m′ < m
then

{hi}m
′

i=1 ⊂ {hi}mi=1. (7)

One of the key features of the greedy algorithm is its
ability to select a small number of waveforms to serve as
an accurate basis. For practical purposes of conditioning
it is useful to use an orthonormal basis {ei}mi=1, which
spans the same approximation space as (6).

With the RB in hand, every waveform in the training
set is well approximated by an expansion of the form

h(t;λ) ≈
m∑
i=1

ci(λ)ei(t) , (8)

whereas waveforms from T (even if not in the training
set) continue to be well approximated by the RB if the
training set is dense enough [32–35]. If there is sufficient
similarity amongst the members of the original set then
m � M . This is found to be the case for gravitational
waveforms [32, 34, 35].

Let ε be a user specified tolerance whose role is to
guarantee that the approximation error for waveforms in
the training set, which we will call the greedy error σm,
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is bounded by ε,

σm ≡ max
λ

min
ci∈C

∥∥∥∥h(·;λ)−
m∑
i=1

ci(λ)ei(·)
∥∥∥∥2

≤ ε . (9)

Then, the representation (8) is accurate to ε. The min-
imization over the coefficients {ci} in (9) is achieved by
orthogonal projection Pmh(t;λ) of h(t;λ) onto the span
of the basis (see Appendix A for details) so that

ci(λ) = 〈h(·;λ), ei(·)〉 . (10)

In Sec. III B we will find efficient approximations of the
optimal projection representation in (10) that approxi-
mately retains its accuracy implied by (9).

The error in (9) is directly related to the overlap be-
tween a waveform and its representation [40]

min
λ

Re〈h(·;λ),Pmh(·;λ)〉 = 1− 1

2
σm , (11)

which follows from (3). The quantity σm quantifies the
worst error of the best approximation by the basis. The
greedy algorithm is nearly optimal in the sense that if the
Kolmogorov n-width dm (defined as the smallest error (9)
achieved by a best m-dimensional function space) decays
exponentially then so does the greedy error [38, 39],

dm ≤ De−am
b

=⇒ σm ≤
√

2De−ãm
b

, (12)

where D, a, b are positive constants and ã = 2−1−2ba.

Recent work [32–35] has shown that for fixed but arbi-
trary physical and parameter ranges, a small number of
basis functions is indeed sufficient to accurately represent
any waveform of the same physical model and with an
exponentially decaying greedy error (9). Such observa-
tions are expected for functions with smooth parameter
dependence, as is the case with gravitational waveforms.
To better understand these approximation properties one
can make an analogy to the more familiar case of spectral
methods. There, exponential decay with the number of
basis elements is expected whenever there is smoothness
with the physical dimension(s) (e.g., space or time).

Let us apply the greedy algorithm to build a reduced
basis for our nominal EOB example introduced earlier.
Figure 3 shows the exponential decay of the greedy error
(9) over 501 waveforms in the training set, with only 19
RB waveforms needed to represent the EOB model to
machine precision for the mass ratios considered. Errors
of about 10−3 are already achieved with as few as 5 RB
waveforms. The distribution of selected points is shown
in Fig. 4. In Sec. III C we show how the greedy data
from these parameter selections can be used to predict
waveforms for any q in the range considered, including
(and especially) values not in the original training set.
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FIG. 3. Greedy error, as defined by (9), over 501 EOB train-
ing set waveforms with mass ratios between 1 and 2. Labels
at the dots indicate the selected mass ratios at each step in
the greedy algorithm.
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FIG. 4. Histogram of parameters selected by the greedy al-
gorithm for the reduced basis of Fig. 3.

B. Step 2: Greedy selection of time samples and
empirical interpolation

Once a basis is built in Step 1 we can express any
waveform evaluated at any time as a sum of m reduced
basis elements. In Step 2, which is shown to significantly
reduce the surrogate’s evaluation cost in Appendix F,
we now show how to leverage this knowledge to yield
a temporal prediction scheme by recasting the problem
as one of interpolation in time. Given a reduced basis
{ei}mi=1 and m evaluations of a fiducial waveform at cer-
tain times {Ti}mi=1, we wish to recover the full fiducial
waveform h(t;λ) with high accuracy for an arbitrary λ.
A proper choice of these times {Ti}mi=1 is crucial. Naively
selected times, such as those randomly or equally spaced,
do not guarantee that: i) the interpolation problem is
well-conditioned or even has a solution, and ii) the inter-
polation error is minimized with a nearly optimal con-
vergence rate.

A framework for finding a “good” set of times {Ti}mi=1

that achieve both criteria is provided by the Empirical In-
terpolation Method (EIM) [41, 42]. These special times,
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which we call empirical times or nodes, are selected as
a (sparse) subset of the waveform’s given time series (or
even the continuum). The empirical nodes are uniquely
defined by the reduced basis waveforms and only these
waveforms. Like the algorithm for building a reduced ba-
sis, the EIM is hierarchical and uses a greedy optimiza-
tion strategy to select the most representative times. For
the moment we shall assume that the empirical nodes are
known; the precise algorithm for finding them is given in
Appendix B.

The empirical interpolant, which interpolates the
waveform h(t;λ) in time for a given parameter λ, is de-
noted by Im[h](t;λ) and takes the form

Im[h](t;λ) =

m∑
i=1

Ci(λ)ei(t) . (13)

The coefficients {Ci}mi=1 are defined by requiring the in-
terpolant to equal the value of the waveform at the em-
pirical nodes,

m∑
i=1

Ci(λ)ei(Tj) = h(Tj ;λ), j = 1, . . . ,m , (14)

which is equivalent to solving an m-by-m system

m∑
i=1

VjiCi(λ) = h(Tj ;λ) , j = 1, . . . ,m (15)

for the coefficients {Ci}mi=1 where the interpolation ma-
trix

V ≡


e1(T1) e2(T1) · · · em(T1)
e1(T2) e2(T2) · · · em(T2)
e1(T3) e2(T3) · · · em(T3)

...
...

. . .
...

e1(Tm) e2(Tm) · · · em(Tm)

 (16)

is independent of the parameters λ.

The choice of empirical nodes given by the EIM algo-
rithm together with the linear independence of the re-
duced basis ensure that V in (16) is as well-conditioned
as possible and invertible [43] so that

Ci =

m∑
j=1

(
V −1

)
ij
h(Tj ;λ) (17)

is the unique solution to (14). It then follows upon sub-
stituting (17) into (13) that the empirical interpolant is

Im[h](t;λ) =

m∑
j=1

Bj(t)h(Tj ;λ) (18)

where

Bj(t) ≡
m∑
i=1

ei(t)
(
V −1

)
ij

(19)

and is independent of λ. Note that (18) is a linear com-
bination of the fiducial waveform itself evaluated at the
empirical times. The coefficients {Bi}mi=1 are built di-
rectly from the reduced basis and provide a clean of-
fline/online separation. Because of this the {Bi}mi=1 can
be pre-computed offline once the reduced basis is gener-
ated while the (fast) interpolation is computed during the
online stage from (18) when the parameter λ is specified
by the user. Evaluations of the fiducial waveform are still
needed at the arbitrarily chosen parameter λ in order to
construct the interpolant in (18). In the next subsection
we explain how to estimate the fiducial waveform at any
λ, thus approximating {h(Ti;λ)}mi=1 and completing the
construction of the surrogate model.

The empirical interpolant satisfies [44]

max
λ
‖h(·;λ)− Im[h](·;λ)‖2 ≤ Λmσm , (20)

where σm is the greedy error defined in (9) and Λm is a
computable Lebesgue-like quantity that changes slowly
with m (see Appendix B). For problems with smooth
dependence with respect to parameter variations we can
expect an exponential decay of σm with m and of the
empirical interpolant’s error.

Before describing how to estimate the values
{h(Ti;λ)}mi=1 for arbitrary λ let us assume these values
are known exactly and apply the EIM to build an empir-
ical interpolant for our fiducial EOB example introduced
earlier. Figure 5 shows all 19 empirical nodes set against
a q = 1 waveform to compare with the structure of a typ-
ical waveform. Evaluating any q ∈ [1, 2] EOB waveform
at these 19 nodes and computing (18) one can reconstruct
the full time-series of the waveform with high accuracy.
This is explicitly demonstrated in Fig. 6 where the solid
black line denotes the largest empirical interpolation er-
ror

‖h(·; q)− Im[h](·; q)‖2 (21)

as a function of the number of reduced basis ele-
ments/empirical nodes for 1,000 randomly selected EOB
waveforms drawn from q ∈ [1, 2]. Notice that this er-
ror is remarkably close to the greedy error (dashed line)
in (9) when using (10) for the coefficients. The bound in
(20) (dashed-dotted line) guarantees an error better than
10−8, which is sufficient for many GW applications.

C. Step 3: Fitting at empirical nodes

The next step is to predict waveforms at the empiri-
cal nodes {Ti}mi=1 for arbitrary parameter values λ based
only on the knowledge of the fiducial waveforms at the
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FIG. 5. Location of the empirical nodes for the fiducial family
of EOB waveforms with mass ratio q ∈ [1, 2]. Knowing the
waveform in this parameter range at these specific times is
sufficient to reconstruct the former with very high accuracy
at any other time using the empirical interpolant in (18).
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FIG. 6. A comparison of errors for the example family of EOB
waveforms. The dashed line shows the greedy error σm in (9).
The solid line shows the maximum empirical interpolant error
(21) taken over 1,000 randomly selected waveforms (i.e., not
taken from the training set) for q ∈ [1, 2]. The dash-dotted
line shows the error bound provided by the right side of (20)
and is based solely on the greedy error and Λm. All three
errors display similar decay rates.

greedy points {Λi}mi=1. To accomplish this, we fit h(Ti;λ)
with respect to λ at each Ti using only the following m
values of the reduced basis waveforms:

{h(Ti; Λj)}mj=1 . (22)

The accuracy of the fit using only this data relies, at least
partially, on the fact that the reduced basis waveforms
are chosen to be the most dissimilar from one another. Of
equal importance is our choice of fitting function which,
in principle, is arbitrary. We will focus on the choices
most effective for our nominal EOB example while others
could be more appropriate for different waveform fami-
lies.

The behavior of most astrophysically relevant gravi-
tational waveforms is highly oscillatory in time but the

phase and amplitude themselves have a relatively simple
structure. It is thus easier to perform high-accuracy fits
of the phase and amplitude than of the complex wave-
form itself. The amplitude A and phase φ are defined
through

h(t;λ) = A(t;λ)e−iφ(t;λ) . (23)

This third step then consists of finding 2m functions,
{Ai(λ)}mi=1 and {φi(λ)}mi=1, approximating the ampli-
tude and phase of the waveform. Once these fitting func-
tions have been found the approximation at each Ti is

h(Ti;λ) ≈ Ai(λ)e−iφi(λ) . (24)

Depending on the application some fitting functions
might be more useful than others. Therefore, this third
step in constructing a surrogate model is flexible in the
way that the fitting is implemented and thus in how the
surrogate is ultimately generated. This is quite a useful
feature of the method that may be especially beneficial
for building surrogate waveforms for highly precessing
black hole binaries.
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FIG. 7. Top: Amplitude (solid) and phase (dashed) of the
fiducial EOB training space waveform at the fifteenth selected
empirical time as a function of q along with the greedy data
(circles). This empirical time is T15 = 28.5M after merger and
corresponds to the largest pointwise relative error for the least
squares fit to the amplitude as quantified by (26). Bottom:
The pointwise least squares errors for the amplitude (red)
and phase (blue) at T15 evaluated for 1,000 randomly selected
waveforms. The dashed lines correspond to the maximum
pointwise error for the second empirical node T2 = −2,367M ,
which has the smallest maximum error of all the nodes.
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We now return to our nominal EOB example and per-
form a least squares fit for both the amplitude and phase
as a function of mass ratio at each empirical time using
polynomials,

Ai(q) =

αi∑
n=0

ai,nq
n , φi(q) =

βi∑
n=0

bi,nq
n (25)

where αi, βi < m are the degrees of the polynomials at
the empirical time Ti for i = 1, 2, . . . ,m. Further details
regarding how to select an optimal degree are provided
in Appendix C.

The top plot in Fig. 7 shows the amplitude and phase,
along with the greedy data points, at the fifteenth empir-
ical time node, T15, which is about 28.5M after merger.
This node corresponds to the largest pointwise error for
the relative amplitude∣∣∣∣A(Ti; q)−Ai(q)

A(Ti; q)

∣∣∣∣ (26)

for waveforms in the training set of our EOB test prob-
lem. T15 also happens to correspond to the second largest
difference for the phase,

|φ(Ti; q)− φi(q)| . (27)

The bottom plot in Fig. 7 shows the pointwise errors
(solid lines) of (26) and (27) as a function of mass ra-
tio for 1,000 randomly selected waveforms. These errors
are uniformly below 3 × 10−3. The horizontal dashed
lines show the maximum errors for the empirical node
for which (26) and (27) are smallest, which occurs for the
second empirical time T2 = −2,367M . These errors are
of order 10−5. As we will discuss later on (see Fig. 9) all
of this information translates into a mismatch of the sur-
rogate model with respect to the underlying EOB family
of < 10−7.

The quality of a fit at each empirical node, using the
greedy data, depends on the smoothness of those wave-
forms with respect to parameter variation. This is dis-
cussed in Appendix E. Here, it suffices to mention that
the fitting errors depend sensitively on accurately align-
ing the waveforms at their peaks, which affects the fits
most noticeably through merger and ringdown. This can
be seen in the top panel of Fig. 8.

Figure 8 shows the maximum of the pointwise differ-
ences from (26) and (27) for the relative amplitude (cir-
cles) and phases (crosses), respectively, evaluated at each
empirical time. We see that the amplitudes are accurate
to better than 10−5 for the entire inspiral phase until the
merger regime where the error increases to about 10−3

after which it plateaus throughout the ringdown stage.
The phase errors increase modestly during the inspiral
and likewise plateau through ringdown with errors at the
level of 10−3.

Instead of using polynomials for the fitting functions
we next consider functions inspired by the expressions for
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FIG. 8. The relative amplitude differences and phase differ-
ences of the least squares fits, as defined by (26) and (27),
maximized over the greedy mass ratios at each empirical time
for our EOB example. The top panel shows these errors when
using a polynomial least squares fit and the bottom panel
when using a fitting function inspired by the post-Newtonian
amplitude and phase. Both types of fits exhibit very low er-
rors at all of the empirical times.

the amplitude and phase through leading order and next-
to-leading order, respectively, in the post-Newtonian ex-
pansion

Ai(q) = ai,0
(q − 1)ai,1

qai,2
+ ai,3 (28)

φi(q) = ai,0
(q − 1)ai,1

qai,2

(
1 + ai,4(q + ai,5)ai,6

)
+ ai,3 .

(29)

The bottom panel of Fig. 8 shows the maximum of the
pointwise differences from (26) and (27) using these post-
Newtonian-inspired fitting functions. These fitting func-
tions have a least squares fitting error comparable to the
polynomial errors shown in the top panel. In both cases,
the fit quality decreases rapidly at the merger but still
exhibit very low errors at all of the empirical times. We
thus see in this example that the third offline step for
building the surrogate is flexible in the choice of fitting
functions. This insight could be useful for other fiducial
models such as waveforms with precession.

D. Step 4: Completing the surrogate model

Finally, our complete surrogate model hS(t;λ) for the
fiducial waveform family is given by substituting the fit-
ting approximation (24) into the empirical interpolant
(18), which yields

hS(t;λ) ≡
m∑
i=1

Bi(t)Ai(λ)e−iφi(λ) . (30)
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This is the culmination of the offline steps. Only the m
reduced basis waveforms evaluated at the m empirical
times are needed to build the surrogate model and to
predict an approximation for a fiducial waveform at any
time and parameter value. In addition, the {Bi(t)}mi=1

are computed once and for all offline; only the fitting
functions for the amplitude and phase need to be evalu-
ated during the online stage once λ is specified.

IV. ASSESSING THE SURROGATE MODEL

One of the errors of interest for the complete surrogate
model is a discrete version of the normed difference be-
tween a fiducial waveform and its surrogate, which is, for
L equally spaced time samples,

∆t

L∑
i=1

|h(ti;λ)− hS(ti;λ)|2 , (31)

where ∆t = (tmax − tmin)/(L − 1). We will sometimes
refer to this as the surrogate error. Recall, from (3) and
(11) that the square of the normed difference between
two waveforms is directly related to their overlap. Other
errors of interest are the pointwise ones for the phase and
amplitude,∣∣∣∣A(t;λ)−AS(t;λ)

A(t;λ)

∣∣∣∣ , |φ(t;λ)− φS(t;λ)| . (32)

Figure 9 shows a variety of comparisons between the
surrogate and fiducial model for our EOB test case, using
L = 16,384 time samples [45]. The top plot shows that
the surrogate error (31) is uniformly below 10−7, where
the mass ratio q = 1.068 corresponds to the largest error.
The middle panel of Fig. 9 shows the fiducial EOB and
surrogate waveforms for q = 1.068. Both waveforms are
visually indistinguishable and, from the bottom panel of
the same figure, we see that both amplitude and phase
pointwise errors (32) are indeed very small. The largest
errors are . 10−3 and are smaller than: i) the differences,
for the same quantities, between the EOB model and the
NR simulations used to calibrate the former [24], and ii)
the numerical error of those NR simulations (see, e.g.,
[46]) and of more recent state-of-the-art simulations [16],
as quantified through self-convergence tests. As discussed
in Sec. III C and App. E, these maximum errors for the
surrogate take place shortly after merger and are directly
related to the accuracy with which one can determine the
peak amplitude of the fiducial waveforms used to build
the surrogate.

In Appendix D we derive the following error bound for
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FIG. 9. Top: Surrogate model error defined by (31), which
is related to the overlap error through (3), for 1,000 randomly
selected mass ratios. The mass ratio yielding the largest
surrogate model error is q = 1.068. Middle: The fiducial
EOB waveform and its surrogate prediction for q = 1.068.
There is visual agreement throughout the entire duration of
≈ 12,000M . Bottom: The fractional errors (32) in the am-
plitude and the phase difference between the fiducial EOB
waveform and its surrogate model prediction for q = 1.068.
The differences are smaller than the errors intrinsic to the
EOB model itself as well as those of state-of-the-art numeri-
cal relativity simulations.

the discrete norm (31),

∆t

L∑
i=1

|h(ti;λ)− hS(ti;λ)|2

≤ Λmσm + Λm∆t

m∑
i=1

(
h(Ti,λ)− hS(Ti,λ)

)2
. (33)

This bound identifies contributions from two sources.
The first term in (33) describes how well the empirical in-
terpolant (i.e., the basis and empirical nodes) represents
h(t;λ). The expected exponential decay of the greedy er-
ror σm with m along with a slowly growing Lebesgue con-
stant Λm results in this term being very small. The term
Λmσm corresponds exactly to the curve labeled “EIM
Bound” in Fig. 6. The second term in (33) is related
to the quality of the fit. Incidentally, the fitting step
has the dominant source of error in the surrogate model
compared to the first two steps of generating the reduced
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basis and build the empirical interpolant (see also the dis-
cussion in Section III C).

V. COST AND SPEEDUP FOR SURROGATE
MODEL PREDICTIONS

Next we discuss the cost (in terms of operation counts)
to evaluate a surrogate model. We also present the large
speedups that can be achieved when evaluating a sur-
rogate model for our nominal EOB example compared
to generating a fiducial waveform using the EOB solver
as implemented in the LAL software package, which we
refer to as the EOB-LAL code.

The complete surrogate model is given in (30) where
the m coefficients Bi(t) in (19) and the 2m fitting func-
tions {Ai(λ)}mi=1 and {φi(λ)}mi=1 are assembled offline as
described in Sections III A, III B, and III C. In order to
evaluate the surrogate model for some parameter λ0 we
only need to evaluate each of those 2m fitting functions at
λ0, recover the m complex values {Ai(λ0)e−iφi(λ0)}mi=1,
and finally perform the summation in (30). Each Bi(t)
is a complex-valued time series with L samples. There-
fore, the overall operation count to evaluate the surrogate
model at each λ0 is (2m− 1)L plus the cost to evaluate
the fitting functions.

Figure 10 shows timing results for the nominal EOB
test case with m = 10 and a surrogate error (31) uni-
formly below 10−7 for all mass ratios between 1 and 2.
The top panel confirms that the cost of evaluating the
surrogate model is linear in the number of samples L, as
discussed above.
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FIG. 10. Top: Average time to generate a single fiducial EOB
waveform from a standard EOB code (circles) and through
evaluation of its surrogate (crosses). Here we show results
for the nominal example when using polynomial least squares
fits for the amplitudes and phases. Bottom: The speedup,
defined as the ratio of waveform generation times for EOB-
LAL code to the surrogate model.

Depending on the sampling rate, the speedup in eval-

uating the surrogate model compared to generating an
EOB waveform with the EOB-LAL code is between two
and almost four orders of magnitude. For a sampling
rate of 211 = 2,048 Hz, which is the rate used in the
S5 and S6 searches for gravitational waves from binary
black holes by the LIGO-VIRGO-GEO600 collaboration
[25, 47], the speedup is ≈ 2,300 as shown in the bottom
panel of Fig. 10. This is about three orders of magnitude
faster than the EOB-LAL code.

The speedups indicated here are not an artifact of
studying waveforms from binaries with nearly equal
masses. Repeating these experiments for waveforms with
mass ratios from 9 to 10 (chosen so that the typical du-
ration ≈ 11,000M and number of waveform cycles ≈ 80
are comparable to our nominal EOB example), we find
that only m = 15 reduced basis waveforms are needed to
span the space with σm = 10−11. The resulting surro-
gate model has an error from (31) of . 8 × 10−9 with a
corresponding speedup in the online stage of about 5,000
at a sampling rate of 2,048 Hz. Again, the speedup is
about three orders of magnitude.

As already mentioned in Sec. IV, the fitting step for
building the surrogate potentially introduces the largest
errors in the surrogate model. For the EOB example,
these largest errors are still small (see Fig. 9) and sug-
gest that one does not need to include all 19 basis wave-
forms/empirical times in order to yield a sufficiently ac-
curate approximation. The top panel of Fig. 11 shows the
surrogate error in (31), maximized over 1,000 randomly
selected waveforms, as a function of the number of se-
lected RB waveforms m. After m = 7 there is little to
be gained by including more basis waveforms because the
surrogate error is roughly constant until m = 19 while,
from the bottom panel of Fig. 11, its evaluation time
continues to grow with m. The dash-dotted line in the
top panel shows the expected error computed by aver-
aging the surrogate’s error bound (33) over q. Taking
the average (maximum) of (33) over q we are guaranteed
surrogate errors of better than 10−5 (5× 10−5), which is
sufficient for many GW applications. The actual errors,
which might be inaccessible for some fiducial waveform
models, are better than 10−7 (c.f. Fig. 9 and the solid
curve in the top panel of Fig. 11).

VI. CONCLUDING REMARKS AND OUTLOOK

We introduced a solution to the problem of quickly
and accurately generating predictions for a given fam-
ily of gravitational waveforms. The solution constructs a
surrogate for this fiducial set of waveforms in three offline
steps. In the first step, a reduced basis is generated that
spans the space of waveforms in the given range of pa-
rameters. In the second step, an application-specific (i.e.,
empirical) interpolant is constructed using only these m
reduced basis waveforms. The empirical interpolation
method selects a corresponding set of m times that are
used to build the interpolant but requires knowing the
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FIG. 11. Top: The greedy error in (9) computed for 1,000
randomly selected waveforms (dashed) and the error (31) of
the resulting surrogate model (solid) as a function of the num-
ber of basis waveforms m. Due to fitting errors (see Sec. III C)
the surrogate error is roughly constant after m = 7 implying
little practical gain in using more than 7 basis waveforms. The
dash-dotted line shows an averaged error bound provided by
the right side of (33). Bottom: Average time to generate
a surrogate waveform (at a sampling rate of 2,048 Hz) as a
function of m. As expected there is only mild growth with m.

fiducial waveform at any parameter value at those times
in order to evaluate the interpolant. In the third step,
we complete the offline part by implementing a fit for the
parametric dependence of the waveform’s phase and am-
plitude at each empirical time. In this way, the value of
the fiducial waveform at each empirical time can be esti-
mated and then fed into the empirical interpolant. The
result of these three offline stages is an accurate surro-
gate model (30) for the underlying family of waveforms
that is cheap to evaluate for any parameter value in the
considered range.

The standard paradigm for fast online evaluation of
new solutions within reduced order modeling frameworks
(see, e.g., [48] for a review) is to numerically solve a small
problem that is essentially a projection of the original
problem onto the basis built in the offline stage. Nonlin-
ear terms or non-affinely parametrized problems can be
dealt with using the EIM [49]. This paradigm has some
advantages. For example, for many problems of interest
rigorous error bounds can be guaranteed for the resulting
output, which is often referred to as a certified approach.

In this paper we deviated from this standard course
and sought a different and more heuristic one for two
major reasons specific to gravitational waveforms. First,
the complexity of projecting the full nonlinear Einstein
equations onto a basis to obtain a certified approach is
highly nontrivial. Second, our goal has been to develop a
non-intrusive approach that does not resort to manipu-
lating, in any way, the original equations and codes that
generate the fiducial waveform model. Of course, such

equations have to be used to generate the fiducial wave-
forms in the offline stage in order to build the reduced
basis to start the construction of the surrogate model.
However, the approach introduced in this paper does not
intrude upon or require editing those codes.

In order to demonstrate the basic ideas and methods
in this paper, we have focused on surrogate models for
single-mode, non-spinning black hole binary EOB wave-
forms with mass ratios in the ranges [1, 2] and [9, 10]. For
these examples, we find that evaluating the surrogate is
three orders of magnitude faster than generating EOB
waveforms in the standard way. However, the construc-
tion of the surrogate model is not limited to such a short
range of mass ratios, to non-spinning binaries, nor to
single-mode waveforms. Regarding the range of mass ra-
tios (or other parameters), depending on the application
and the target accuracy, a partitioning of the parameter
space might provide faster online queries. This issue is fa-
miliar when solving differential equations where one may
choose to use a single domain or utilize a domain decom-
position, as with a spectral or hp-element approach (see,
e.g., [50, 51]). Similar tools for parameter space sub-
domain decomposition, known as hp-greedy algorithms,
have been employed as an adaptive sampling strategy
for large problems (see [52–55] for further details).

Finally, the method presented in this paper for building
a surrogate model can be applied to other waveform fam-
ilies, including precessing inspiral waveforms and multi-
mode inspiral-merger-ringdown waveforms such as those
from NR simulations of binary black hole coalescences.
We anticipate extremely large speedup factors for pre-
dicting a NR waveform with a surrogate model compared
to solving the Einstein equations for the same parameters
because the cost of evaluating the surrogate is indepen-
dent of the offline costs required to build it. Given that
a single production-quality simulation for a non-spinning
equal mass binary takes around ∼ 104 − 105 hours and
predicting a single-mode waveform with a NR-based sur-
rogate model takes about 10−4 seconds (as implied by
Fig. 11), it follows that one may expect speedup factors
of ∼ 1011 or more.
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Appendix A: The reduced basis method

We use a greedy algorithm to build a reduced ba-
sis (RB), which accurately approximates any fiducial
waveform within the given parameter ranges (see, e.g.,
Ref. [32]). The greedy algorithm, outlined in Algorithm
1, takes as inputs a discretization of the parameter space
T ≡ {λi}Mi=1 (or the training space) and the associated
waveforms, an arbitrary parameter Λ1 ∈ T (or seed),
and a threshold error ε for a target representation accu-
racy (or greedy error). The output consists of the m RB
waveforms and m greedy points.

Algorithm 1 Greedy algorithm for reduced basis

1: Input: {λi , h(·;λi)}Mi=1, ε

2: Set i = 0 and define σ0 = 1
3: Seed choice (arbitrary): Λ1 ∈ T , e1 = h(·; Λ1)
4: RB = {e1}
5: while σi ≥ ε do
6: i = i+ 1
7: σi = maxλ∈T ‖h(·;λ)− Pih(·;λ)‖2
8: Λi+1 = argmaxλ∈T ‖h(·;λ)− Pih(·;λ)‖2
9: ei+1 = h(·; Λi+1)−Pih(·; Λi+1) (Gram-Schmidt)

10: ei+1 = ei+1/‖ei+1‖ (normalization)
11: RB = RB ∪ ei+1

12: end while

13: Output: RB {ei}mi=1 and greedy points {Λi}mi=1

The naive implementation of the classical Gram-
Schmidt procedure can lead to a numerically ill-
conditioned algorithm. This is related to the fact that
the Gramian matrix, which would have to be inverted,
can become nearly singular [56]. To overcome this we
use an iterated Gram-Schmidt algorithm or a QR de-
composition in step 9. See [57, 58] for discussions about
the conditioning and numerical stability of different or-
thonormalization procedures.

As mentioned in Sec. III A, minimization over the co-
efficients {ci} in (8) is satisfied by orthogonal projection
Pmh(t;λ) of h(t;λ) onto the span of the basis. For ex-
ample, for an orthonormal basis∥∥∥∥∥h(·;λ)−

m∑
i=1

ci(λ)ei(·)

∥∥∥∥∥
2

=
∥∥h(·;λ)

∥∥2 −
m∑
i=1

∣∣〈h(·;λ), ei(·)〉
∣∣2

+

m∑
i=1

∣∣〈h(·;λ), ei(·)〉 − ci(λ)
∣∣2 , (A1)

which takes its global minimum when

ci(λ) = 〈h(·;λ), ei(·)〉 . (A2)

After applying the greedy algorithm to build a reduced
basis and find the greedy points, we check that the basis
accurately approximates the continuum space of wave-
forms for the given parameter range by verifying at a
randomly chosen set of test points.

Appendix B: The empirical interpolation method

The Empirical Interpolation Method (EIM) provides a
sparse subset of empirical time (or frequency) nodes from
which it is possible to reconstruct the waveform at any
other time with very high accuracy using an application-
specific interpolant. The selection of the empirical time
nodes and the construction of the empirical interpolant
proceeds using a greedy algorithm, which is hierarchi-
cal and is applicable to unstructured meshes in several
dimensions.

Consider a basis {ei}mi=1 (e.g., a RB) whose span ap-
proximates the functions of interest. Let {ti}Li=1 de-
note a set of L time samples and define the L-vector
~t = (t1, t2, . . . , tL)

†
. For compactness of notation, denote

other functions evaluated at these time samples as vec-

tors so that, for example, ~h(λ) := h(~t;λ) and ~ei := ei(~t).

Given an input of m evaluated basis functions {~ei}mi=1

the output of the EIM algorithm is a set of m empirical
nodes

{Ti}mi=1 ⊂ {ti}Li=1 (B1)

selected as a subset of {ti}Li=1. The empirical interpolant
is constructed in step 5 of Algorithm 2. At the jth it-
eration the empirical interpolant is built from the first j
basis functions and nodes,

Ij [h](t;λ) =

j∑
i=1

Ci(λ)ei(t) , (B2)

where the Ci coefficients are solutions to the j-point in-
terpolation problem

Ij [h](Tk;λ) = h(Tk;λ) (B3)

for all λ and where k = 1, . . . , j.
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Algorithm 2 The Empirical Interpolation Method

1: Input: {~ei}mi=1, {ti}Li=1

2: i = argmax|~e1| (argmax returns the largest entry of
its argument).

3: Set T1 = ti
4: for j = 2→ m do
5: Build Ij−1[ej ](~t) from (B2) and (B3)

6: ~r = Ij−1[ej ](~t)− ~ej
7: i = argmax|~r|
8: Tj = ti
9: end for

10: Output: EIM nodes {Ti}mi=1 and interpolant Im

Let us define a discrete norm

‖h‖d = ∆t

L∑
i=1

h∗(ti)h(ti) , (B4)

for L equally spaced time samples. The empirical inter-
polant’s error is then directly related to the greedy error
(9) through [44]

‖h− Im[h]‖2d = ‖(I− Im)(h− Pmh)‖2d
≤ ‖(I− Im)‖2d‖h− Pmh‖2d
= ‖Im‖2d‖h− Pmh‖2d
≤ Λmσm , (B5)

where the first equality follows from Im[Pmh] = Pmh, I is
the identity matrix, ‖(I−Im)‖2d = ‖Im‖2d holds whenever
the operator norm is induced by the vector norm (as is
the case here, see Refs. [59, 60]) and

Λm = ‖Im‖2d = max
‖h‖d=1

‖Im[h]‖2d (B6)

is a computable Lebesgue-like quantity that generally
changes slowly with m. For problems with smooth de-
pendence with respect to parameter variations we can
expect an exponential decay of σm with m and, from the
left side of (20), of the EIM’s error.

In practice, Λm is computed from the matrix represen-
tation of B from (19),

B = EV −1 , (B7)

where each column of E = [~e1, . . . , ~em] is an evaluated
reduced basis function and V is the interpolation ma-
trix defined in (16). The matrix operator B, as written

above, acts on an m-vector h(~T ;λ) whose components
are evaluations of h at the empirical nodes.

Appendix C: Details of polynomial least squares

When performing a least squares fit we must select the
degree nLS of each of the 2m least squares polynomials,
balancing accuracy and stability of the resulting fit. For
each fit there are m greedy data points so nLS < m.
A small value of nLS would result in a low accuracy
fit while too large of a value can exhibit Runge’s phe-
nomenon [61]. Furthermore, a large value of nLS can fit
(numerical) noise thereby leading to low quality fits (this
is sometimes called overfitting [62]). Reference [63] pro-
vides a computable expression for the largest nLS that
avoids this phenomenon and gives an error estimate for
the resulting fit.

For our nominal EOB example we proceed in a
straightforward way. We construct m separate fits (using
only the greedy data) for all degrees 0 ≤ nLS < m and
we select the one that minimizes the sum of the squared
residuals relative to the training set data. This additional
offline work guarantees, in a simple way, that each poly-
nomial fit has the optimal degree. Figure 12 shows the re-
sults for our EOB test problem. We see that for empirical
times in the early inspiral the optimal polynomial degrees
are relatively large and decrease until merger and ring-
down. This is a consequence of noisy data stemming from
discrete uncertainties in locating the amplitude peak (see
App. E for further details).
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FIG. 12. The optimal degree of each polynomial from a least
squares fit at each empirical time. Out of a possible maximum
of nLS = 19, polynomial degrees between 9 and 14 are most
often selected during the inspiral phase. The degree of the
first fit for the phase is zero because the initial phases are
chosen to vanish for all mass ratios.

Appendix D: Surrogate error estimates

In this appendix we derive the error bounds shown in
(33) for the surrogate model. We differentiate between
the surrogate waveform model hS(t;λ), whose computa-
tion requires an estimate for the waveform at each empir-
ical node Ti, from the empirical interpolant Im[h](t;λ),

whose computation assumes the exact (fiducial) values ~h.
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For any λ we have,

‖Im[h]− hS‖2d = ‖Im[h− hS]‖2d
≤ Λm‖h(~T )− hS(~T )‖2d

= Λm∆t

m∑
i=1

[h(Ti)− hS(Ti)]
2

(D1)

with Λm being the same constant defined in (B6). The

first equality follows from Im[hS(~T )] = hS(~t). The sec-
ond line follows from the empirical interpolant’s matrix
representation (B7). The error in approximating an un-
derlying model h(t;λ) by the surrogate hS(t;λ) is, for
any λ,

‖hS − h‖2d ≤ ‖hS − Im[h]‖2d + ‖Im[h]− h‖2d

≤ Λm∆t

m∑
i=1

[h(Ti)− hS(Ti)]
2

+ Λmσm ,

(D2)

which follows from the error bounds (D1) and (B5) (or
(20)) as well as the triangle inequality. Notice that Λm
and σm are computable quantities as are the differences
h(Ti)− hS(Ti), which are only due to least square fitting
errors.

Appendix E: On generating the fiducial EOB
waveform family

In this paper we demonstrated how to build a surro-
gate using an EOB model of non-spinning binary black
hole coalescence waveforms. Here, we discuss some of
the technical details regarding how these EOB waveforms
were generated.

The specific version of the model that we used is from
Ref. [24] and implemented in the routine EOBNRv2 as
part of the publicly available LIGO Analysis Library
(LAL) Suite [64]. Other versions and models are equally
applicable (e.g. [26]). In its simplest description, the code
takes as input a starting frequency fmin and the mass
components m1 and m2. From initial conditions, de-
termined through post-Newtonian expressions, the EOB
differential equations are solved to give the system’s or-
bital evolution until merger, which is defined to be the
time at which the orbital frequency begins to decrease.
From the compact binary system’s orbit a gravitational
wave is generated up to the time of merger, after which
quasinormal modes are attached.

Our nominal EOB example uses a training space of
mass ratios q ∈ [1, 2]. We sampled this parameter
range with 501 equally spaced points, solving the orig-
inal model at each q using the aforementioned code. We
checked that this number of training set samples was
dense enough to reach the convergent regime for building
a faithful reduced basis representation.

We generated the EOB waveforms with fmin = 9Hz

and m1 + m2 = 80M�, which corresponds to roughly
65−70 waveform cycles before merger in the (2, 2) mode.
We avoided generating short waveforms (where the ini-
tial radial separation is less than 20M) because the ODE
initial data could become less accurate. The waveform’s
coalescence phase was determined implicitly through ini-
tial data instead of specifying a particular value [65]. The
relevant (2, 2) modes h22

+ (t) and h22
× (t), as opposed to

their spin weighted values, comprised the training set.

Waveforms generated by EOBNRv2 are automatically
aligned at fmin and thus have lengths that depend on
their mass ratio. A typical example is shown in the top
panel of Fig. 13. We have found that, when applied to a
set of waveforms with varying lengths, the greedy error
(9) has a very slow decay rate as indicated by the bottom
panel of Fig. 13.

To overcome this, we shift each waveform in time so
that their peak amplitudes are aligned. We first align all
waveforms in the training set in this way and then “chop
off” the beginning portions so that all waveforms have a
length (from start to peak amplitude) equal to that of the
shortest waveform (here, q = 1). Next, we adjust each
waveform’s phase (23) to be initially zero. The benefits of
waveform alignment are evident from the curve in Fig. 3,
which should be compared with the pre-alignment case
shown in the bottom panel of Fig. 13. For example, to
achieve a greedy error of 10−7 one needs ≈ 7 (400) with
(without) peak alignment.
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FIG. 13. Top: EOB waveforms for q = 1, 2 starting at the
same initial frequency but not aligned at the peak amplitudes.
Bottom: Not aligning the waveforms results in more reduced
basis elements needed to accurately span the space of wave-
forms. Here we see that nearly all 501 points in the training
space are selected whereas only 19 points are required if the
waveforms are aligned at the peak amplitude (compare with
Fig. 3).
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Aligning the waveforms in the manner discussed above
is expected to depend smoothly on the mass ratio q since
the time of maximum amplitude, measured from the start
of an orbital evolution with a fixed fmin, is expected
to depend smoothly on q. In practice, waveforms are
only known at time intervals ∆t so that each waveform’s
peak time is determined within ∆t. Consequently, align-
ing discrete waveforms introduces some degree of “non-
smoothness.” We initially found the surrogate’s error
to be dominated by this effect. To overcome this diffi-
culty, we generated each waveform on a temporal grid
of spacing ∆tfine, which allowed the time of maximum
amplitude to be resolved within ∆tfine. Next, we down-
sampled each waveform to a sampling rate of interest, say
2,048Hz, such that the peak was located on the downsam-
pled grid. Once a downsampled waveform is generated,
neither building nor evaluating the surrogate carries a
cost that depends on ∆tfine in any way. Such observa-
tions are not unique to surrogate modeling. Indeed, other
applications that align waveforms, especially those that
need (or expect) some degree of smoothness with para-
metric dependence, will encounter similar issues. Figure
14 shows how the surrogate error in (31) for our EOB
example changes with the grid spacing ∆tfine. In this pa-
per, the smooth parameter dependence and the aligning
of the waveforms at the peak amplitude combine to give
fast convergence of the surrogate model to the fiducial
one.
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FIG. 14. The dependence of the error (31) when using the
surrogate to model an EOB waveform (with q = 1.068 from
Fig. 9) as a function of the resolution (i.e., time steps) of the
peak amplitude. The trend is linear in ∆t/M . The resolution
leads to an uncertainty in estimating the peak amplitudes
and thus into aligning the waveforms. This is the dominant
source of error in the surrogate model that translates directly
into errors in the fits of the last offline step for building the
surrogate.

Appendix F: Other approaches for waveform
prediction

In this paper we provided a three-step solution for
quickly and accurately predicting gravitational wave-
forms within any given physical model. Here, we dis-
cuss a few other approaches that could have been taken
instead, which include: i) interpolating the projection

coefficients {ci(λ)}mi=1, defined from (10), in λ, ii) inter-
polating the (complex) waveforms {h(Ti;λ)}mi=1 at each
empirical time, and iii) fitting the amplitudes and phases
at all times. The first approach is an alternative to the
empirical interpolation in Step 2 and the fitting in Step
3, the second approach is an alternative to the fitting in
Step 3 (Sec. III C), and the third approach is an alterna-
tive to empirical interpolation in Step 2 (Sec. III B). We
consider these in turn.

The first alternative is to build an interpolating (e.g.,
Chebyshev) grid in λ for each ci(λ). This approach was
carried out in Refs. [66, 67] for inspirals (in the stationary
phase approximation in the frequency domain) and phe-
nomenological waveforms for large chirp masses. Prob-
lems with such an approach include: i) waveforms from
binaries with many GW cycles require increasingly dense
interpolation grids [67], ii) the number of grid points
scales exponentially with the number of parameter di-
mensions, iii) standard grid-based interpolation is not
hierarchical and dictates sampling locations at predeter-
mined points that are not tailored to the waveform family
of interest, and iv) grids that are essential to resolving
one projection coefficient may not be useful for resolving
another projection coefficient. Finally, the projection co-
efficients can be poorly behaved as functions of λ because
they stem from nontrivial overlaps between waveforms
and the basis. This is confirmed using our nominal EOB
example, as shown in Fig. 15 where some of the coeffi-
cients become noisy, and also in Ref. [67]. Furthermore,
using only the m greedy points, which comprise an un-
structured and under-sampled grid for this problem, ex-
acerbates many of the aforementioned problems.
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FIG. 15. The curves depict a variety of projection coefficients
ci(q) along with the greedy data as a function of mass ra-
tio for our EOB example case introduced in Sec. III. Only
a representative few curves are shown. The top panel shows
the kind of structure that the coefficients have, thereby pre-
venting accurate global (polynomial) fits without additional
data points. The bottom panel shows the transition in the
behavior of these functions with mass ratio from smooth to
noisy.
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The second alternative is to interpolate in λ the com-
plex waveforms at each empirical time. This approach
has the same problems as interpolating the projection
coefficients discussed above. Figure (16) shows the struc-
ture of the waveforms as a function of mass ratio at sev-
eral empirical times in our nominal EOB example.
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FIG. 16. The curves depict the values of the real parts of
the waveforms along with the greedy data as a function of
the mass ratio for our EOB example case. Only curves at
a few representative empirical times are shown. While there
is less structure here than appears in the coefficients shown
in Fig. 15, the majority of functions still require additional
sampling to be accurately resolved by global polynomial fits.

The third alternative is to perform fits for the wave-
form amplitude and phase at all time samples instead
of the ones dictated by the EIM. It is instructive to
compare the operation counts for the online evaluation
between this all-times fitting alternative and our EIM-
based method. If cfit is the operation count of the fitting

functions at each time, taken to be constant for simplic-
ity, then the dominant operation count is 2cfitL for the
all-times fitting and 2m(L + cfit) using EIM and fitting
at each empirical time. Therefore, making the reason-
able assumption that m � L, the EIM-based approach
is more efficient whenever

cfit & m. (F1)

In one parameter dimension, the standard way of eval-
uating a polynomial fit of degree n is through Horner’s
algorithm [68], which has an optimal operation count of
2n. It would then seem to follow from (F1) that the on-
line evaluation cost of the EIM-based approach is compa-
rable to fitting at all L times. However, operation counts
can be misleading as they do not take into consideration
other aspects of an algorithm’s implementation that are
also relevant for the total execution time. We conducted
numerical experiments with our nominal EOB example
and found that, for our particular implementation, fitting
at all L ≈ 10,000 samples is between 20 and 1,000 times
slower. These timing experiments depend sensitively on
both the number of surrogate basis/nodes as well as using
“vectorized” for-loops. Therefore, the actual online eval-
uation cost in the examples considered in this paper are
consistently an order of magnitude or more faster than
what a naive operation count would suggest.

The operation count for evaluating polynomials grows
with the dimensionality. While the most efficient scheme
for evaluating multivariate polynomials is not presently
known [69], it is an active area of research. In general,
(F1) is easily met by surrogate models in higher param-
eter dimensions and we expect the EIM-based surrogate
approach to be more efficient than one based on fitting
at all output times. In addition, the cost to construct L
separate fits in higher parameter dimensions could make
this offline step prohibitively expensive.

[1] C. M. Will, Living Rev.Rel. 9, 3 (2006), arXiv:gr-
qc/0510072.

[2] I. H. Stairs, Living Rev.Rel. 6, 5 (2003), arXiv:astro-
ph/0307536.

[3] J. A. Gonzalez, U. Sperhake, B. Bruegmann, M. Han-
nam, and S. Husa, Phys. Rev. Lett. 98, 091101 (2007),
arXiv:gr-qc/0610154.

[4] J. A. Gonzalez, M. D. Hannam, U. Sperhake, B. Brueg-
mann, and S. Husa, Phys. Rev. Lett. 98, 231101 (2007),
arXiv:gr-qc/0702052.

[5] F. Herrmann, I. Hinder, D. Shoemaker, P. Laguna, and
R. A. Matzner, (2007), arXiv:gr-qc/0701143.

[6] F. Herrmann, I. Hinder, D. Shoemaker, and P. Laguna,
Class. Quantum Grav. 24, S33 (2007).

[7] F. Herrmann, I. Hinder, D. M. Shoemaker, P. Laguna,
and R. A. Matzner, Phys. Rev. D76, 084032 (2007),
arXiv:0706.2541.

[8] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Mer-
ritt, Phys.Rev.Lett. 98, 231102 (2007), arXiv:gr-

qc/0702133.
[9] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Mer-

ritt, Astrophys. J. 659, L5 (2007), arXiv:gr-qc/0701164.
[10] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Mer-

ritt, Astrophys.J. 659, L5 (2007), arXiv:gr-qc/0701164.
[11] C. O. Lousto and Y. Zlochower, Phys.Rev. D79, 064018

(2009), arXiv:0805.0159.
[12] L. Rezzolla, R. P. Macedo, and J. L. Jaramillo,

Phys.Rev.Lett. 104, 221101 (2010), arXiv:1003.0873.
[13] A. H. Mroue et al., (2013), arXiv:1304.6077.
[14] L. Pekowsky, R. O’Shaughnessy, J. Healy, and D. Shoe-

maker, (2013), arXiv:1304.3176.
[15] P. Ajith et al., Class.Quant.Grav. 29, 124001 (2012),

arXiv:1201.5319.
[16] The NRAR Collaboration, I. Hinder et al., (2013),

arXiv:1307.5307.
[17] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006

(1999), arXiv:gr-qc/9811091.
[18] P. Ajith et al., Class. Quantum Grav. 24, S689 (2007),



17

arXiv:0704.3764.
[19] T. Damour and A. Nagar, Fundam.Theor.Phys. 162, 211

(2011), arXiv:0906.1769.
[20] A. Buonanno et al., Phys.Rev. D79, 124028 (2009),

arXiv:0902.0790.
[21] Y. Pan et al., Phys. Rev. D81, 084041 (2010),

arXiv:0912.3466.
[22] L. Santamaria et al., Phys. Rev. D82, 064016 (2010),

arXiv:1005.3306.
[23] R. Sturani et al., J.Phys.Conf.Ser. 243, 012007 (2010),

arXiv:1005.0551.
[24] Y. Pan et al., Phys.Rev. D84, 124052 (2011),

arXiv:1106.1021.
[25] LIGO Scientific Collaboration, Virgo Collaboration,

J. Abadie et al., Phys.Rev. D83, 122005 (2011),
arXiv:1102.3781.

[26] T. Damour, A. Nagar, and S. Bernuzzi, Phys. Rev. D87,
084035 (2012), arXiv:1212.4357.

[27] A. Taracchini et al., Phys.Rev. D86, 024011 (2012),
arXiv:1202.0790.

[28] Y. Pan et al., (2013), arXiv:1307.6232.
[29] D. A. Brown, I. Harry, A. Lundgren, and A. H. Nitz,

Phys. Rev. D86, 084017 (2012), arXiv:1207.6406.
[30] C. R. Galley, F. Herrmann, J. Silberholz, M. Tiglio, and

G. Guerberoff, Class. Quantum Grav. 27, 245007 (2010),
arXiv:1005.5560.

[31] K. Cannon et al., Phys. Rev. D82, 044025 (2010),
arXiv:1005.0012.

[32] S. E. Field et al., Phys. Rev.Lett. 106, 221102 (2011),
arXiv:1101.3765.

[33] K. Cannon, C. Hanna, and D. Keppel, Phys.Rev. D84,
084003 (2011), arXiv:1101.4939.

[34] S. Caudill, S. E. Field, C. R. Galley, F. Herrmann,
and M. Tiglio, Class. Quant. Grav. 29, 095016 (2012),
arXiv:1109.5642.

[35] S. E. Field, C. R. Galley, and E. Ochsner, Phys. Rev. D
86, 084046 (2012).

[36] The steps taken are exactly the same for waveforms in
the frequency domain.

[37] For data analysis applications other inner products may
be natural. For matched filtering purposes, for example,
the natural one would be the frequency domain overlap
weighted by the inverse of the detector’s power spectral
density.

[38] P. Binev et al., SIAM J. Math. Analysis 43, 1457 (2011).
[39] R. DeVore, G. Petrova, and P. Wojtaszczyk, Arxiv

preprint arXiv:1204.2290 (2012).
[40] Strictly speaking, (11) is an exact equality if Pmh is nor-

malized. One can normalize it without loss of generality
or, alternatively, take the point of view that for the high
accuracies achieved by the reduced basis, (11) should be
seen as an approximate equality, at the level of machine
precision in most cases.

[41] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera,
Comptes Rendus Mathematique 339, 667 (2004).

[42] Y. Maday, N. C. Nguyen, A. T. Patera, and S. H. Pau,
Communications on Pure and Applied Analysis 8, 383

(2009).
[43] Linear independence of the basis functions does not imply

linear independence of vectors which come from evalua-
tions of those functions.

[44] H. Antil, S. E. Field, F. Herrmann, R. H. Nochetto, and
M. Tiglio, (2012), arXiv:1210.0577.

[45] See Appendix E for details about EOB waveform gener-
ation.

[46] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szi-
lagyi, Phys. Rev. D86, 084033 (2012), arXiv:1206.3015.

[47] LIGO Scientific Collaboration, Virgo Collaboration,
J. Aasi et al., Phys. Rev. D87, 022002 (2013),
arXiv:1209.6533.

[48] A. Quarteroni, G. Rozza, and A. Manzoni, Journal of
Mathematics in Industry 1, 1 (2011).

[49] S. Chaturantabut and D. C. Sorensen, SIAM Journal on
Scientific Computing 32, 2737 (2010).

[50] G. Karniadakis and S. Sherwin, Spectral/hp Element
Methods for Computational Fluid Dynamics: Second Edi-
tionNumerical Mathematics and Scientific Computation
(OUP Oxford, 2005).

[51] J. S. Hesthaven and T. Warburton, J. Comput. Phys.
181, 186 (2002).

[52] M. Fares, J. Hesthaven, Y. Maday, and B. Stamm, Jour-
nal of Computational Physics 230, 5532 (2011).

[53] J. Eftang, A. Patera, and E. M. Ronquist, 76, 179 (2011).
[54] J. L. Eftang, D. B. Huynh, D. J. Knezevic, and A. T.

Patera, J. Sci. Comput. 51, 28 (2012).
[55] J. L. Eftang and B. Stamm, International Journal for

Numerical Methods in Engineering 90, 412 (2012).
[56] J. M. Taylor, Proceedings of the Royal Society of Edin-

burgh: Section A Mathematics 80, 45 (1978).
[57] A. Ruhe, Linear Algebra and its Applications 5253, 591

(1983).
[58] L. Giraud, J. Langou, M. Rozlonk, and J. v. d. Eshof,

Numerische Mathematik 101, 87 (2005).
[59] J. Xu and L. Zikatanov, Numer. Math. 94, 195 (2003).
[60] D. B. Szyld, Numer. Algorithms 42, 309 (2006).
[61] J. F. Epperson, Am. Math. Monthly 94, 329 (1987).
[62] T. G. Dietterich, Ensemble methods in machine learning,

in Proceedings of the First International Workshop on
Multiple Classifier Systems, MCS ’00, pp. 1–15, London,
UK, UK, 2000, Springer-Verlag.

[63] A. Cohen, M. A. Davenport, and D. Leviatan, ArXiv
e-prints (2011), arXiv:1111.4422.

[64] git hash 59c12886b026c863397f191e6c2ca69ef3498616.
[65] This can be achieved by setting the value of the EOB-

NRv2 variable sSub to zero.
[66] K. Cannon, J. Emberson, C. Hanna, D. Keppel, and

H. Pfeiffer, (2012), arXiv:1211.7095.
[67] J. Kaye, The interpolation of gravitational

waveforms, Thesis, Brown University, 2012,
www.dam.brown.edu/scicomp/reports/2013-8/.

[68] W. G. Horner, Philosophical Transactions of the Royal
Society of London 109, pp. 308 (1819).

[69] S. K. Lodha and R. Goldman, Math. Comp 66, 1521
(1997).


	Fast prediction and evaluation of gravitational waveforms using surrogate models
	Abstract
	I Introduction
	II Surrogate waveform models
	III Surrogate model building
	A Step 1: Greedy selection of parameter samples and reduced basis
	B Step 2: Greedy selection of time samples and empirical interpolation
	C Step 3: Fitting at empirical nodes
	D Step 4: Completing the surrogate model

	IV Assessing the surrogate model
	V Cost and speedup for surrogate model predictions
	VI Concluding remarks and outlook
	VII Acknowledgments
	A The reduced basis method
	B The empirical interpolation method
	C Details of polynomial least squares
	D Surrogate error estimates
	E On generating the fiducial EOB waveform family
	F Other approaches for waveform prediction
	 References


