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Since Rayleigh’s early work on shear-flow driven instabilities in fluids, it has been known that
sheared flows are usually unstable only in the presence of an inflection point in the velocity profile.
However, in magnetohydrodynamics, there are important instabilities for which no inflection point
is required. In tokamak experiments, strongly sheared flows are associated with transport barriers.
Instabilities that may limit the height and extent of transport barriers are of central importance. Here,
we present linear and nonlinear simulations of an ideal magnetohydrodynamic instability that is
driven by sheared flows without inflection points—instead, the instability mechanism requires
reversed magnetic shear. Several symmetric field profiles are studied. In general, the instability leads
to current profile modifications that push the local minimum value of the safety factor �qmin�
upward. The possibility of causing disruption in a relatively slow time scale is pointed out when qmin

crosses a rational �especially integral� value. The time scale of the instability is governed by the
transit time of the shear flow, which is typically smaller than that of the Alfvén velocity.
Characteristics of this instability are compared with recent experimental observations.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2338819�
I. INTRODUCTION

Shear flow instability in plasmas is a profound problem
that has rich consequences and is not understood well. Shear
flow appears in almost all laboratory or astrophysical situa-
tions, from tokamaks to active galactic nuclei. The most
well-known instability incurred by shear flow is the Kelvin-
Helmholtz �KH� instability. The KH instability is associated
an inflection point in the velocity profile, and occurs even
without a magnetic field.1 An investigation of this instability
in plasma, including the effect of the ambient magnetic field,
drift and/or gyromotion, is an area of active research.2

The KH instability is not the only instability driven by
sheared flow in magnetized plasma. It is known that the com-
bination of stable shear flow and an inhomogeneous mag-
netic field can lead to another ideal magnetohydrodynamic
�MHD� instability.3–5 In the case of unmagnetized plane
Couette flow, the isosurface of the perturbed vorticity is
stretched away by the background shear flow since perturbed
vorticity is conserved. However, Stern3 first realized that just
as the inflection point in the KH instability breaks this
constraint,1 an inhomogeneous magnetic field can have a
similar effect, and lead to instability. Kent4 has extended this
idea to the case of a symmetric flow profile, and obtained
several instability conditions in terms of the equilibrium val-
ues at the boundary of the domain. Chen and Morrison5 re-
visited Kent’s work and found a profile as simple as linear
flow and a parabolic field. We will refer frequently to this
simplest case in the present paper.

Previous authors have treated the problem with analytic
methods such as perturbation theory and Nyquist analyses.
They only have obtained the marginal stability condition,
and the growth rate has never been given as a function of the
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wavenumber. In this paper, we focus on the single-fluid
MHD equations, take the linear shear flow profile which is
KH stable, and investigate the effect of various profiles of
the magnetic field in slab geometry. Our approach is prima-
rily numerical. Note that the linear flow profile is itself stable
without a magnetic field, and any magnetic field profile is
ideally stable in slab geometry without background flow, so
this instability is truly a combined effect of shear flow and
magnetic field.

The reader might think that magnetorotational instability
�MRI� is one of the other cases where the stable shear flow
could be destabilized by the inclusion of a weak magnetic
field.6 However, unlike this instability, MRI has an intrinsic
drive �centrifugal force� other than shear flow itself and the
physics of its nonaxisymmetric perturbation would be closer
to that reported in Ref. 7, which investigates the effect of
shear flow on the plasma with an interchange drive: Shear-
flow stabilized interchange could reappear when one adds a
magnetic field. Similarly, the so-called “joint instability” is
investigated in the context of solar physics8 as an extension
of the aforementioned works, where it was found that the
combination of stable shear flow and an inhomogeneous
magnetic field could cause MHD instability. However, the
effect of the curvature makes the problem complicated since
their investigation focuses on the spherical geometry.

Experimentally, an intermediate time-scale instability
was recently observed in the reversed shear discharges of
JT-60U,9 where the growth rate was found to be small com-
pared to an ideal instability but too large for a resistive one.
In more recent experiments,10,11 a considerable amount of
flow is often observed, which has a strong shear around the
internal transport barrier. Here, we consider a field profile
that may be relevant to these observations. The inferred flow

profiles might contain inflection points. Our aim is to explore
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the magneto-flow instability, which could limit performance
even in the absence of an inflection point. More detailed
comparisons will be required to determine which instabilities
are in fact dominant. The growth rate of this instability is
governed by the shear flow. It is larger than that of the typi-
cal resistive instability and smaller than that of the typical
magnetic-field driven ideal instability. Therefore, we believe
that it is important to investigate this instability carefully,
albeit in the simplest slab geometry.

We present our formulation and the general properties of
the linear eigenvalue equation in Sec. II. Since the instability
is global and depends strongly on the details of the field
profile �we focus on a linear flow profile� it is difficult to
make a quantitative discussion by analytic calculation. We
cannot discuss the instability in the infinite domain, since the
infinite difference of the shear flow at both edges prevents
any exponential instability to grow due to its stretching
�shearing� effect.12,13 On the other hand, a study of this in-
stability in a periodic domain would inevitably introduce in-
flection points, which makes it difficult to distinguish the
phenomena from KH instability.14 In practice, the overall
dispersion relation has never been obtained by analytic cal-
culation, even in the simplest slab geometry. In light of these
difficulties, we decided to pursue mainly numerical analyses,
which we report here.

Several numerical solutions of the linear eigenvalue
equation are obtained by invoking the shooting code, and are
shown in Sec. III. These analyses reveal the general condi-
tions that maximize the growth rate: �a� the phase velocity of
the Alfvén wave in the direction of the background mass
velocity around the edge region should have comparable, but
smaller, values than the local mass flow, �b� the central value
of k ·B should be finite and have different sign from both
edges, and thus, �c� k ·B should change sign twice in the
domain, where k denotes the wavenumber in the homoge-
neous direction. These basic features lead one to suspect that
the qmin surface of an advanced tokamak may be susceptible
to this instability. We show a concrete example of a profile
that may be applicable to this situation.

Results from nonlinear simulations are presented in Sec.
IV. In order to simulate the incompressible motion of the
plasma, we developed a pseudospectral code that solves two-
dimensional reduced MHD equations, in a vorticity-
streamfunction and flux function formulation. The nonperi-
odicity of the problem leads to the choice of Chebyshev
polynomials for the basis functions. The Chebyshev spectral
scheme is nowadays a common tool to solve fluid dynamical
turbulence problems, including boundaries. However, it is
not as popular in plasma physics as it is in fluid mechanics.
The development of the combined reduced MHD-Chebyshev
formulation presented here may have wider applications, and
is therefore presented in some detail. In the specific case
studied here, we find that nonlinear evolution of the above
mentioned tokamak example may lead to disruption with a
time scale slower than Alfvén time and faster than the resis-
tive one, which might account for the disruption recently
observed in JT-60U.9
Finally, the summary is given in Sec. V.
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II. FORMULATION

We wish to consider incompressible plasma motion in
slab geometry with equilibrium sheared flows. The govern-
ing equations are

���tv + v · �v� =
1

�0
�� Ã B� Ã B − �p , �1�

�tB − � Ã �v Ã B� = 0, �2�

� · v = 0, and � · B = 0, �3�

where the density � is assumed constant.
Dividing all fields into equilibrium and perturbed parts,

the former �latter� is expressed by the uppercase �lowercase�
letter in this and subsequent sections. We consider a general
one-dimensional slab equilibrium, including both parallel
and perpendicular shear flows. The magnetic field and flow
profiles are given by

B = �0,By�x�,Bz�x�� , �4�

V = �0,Vy�x�,0� , �5�

in Cartesian coordinates. The equilibrium pressure P�x� is
chosen such that

d

dx
�P +

B2

2�0
� = 0. �6�

The profiles of equilibrium magnetic and velocity fields may
be arbitrary functions of x. As we mentioned in Sec. I, we
concentrate on the linear shear flow profile �plane Couette
flow� in this paper. Since the infinite size of the domain in
the x direction introduces the infinite difference of the back-
ground flow between both edges of the system,12,13 we set
our domain x� �−L ,L� and put a no-slip, ideal conducting
wall at x= ±L.

Upon linearizing the equation of motion, taking its curl,
and assuming the ansatz

f�x,y,z,t� = f�x�exp�i�kyy + kzz − �t�� , �7�

for all perturbed quantities, we obtain the eigenvalue ODE:

d

dx
���2 −

F2

�0�
� d

dx
�vx

�
�� − �ky

2 + kz
2���2 −

F2

�0�
�vx

�
= 0,

�8�

where �=�−k ·V and F=k ·B. The boundary condition in-
troduced by the no-slip, ideal wall implies vx=0 at x= ±L.

It is convenient to normalize �8� by the half system size
L and characteristic poloidal Alfvén velocity vpA

* :
=By

* /	�0�, where By
* is chosen such that By�x� is order unity:

x = Lx̂, Vy = vpA
* V̂y, t =

L

vpA
* t̂ , �9�

� =
vpA

*

L
�̂, k =

1

L
k̂,

d

dx
=

1

L

d

dx̂
. �10�

Here the values carrying ˆ denote the normalized variables.

The normalized ODE is
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d

dx̂���̂2 − F̂2� d

dx̂� v̂x

�̂
�� − k̂2��̂2 − F̂2� v̂x

�̂
= 0, �11�

where F̂ : = k̂ · B̂ and k̂ : =	k̂y
2+ k̂z

2. Hereafter, we omit the ˆ for
the normalized quantities, and the values mean the normal-
ized ones unless we explicitly mention otherwise.

We now summarize the general properties of the ODE
�11�.

If ky =0, the effect of shear flow is excluded and the
ODE �11� reduces to the one for static equilibria. Thus we
know the system is stable, and we do not consider this case
here.

Since the magnetic field appears only as a square in �11�,
the sign of By or Bz does not affect the instability.

If �=�e is an eigenvalue for a certain velocity profile
Vy =Ve�x�, then �=�e+kyV0 becomes an eigenvalue for the
velocity profile Vy =V0+Ve�x� with the same eigenfunction,
where V0 is a constant velocity, since these combinations
yield the same factor, �=�e−kyVe �Doppler shift�. Thus, we
may assume Vy�0�=0 without loss of generality.

From the sufficient condition of stability given by sev-
eral authors,3,15,16 it is clear that the system is stable if there
is a reference frame in which the local Alfvén velocity pro-
jected onto the mass flow direction is larger than the local
flow velocity everywhere in the domain. That is, in physical
units,


Vy
 � � k�vA

ky
��"x� , �12�

where vA= 
B 
 /	�0� so that k�vA=F. The inverse may not
be true. This means that the velocity Vy has to exceed the
value of the Alfvén velocity �directed along B� projected
onto the direction of Vy. Note that this condition does not
necessarily mean that Vy has to be larger than the Alfvén
velocity, defined by By. An example is given in Sec. III B.
Another caveat of condition �12� is that it is not the magni-
tude of the flow itself but the flow shear that matters, as was
seen in the previous paragraph. On the other hand, it is the
magnitude of the magnetic field that matters and not the
magnetic shear only. Thus it is sufficient for stability if the
condition �12� is satisfied in a particular reference frame.

It is important to realize that the direction of shear flow
does not need to be parallel to the ambient magnetic field.
When a field profile yields instability for a parallel flow, then
the same profile with perpendicular flow will also lead to
instability if we may rescale the length. Since we derived a
linearized ODE for the ambient field and flow �4� and �5�, let
us fix the flow profile with V= �0,Vy�x� ,0� and change the
direction of field to check the effect of parallel/perpendicular
flow with respect to the field. If one finds an instability for a
parallel flow where B= �0,B�x� ,0� with a wavenumber
�ky ,kz�= �ke ,0�, let its eigenvalue and eigenfunction be �e

and �e �=vx /��. Then, the same field profile yields the in-
stability for the wavenumber �ky ,kz�= �ke ,ke� /	2 with an ei-
genvalue �=�e /	2 and eigenfunction �e in case of a per-
pendicular flow where B= �0,0 ,B�x��. Thus we mainly
concentrate on the parallel flow in this paper, except in Sec.

III B, where we show an explicit example for the application
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of a tokamak. We also note that the longitudinal magnetic
field �Bz� enters only through F and thus does not affect the
mode at all as far as kz=0.

III. LINEAR INSTABILITY

A. Parallel flow

As was obtained by Chen and Morrison,5 we have plot-
ted ci �=limky→0 �i /ky� with respect to a in Fig. 1, where the
flow profile is fixed at Vy�x�=x and a parallel magnetic field
of the following form is assumed:

By�x� = ax2. �13�

In agreement with their analytical estimate, we find that the
critical value above which the instability occurs is a

0.834. As long as a�0.834, the system is unstable. How-
ever, for larger values of a �a�30; ci	3.28
10−8�, our
numerical results indicate that ci converges to zero with
ci
0.027a−4. The dispersion relation is shown in Fig. 2 for
a=1, namely, for the almost largest ci. The growth rate has a
maximum at finite ky �
0.8 in this case�, and the instability
is quenched for a larger ky, which is similar to the behavior
of KH instability. The real part of � may be finite, in general,
but turned out to be zero for all ky in the examples shown in
this paper.

In the following sections, we discuss the property of this
instability by showing the dependence of the growth rate on
the various ambient field profiles.

FIG. 1. Instability threshold and maximum ci for parabolic field profile
By =ax2.

2
FIG. 2. Dispersion relation for Vy�x�=x and By�x�=x .
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1. Dependence on central value of field

The instability remains when the magnetic field is modi-
fied to

By = �1 − �1�x2 + �1, �14�

which changes the value of By�0�=�1 with By�±1�=1 fixed.
The maximum growth rate maxky

��i� and the quantity ci are
plotted with respect to �1 in Fig. 3. Here the upper bound of
�1
0.5 for instability comes from the fact that local Alfvén
velocity exceeds the local flow velocity everywhere in the
domain, which corresponds to �12�. For negative �1, we have
larger ci, as we see from Fig. 3. For �1�−25, we find no
maximum of ci with respect to �1. As we decrease �1, how-
ever, the upper bound of ky for instability decreases while the
ci corresponding to �i /ky in the limit ky→0 increases. With
the combined effect of them, the maximum growth rate is
achieved at about �1
−0.7 for ky 
0.6.

2. Dependence on edge shear

Chen and Morrison5 mention in their paper that the
“magnetic field at the boundaries tends to destabilize the
shear flow.” This is certainly true for the analytically trac-
table case where By�x� is parabolic. To check the statement
for general profiles of By, we prepared a profile,

By = 1 −
tanh2�2 x

�2
2x2 , �15�

to compare with the parabolic one. This profile is shown for
�2=2 in Fig. 4, where the dotted line shows the profile of

FIG. 3. The quantity ci and maxky
�i for the field profile By�x�= �1−�1�x2

+�1.
FIG. 4. Profile of the magnetic field and absolute value of the velocity.
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Vy�x� 
 = 
x
. Note that the magnetic field at 
x 
 	0.4 is
weaker for the profile �15� than the parabolic one, while
those in 
x 
 
0.4 are very close to each other. The dispersion
relations for these two cases are shown in Fig. 5. Notice that
the scale of the ordinate for �15� is two orders of magnitude
larger than that for the parabolic profile, and so as the maxi-
mum growth rate. The profile with weaker magnetic shear in
the outer region yields a much larger growth rate than the
parabolic case.

The reason becomes clear when we look at the eigen-
functions for ky =0.1; see Fig. 6. As is seen from the figure,
there are resonant and step-like structures around 
x 
 �0.5
for the parabolic field profile, where 
Vy 
 =By. Since the mag-
netic field is so strong that the local Alfvén velocity exceeds
local flow velocity at 
x 
 �0.5, the eigenfunction cannot ex-
tend to the edge and is rather confined within 
x 
 
0.5. On
the other hand, the Alfvén velocity corresponding to �15� is

FIG. 5. Growth rate for the parabolic field profile and for �15�. Notice that
the scales of ordinates differ between two cases.

FIG. 6. Eigenfunctions �a� for parabolic profile and �b� for �15� with

ky =0.1.
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slower than the local flow velocity in the whole domain,
therefore, the eigenfunction can be extended in the whole
domain.

Thus we find that a strong magnetic field whose Alfvén
velocity exceeds local flow velocity has a stabilizing effect
on the mode. It is interesting to compare this result with the
case with an interchange-type drive.7 In Ref. 7, the shear
flow stretching effect exhibited a stabilizing effect only when
the flow velocity exceeded the Alfvén velocity. In the present
example, this is analogous to the finding that there is a mini-
mum on the magnetic field strength below which the insta-
bility is quenched �see Fig. 1�. On the other hand, if the
magnetic field is too strong compared to the flow velocity,
the interchange-type instability was stabilized, which was
expressed as the destabilizing effect of the shear flow in Ref.
7 from the opposite viewpoint. In the present case, this may
correspond to the stabilizing effect of the edge magnetic
shear in the parabolic field profile. The important point is
that when the effects of field and flow are comparable, the
maximum growth rate is achieved.

3. Larger growth rate

To reach nonlinear saturation, the growth must occur
considerably faster than the decay of the background field,
since inhomogeneity of the magnetic field is one of the
source for the instability. For this purpose, we may point out
two effects that increase the growth rate, according to the
results obtained from previous two subsections: �1� to make
the central By value negative, and �2� to make the edge mag-
netic shear weak. Paying attention to these facts, we prepared
a profile

By�x� =
1

2
�x2 + 1� −

1

cosh2�2x�
−

�3

�3
�e�3�x−1� + e−�3�x+1�� ,

�16�

where �3 and �3 are introduced so that the current density
vanishes at the edge, which is needed for the following re-
sistive simulation. Here we take �3
1.27 and �3=10. Pro-
file �16� is shown in Fig. 7 together with the flow profile for
comparison, and the corresponding maximum growth rate is
about �i
0.153 for ky 
1.

B. Application to tokamak qmin surface

When the velocity is everywhere parallel to magnetic
field �as discussed in the previous section�, the mass velocity
must be comparable to the Alfvén velocity for the instability
to occur. However, by adding a perpendicular field, we may
reduce the velocity required for instability to be much
smaller than both of parallel and perpendicular components
of the field. Here we here show an example of the tokamak
qmin surface in slab geometry.

Let us assume a parabolic safety factor profile:

q = x2 + qmin�=
aBT

RBP
� , �17�

with
R/a = 3, qmin = 1.7, �18�
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�m,n� = �2,1�, ky = 1, �19�

Bz = 5.0, �20�

where R and a denote the major and minor radius, respec-
tively; then

Vy = �x �21�

would yield an instability with a growth rate max� �i


0.016 for �
0.23. In this example, the instability is ob-
served for 0.18
�
0.3. Notice that the growth rate �i is
one order of magnitude smaller than the flow shear �, which
is significantly smaller even than the poloidal Alfvén veloc-
ity.

Figure 8 shows the profile and eigenfunction obtained
from the shooting code for �=0.23. As is clearly seen in Fig.
8, the velocity is everywhere smaller than both the local
poloidal �y component� and toroidal �z component� field,
however, 
k ·V
 and 
k ·B
 have a similar magnitude and the
sufficient condition �12� is violated. A somewhat peaked
structure is observed in the eigenfunction around x
 ±0.4,
corresponding to the resonant radius where 
k ·V 
 

k ·B
.
The important point is that, as far as the slab model is con-
cerned, the instability can take place if the difference of flow
is comparable to the difference of poloidal Alfvén velocity in
the region of the sheared velocity.

The sufficient condition for stability given by �12� takes
a simple form when we restrict ourselves to a linear shear

FIG. 7. Profile �16� that makes the growth rate larger, and the corresponding
dispersion relation.
flow and symmetric parabolic field profiles, respectively,
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Vy�
2 � 4By��0��By�0� +

kz

ky
Bz� , �22�

which in turn yields the following stability condition in the
physical units:

�dVy

dx
�2

� 4vpA
2 d2q

dx2� n

m
−

1

qmin
� , �23�

where vpA
2 =By

2�0� /�0� is the local poloidal Alfvén velocity,
and we assumed a uniform toroidal field.

We must address two cautions on the stability condition
�23�. First, �23� is formulated as a local condition under the
assumption of linear flow and symmetric parabolic field pro-
files, while this instability is essentially a global one. Since
the smaller magnetic shear in the edge region brought about
larger growth rate as we saw in Sec. III, a more realistic field
profile might make the equilibrium more unstable than
evaluated from this model. Second, it is derived from the
sufficient condition for stability. It is clear that whenever q
crosses a rational number �or �nqmin−m� becomes negative�,
the condition �23� is violated, however, there are many stable
examples that may violate �23�, even for the symmetric para-
bolic field profile �note the lower limit of By� obtained by
Chen and Morrison5�. Besides, one has to restrict the appli-
cation to a low m/n mode since this instability does not arise
for a too large ky. Nevertheless, this condition may be useful
to get a rough idea on the regime of the instability. If Vy� is
far smaller than the right-hand side, then the equilibrium
may be stable for this instability, but if they are comparable,
one may have to check the stability numerically for that spe-

FIG. 8. Background field and velocity profile and eigenfunction vx corre-
sponding to ky =1.
cific profiles.
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IV. NUMERICAL SIMULATION

In order to investigate the nonlinear behavior of the in-
stability, we have developed a two-dimensional pseudospec-
tral reduced MHD code, which solves

�t �� + ��,��� − ��,��� = � �2� , �24�

�t� + ��,�� = � �� , �25�

where �P ,Q�= ��yP���xQ�− ��xP���yQ� is the standard
Poisson bracket, � and � are �normalized� viscosity and re-
sistivity, and � and � are the streamfunction and flux func-
tion, related to vector fields as

v = �� Ã ez, B = �� Ã ez, �26�

respectively. We impose no-slip and perfectly conducting
boundary conditions on x= ±1, namely,

vx = 0, vy = const, Bx = 0, jz = 0, �27�

and periodicity in the y direction. Note that we cannot use
free-slip ���=0� boundary condition in order to sustain lin-
ear profile of the background shear flow. In principle, finite
resistivity introduces the possibility of a tearing mode insta-
bility. We have carefully checked that the observed growth
rate and nonlinear evolution show no correspondence to tear-
ing mode physics �see later�.

For tokamak applications, this code can make single-
helicity calculation of Strauss’ reduced MHD equations,17

�t ��
2 U + v · � ��

2 U = B · � ��
2 A + ���

2 ��
2 U , �28�

�tA = B · �U + � ��
2 A , �29�

by changing the definition of the Laplacian, Poisson bracket,
and flux function to

��
2 = �x

2 + ��
2, �30�

�P,Q� = ��P �xQ − �xP ��Q , �31�

� = A − �Bzx , �32�

� = U , �33�

where �=y+�z is the helical coordinate.18 The single-
helicity calculation may be justified because there is only a
single set of unstable low wavenumbers in the example
shown later. The inclusion of another dimension should not
significantly alter the results.

A. Numerical scheme

In order to impose nonperiodic boundary conditions in
the x direction, we used Chebyshev polynomials as basis
functions. This admits the use of the fast Fourier transform
due to the property

Tn�cos �� = cos�n�� , �34�

where Tn is the nth order Chebyshev polynomial. It is noted
that Chebyshev polynomial expansion has an exponential
convergence for any smooth function defined on a finite non-

19
periodic domain while the Fourier is algebraic in this case.
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We use Orszag’s two-thirds rule20 to remove the aliasing
effect from nonlinear terms. One disadvantage of using
Chebyshev polynomials may be the accumulation of the
round-off errors in calculating derivatives,21 however, this
should not invalidate our calculation in the range of mode
numbers we take in our calculations �2N /3�1152, where
N+1 is the number of grid points in x�. The periodic direc-
tion �y� is expanded by the Fourier series, as usual.

Time integration is conducted by the third-order Adams-
Bashforth scheme for nonlinear terms and the Crank-
Nicholson scheme for dissipative ones.22 The time step is
chosen at each step so that it avoids numerical instability.
See Sec. A 1 for the AB3 formula for an uneven time step.
The reason we used a different scheme depending on linear/
nonlinear terms is basically because of the numerical stabil-
ity. The dissipative terms bring the highest order restrictions
on time steps in connection with the spatial grid, which is of
O��x2�, where �x is the smallest grid size. In the Chebyshev
pseudospectral scheme, we use the Chebyshev-Lobatto
�extrema� grid, which is concentrated at the edge as
�x�O�1/N2�. Thus the time step allowed by an explicit
scheme would be extremely small �of the order O�1/N4��,
which is impractical. On the other hand, using the Crank-
Nicholson scheme for nonlinear terms is not simple since
one needs to solve the nonlinear boundary value problem at
each time step, which would require iteration of the matrix
inversion.

The boundary conditions written in �27� are on velocity
and magnetic fields for which we are not directly solving
equations. Equations �24� and �25� demand two boundary
conditions on vorticity �� and flux function � at each time
step, and two on streamfunction � when solving the Poisson
equation. By converting the vy condition with the method of
Coutsias et al.,23 we imposed, in the nth Fourier space,

�n = 0, �35�

�
m

Bmn����mn = 0, �36�

at x= ±1 for ky �0 �n�0�, and

�x�0 = const at x = 1, �37�

�x����0 = 0 at x = ± 1, �38�

for ky =0 �n=0�, where ����mn denotes the mth Chebyshev
and nth Fourier amplitude of the vorticity and Bmn denotes
the numerical matrix described in Ref. 23. The arbitrariness
of constant for the potential � is determined by �00=0. The
boundary condition on magnetic field �and current density� is
readily converted to the one on �:

� = const �in time and along each wall� . �39�

We use a preconditioner for the inversion of the matrices
in solving Poisson equation and Crank-Nicholson time step-
ping, as introduced by Coutsias et al.24 Since the derivative
matrix for Chebyshev polynomials is upper-triangular, the

2
simple inversion of the Laplacian needs O�N � operation for
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each ky. On the other hand the integral operation is described
by the band-diagonal matrix due to the three-term recursion
relation:

� Tn�x�dx =
Tn+1�x�
2�n + 1�

−
Tn−1�x�
2�n − 1�

+ C�n � 2� . �40�

Thus, by multiplying the integral matrix prior to inversion,
one may carry out all matrix inversions by O�N� operations
for each ky. A more detailed description is given in Sec. A 2.
Boundary conditions are imposed by the Sherman-Morrison
formula.25

As is often referred in spectral simulations, the Fourier-
Chebyshev amplitude corresponding to the highest wave-
number component may be regarded as an empirical measure
of the numerical error. Using this fact, we may automatically
control the resolution, which greatly enhances the perfor-
mance in linear instability and/or decaying turbulence simu-
lations. The code checks the ratio between the amplitude of
the largest wavenumber component and that of the largest
component of the vorticity in the Fourier-Chebyshev space.
When it becomes larger than ulim �smaller than llim�, the reso-
lution is enhanced �reduced�. We have made these values
adjustable, and the resolution of exact power of 2 is auto-
matically assigned, while other mixed-radix grid points are
given as inputs.

B. Linear instability and its quasilinear effect

We first show the linear instability of the profiles:

Vy�x� = x , �41�

By�x� =
1

2
�x2 + 1� −

1

cosh2�2x�
−

�3

�3
�e�3�x−1� + e−�3�x+1�� ,

�42�

which was introduced in Sec. III A 3. As we discussed be-
fore, this particular magnetic field profile was chosen to
maximize the growth rate large, since this instability has a
relatively small intrinsic growth rate. The parameters �3 and
�3 are introduced in order for the current density to vanish at
the edge, and �3
1.27 and �3=10 in the current run, respec-
tively. We take Ly =2� since ky 
1 gives the largest growth
rate �i
0.153 in this case.

Figure 9 shows the time evolution of the L2 norm of
perturbed streamfunction ��1�, enstrophy, and total energy
when we put the initial perturbation of the form

����1 =
10−2

cosh2�10x�
sin�2��x + y�

Ly
� , �43�

with various diffusivity, where the subscript 1 denotes the
perturbed quantity. The enstrophy and energy are normalized
by their initial values. The maximum numbers of grid points
used in these simulations are summarized in Table I for a
sufficient convergence. The number of grid points drastically
increases as �=� becomes smaller than 3
10−4, which sug-
gests a qualitative difference between case �a� �=��2

10−4 and case �b� �=��3
10−4. Figure 9 also shows a

critical difference between cases �a� and �b�: The ��1� plot
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almost overlaps and the enstrophy increases drastically after
t	80 for �a�, and the energy dissipation rate jumps between
�a� and �b� after t	100. Case �b� is thought to be dissipation
dominated, and the nonlinear evolution of the instability does
not show interesting behavior. However, as diffusivity goes
smaller, the nonlinear behavior becomes turbulent, and the
flux surface is completely broken in a wide region. In this
and subsequent sections, we focus on the case with �=�
=2
10−4 since other simulations in case �a� show qualita-
tively similar behavior.

The straight line in the evolution of 

�1 
 
 shows the
exponential growth, with growth rate 0.15. We notice that the
growth rate of the simulation agrees well with that obtained
from the shooting code, and it approaches the ideal value
0.153 �for �=�=0� as the dissipation rate becomes smaller.

Since the nonlinear evolution of the instability leads to a
decaying turbulence simulation, it is necessary to consider
the diffusion rate of the background field. It is governed by
the decay of the eigenfunction of �x

2 with the smallest wave-
number. Currently we have a diffusion equation for �, which
is an odd function, under the fixed boundary condition. Thus
the smallest wavenumber eigenfunction corresponding to the
profile �42� is sin��x� since Lx=2, which in this case gives

TABLE I. Maximum numbers of grid points in the simulations.

case �=� Grids �x
y� ulim

1.e-4 1728
4096 5.e-6

�a� 1.5e-4 1024
2304 1.e-5

2.e-4 768
1280 1.e-4

3.e-4 384
384 1.e-3

�b� 4.e-4 256
256 1.e-3

6.e-4 128
128 1.e-3
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rise to the decay rate of the magnetic field of �2�. The e-fold
time of the background magnetic field is, thus, estimated
about t�500 for �=2
10−4, and by that time, the instabil-
ity will completely lose its drive by the diffusion of the back-
ground magnetic field.

Let us see the quasilinear effect of the instability. It is
obtained by substituting linear eigenmode into nonlinear
terms and by calculating its backreaction on the background
field. Here we will work on the original vector form equation
in order to see the effect on vy and By:

�tv0 = − �v1 · �v1�0 + ��� Ã B1� 
 B1�0, �44�

�tB0 = �� Ã �v1 Ã B1��0, �45�

where the subscripts 0 and 1 denote the background �ky =0�
and linearly unstable �ky =1� components of the fields,
respectively.

By substituting

v1 = ��̃ Ã ez, B1 = ��̃ Ã ez, �46�

�̃ = �̃r cos�kyy� − �̃i sin�kyy�,
�47�

�̃ = �̃r cos�kyy� − �̃i sin�kyy� ,

into �44� and �45� and taking the ky =0 component of the rhs,
we obtain

�v1 · �v1y�0 = −
ky

2
��̃r �x

2�̃i − �̃i �x
2�̃r� , �48�

�B1 · �B1y�0 = −
ky

2
��̃r �x

2�̃i − �̃i �x
2�̃r� , �49�

FIG. 9. Time evolutions of ��1�, en-
strophy, and total energy in the simu-
lations with various diffusivity and
number of grid points for the case with
�=�=2
10−4.
since
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��� Ã B1� Ã B1�0 = − 1
2 ���B1

2��0 + �B1 · �B1�0, �50�

and the gradient term gives rise to no contribution on the
evolution of the y-component field the same as the �p term
�ky =0�. By making the same manipulation on the rhs of �45�,
we obtain

�� Ã �v1 Ã B1��0y =
ky

2
�x

2��̃r�̃i − �̃i�̃r� . �51�

Since the linear eigenfunction is growing with the
growth rate �i, the evolution equations �44� and �45� yield

�tv0y = Ce2�it��̃r �x
2�̃i − �̃i �x

2�̃r − �̃r �x
2�̃i + �̃i �x

2�̃r� ,

�52�

�tB0y = Ce2�it�x
2��̃r�̃i − �̃i�̃r� , �53�

where C is a constant proportional to the square of the initial
amplitude of the eigenmode. Note that temporal oscillation
of the eigenfunction �if there is any� cancels out during the
cancellation of kyy.

Figure 10�a� is a plot of the rhs of �52� and �53�, ob-
tained from the numerical eigenfunction by means of the
shooting method. We take 401 evenly spaced grid points and
derivatives are calculated by means of the second order cen-
tered finite difference formula. Figure 10�b� shows the dif-
ference between the initial fields and solutions of nonlinear
ideal ��=�=0� simulation at t=25, where ky �1 components
are artificially killed during evolution. The difference from
�a� thus comes from the stable ky =1 oscillation that is ex-
cited initially and the self-consistent change of the eigen-
function due to the change of the background field. These
two figures almost overlap with each other. Figure 10�c�
shows the difference between solutions of full nonlinear
simulation and that of the one-dimensional �1-D� linear dif-
fusion equation for � �with the same � and grid points� at
t=25, which includes the effect of dissipation on linear in-
stability and all of the nonlinear effect including the backre-
action from higher harmonics. The peaks are broadened
somewhat due to the effect of dissipation but the qualitative
agreement is good.

Here, By =0 initially takes place around x� ±0.39. We
can see that the quasilinear effect of the instability on the
equilibrium affects the velocity and magnetic fields roughly
equally. The energy ratio of the quasilinear magnetic/kinetic
field modification is about 1.22 for the shooting result. �It
affects more on the magnetic field in the energy norm while
the maximum is larger for the velocity in Fig. 10.� The ve-
locity is flattened and magnetic field is weakened around the
origin. As can be seen from the figure, most of the effect
takes place where By �0, and the area where By is negative
is slowly widened because of the fact that �tB0y �0 at
x� ±0.39. This is necessary to push up the central value of
By since we are imposing the constraint that �By dx=const

by placing the ideally conducting wall.
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C. Nonlinear evolution

We now turn to the nonlinear effect of the instability.
Time traces of the y-averaged velocity and magnetic fields
are shown in Fig. 11. As is seen from the figure, the insta-
bility brings the positive By region just outside of By �0 to
lower values, and at the same time it brings up the central
By�0�, which was pointed out in the previous section. The
instability does not alter the profile of velocity and field in
the outer region 
x 
 	0.6, and it flattens and makes them
approach zero only in the central region. Note that the flat-
tened flow profile looks as x3, which is KH stable, albeit with
an inflection point. The change of the By field at the edge is
mostly attributed to the diffusion of the background magnetic
field. According to an independent 1-D simulation of the
linear diffusion equation for �, the edge discrepancy turned
out to be within a few percent until t�130.

The contour plots of streamfunction � and flux function
� at t=45 are shown in Fig. 12. Stretching and rolling up of

FIG. 10. Quaslinear effect of the instability: �a� evaluated from �52� and
�53� with a shooting result, �b� at t=25 in the ideal simulation with ky �1
artificially killed, and �c� at t=25 in the dissipative simulation with full
nonlinearity.
the flux function is observed around two resonant surfaces,
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qualitatively similar to a KH instability. The stage looks
rather coherent and the effect of instability is restricted
within 
x 
 
0.5.

By t
50, the instability is strongly nonlinear. The size
of the vortex keeps on growing and vorticity concentration is
pushed outward yielding two high-vorticity lines around x

 ±0.5. About the first maximum of the enstrophy �t
57�,
these two high vorticity lines are broken into vortex chains,
as seen from Fig. 13. This stage from the first peak �t
57�

FIG. 11. Time evolution of the average flow and field.

FIG. 12. Contour plots of the streamfunction � and flux function � at

t=45.
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to the second local minimum �t
84� of the enstrophy looks
somewhat turbulent. At this stage, however, the turbulent
structure is localized in two regions separated by a central
magnetic field line. Reconnection takes place easily around
each separated turbulent region since the equilibrium mag-
netic field line reverses along x
 ±0.4. However, this is in-
hibited at the center.

After t
60, the vortex chains start to merge in each
region and try to entangle the central horizontal magnetic
field line in a clockwise manner. The entanglement of the
field line once reaches maximum around t
75, and the field
line reflects these vortex chains due to its tension force �see
Fig. 14�. The reflected vortices merge further in each region
and form two large vortices of the same polarity. These two
large vortices entangle the central field line again, and recon-
nection starts around top and bottom regions along y
�.

At t
100, there are two large vortices with the same
polarities �centered around y�0.6� and 1.4�� and a small
one with an opposite polarity �centered around y�0 or 2��;
see Fig. 15. Because of the same polarity, a high-vorticity
line is formed and squeezed between them as their sizes are
getting large, which causes the increase of the resolution in

FIG. 13. Contour plots of the vorticity at t=50 and 60, and the flux function
at t=60.
the y direction �see Fig. 9�. At this time, the � contour shows
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two large islands extending to 
x 
 
0.8, indicating a large
energy transport along the field line. Strong current sheets
are observed along horizontal lines x
 ±0.8 and along a
vertical line y
�. However, the two islands have the oppo-
site polarity, and magnetic reconnection is mainly observed
along horizontal current sheets. It is noted that the second
reconnection event does not take place for smaller diffusivity
�case �b�� so that the central field line separates the two tur-
bulent regions all the time. However, the critical diffusivity
needed for the reconnection of the central field line is a
subtle issue depending on the amplitude of the initial pertur-
bation, since the background field profile decays away before
the appearance of a turbulent state when one puts a tiny
perturbation in the initial condition. Recall that the decay
time of the background field profile is about 500 for �=2

10−4. The average velocity and magnetic field at t=100 is
flattened in a fairly wide range of the domain, and is close to
zero in 
x 
 
0.5.

At the final peak of the enstrophy �t
113�, the high-
vorticity line is broken at the center of the domain, and the
two vortices start to merge. The enstrophy monotonically
decreases while the large merged vortex absorbs the smaller
one with the opposite polarity, and the weaker vortex re-

FIG. 14. Entanglement of the central field line.
mains at t=180. The average By is further pushed upward,
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and it becomes positive almost everywhere in the domain by
t=130. The average flow is also flattened in a wider region.

We may apply this result to the tokamak qmin surface.18

In this case, the two-dimensional simulation is regarded as a
single helicity calculation, and By =0 corresponds to the reso-
nant surface of the corresponding mode. Since the tokamak
has a strong toroidal field, it is convenient to consider a
normalization to the velocity. In this case, the By

* used for the
normalization in Sec. II is regarded as a value whose corre-
sponding Alfvén velocity gives a comparable magnitude of
the surrounding mass flow velocity. It may be significantly
smaller than both the poloidal and toroidal fields.

Since the sign of By does not matter on the results of the
instability, we may regard the minimum of By as a qmin sur-
face by flipping the By profile. The change of the sign of By

corresponds to the fact that q crosses a rational value for the
mode we are interested in. The time evolution of the average
field suggests that we may have some difficulty in making q
cross the rational �or integral� value. Moreover, it may lead
to a major �or minor� disruption according to the large scale
rearrangement of vy and By �Note that we are using no-slip
and ideal-wall boundary conditions; the ideal wall implies
that the spatial integral of average By has to be conserved,
which is, in some sense, suppressing the instability.�

Of course, the occurrence of disruption should be tested
in a larger simulation with a more realistic geometry �in this
case flow profile may contain an inflection point�. We can
anticipate what should be observed from our analysis. The
frequency of the instability is zero here since we assumed
symmetry in the flow profile, but it may be finite if the flow
profile is asymmetric. As is easily understood when one
makes a Galilean transform so that central vy is finite, there
appears a finite frequency arising from the Doppler shift, and
it is of the order of the background flow transit frequency.
Because of the global structure of the instability, the fluctua-
tion would appear in low mode numbers. The flux function
will be stretched and rolled up around two rational surfaces,
as is seen in Fig. 12. On the other hand, the diamagnetic
effect might be able to stabilize it in the presence of the
background pressure gradient as is the case of KH
instability.2

V. CONCLUSION

The linear instability incurred by shear flow without an
inflection point is investigated in slab geometry by numeri-
cally solving linear eigenvalue equation and by performing a
two-dimensional �or single-helicity� nonlinear simulation.

We fixed the shear flow profile with a spatially linear
function, and mainly focused on the effect of various sym-
metric field profiles. From the investigation using the shoot-
ing code, the typical field profile that gives a large growth
rate has a few features: �a� the phase velocity of the Alfvén
wave in the direction of the background mass velocity in the
outer region has comparable, but smaller, values than the
local mass flow; �b� the central value of F �=k ·B� can be
finite and has a different sign from both edges, and thus, �c�
F changes sign twice in the domain. By adding a component

in the field nonparallel to the flow, we also showed an ex-
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ample that may be relevant to the qmin surface of an ad-
vanced tokamak. Notice that �a� does not imply that mass
velocity must exceed local Alfvén velocity. It can be signifi-
cantly smaller than both toroidal and poloidal Alfvén veloc-
ity of a tokamak for the instability to occur.

In the numerical simulations, the growth rate is properly
observed. The quasilinear effect of the instability is to push
back the central value of the magnetic field in the direction
where two zeros of F disappears, but the instability initially
saturates before the central F changes sign. A weak turbulent
state follows in the nonlinear stage, and after the sequence of
vortex breakup/merges, background flow and field profiles
are flattened in a fairly wide region. The negative region of F
finally disappears due to their nonlinear interactions. The
field line topology changes drastically, suggesting a huge en-
ergy transport across negative/positive regions of the mag-
netic shear, and the negative region of F finally disappears.
When it is applied to the tokamak qmin surface, the disap-
pearance of the negative-F region means the difficulty of
qmin crossing the integral �or rational� value, and the large
scale rearrangement of v and B may imply the disruption.

To understand the role of this instability in tokamak dis-
ruptions, it would be necessary to consider more realistic
geometry. There are effects that could significantly alter the
growth rate and the threshold of the instability. First may be
the existence of an inflection point, and others would include
magnetic curvature and kinetic effects. One may obtain a
more realistic condition of instability than �23� by adding
more physics. However, the nonlinear evolution of the insta-
bility shown here would be valid once this instability takes
place. As we have seen the breakup of the flux surface and
flow profile in the nonlinear evolution, especially at the cen-
tral region where the transport barrier is thought to be lo-
cated, MHD instability may be considered a possible candi-
date of disruption when flow is included.

In the recent experiment in JT-60U, an intermediate time

scale instability is observed in the reversed shear discharges,
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which is too fast as a resistive instability, and too slow as an
ideal one.9 The instability reported in this paper is a good
candidate for explaining these observations, as it evolves on
the corresponding �intermediate� time scale. It is driven by
the shear flow, and its characteristic growth time can even be
one order of magnitude longer than the poloidal flow transit
time. We have concentrated on the case without an inflection
point to focus on the simplest dynamics of magneto-flow
instability in this paper, however, it is also true for the case
with the inflection point that the mass flow with neither of
toroidal nor poloidal Alfvén velocity is needed for the insta-
bility. The inclusion of inflection point may make the equi-
librium more unstable and the growth rate may increase ac-
cordingly, however, it is still true that the growth rate is
governed by the flow, whose inverse is typically much
slower than any Alfvén time. As the importance of shear flow
effect on resistive instability is pointed out in Ref. 26, that in
ideal MHD also needs to be investigated more thoroughly
since a considerable amount of shear flow is expected in the
advanced tokamak.11 Moreover, it may also be applicable to
instabilities observed in the tokamak edge, if the bootstrap
and diamagnetic currents are strong enough to reverse the
magnetic shear locally.
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APPENDIX: NUMERICAL ALGORITHM

1. AB3 formula for uneven time step

FIG. 15. Contour plots of the stream-
function �, vorticity ��, flux function
�, and current density �� at t=100.
Let the differential equation be
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�y

�t
= f . �A1�

The Adams-Bashforth formula approximates the right-hand

side by the polynomial f̃�t� from a finite number of sample
points, and integrate the extrapolated polynomial to obtain y
at the next step:

y�n+1� = y�n� + �
t�n�

t�n+1�

f̃�t�dt , �A2�

where the superscript �n� denotes the nth time step. We may
obtain it for the uneven time step by using Lagrangian poly-

nomial for f̃�t�. Here we show the formula for the third order

scheme, which uses a quadratic polynomial for f̃�t�:

f̃�t� =
�t − t�n−1���t − t�n−2��

�1��1 + �2�
f �n� −

�t − t�n���t − t�n−2��
�1�2

f �n−1�

+
�t − t�n���t − t�n−1��

�2��1 + �2�
f �n−2�, �A3�

where we have defined

�0 = t�n+1� − t�n�, �1 = t�n� − t�n−1�, �2 = t�n−1� − t�n−2�.

�A4�

Substituting �A3� into �A2� and performing the integra-
tion, we obtain

y�n+1� = y�n� + C0f �n� + C1f �n−1� + C2f �n−2�, �A5�

where

C0 =
1

�1 + �2
� ��0 + �1�2

�1
��0 + �1

3
+

�2

2
�

− �1��1

3
+

�2

2
�� , �A6�

C1 = −
�0

2

�1�2
��0

3
+

�1 + �2

2
� , �A7�

C2 =
�0

2

�2��1 + �2���0

3
+

�1

2
� . �A8�

Of course, they converge to the normal AB3 coefficients for
an even time step,

C0 →
23

12
�, C1 → −

4

3
�, C2 →

5

12
� , �A9�

in the limit �0,1,2→�.

2. Preconditioner and time stepping

Let the Chebyshev expansion of a smooth function f�x�

defined on x� �−1,1� and its first derivative f��x� be
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f�x� = �
l

alTl�x�, f��x� = �
m

bmTm�x� . �A10�

Then the integral operation on Chebyshev amplitudes is ex-
pressed as

al = �
m

Dlm
−1bm, �A11�

where D−1 is a tridiagonal matrix defined from the integral
three-term recursion relation �40�:

� Tj dx = �
i

TiDij
−1. �A12�

The first row of D−1 is arbitrary and is usually determined by
the boundary condition. Here we define the matrix �1�D−1 in
which the first row of D−1 is replaced by zero. When we
define D by

bl = �
m

Dlmam, �A13�

and �2�D−2= �2�D−1��1�D−1�2, we find

�2�D−2D2 = �2�I��D2�2�D−2� . �A14�

Since �1�D−1 is a tridiagonal matrix with all diagonal compo-
nents zero, �2�D−2 has nonzero components only at diagonal
and the second super-/subdiagonal components. Thus we
may divide �2�D−2 into odd and even parts to make two tridi-
agonal matrices of half size. We also note that all boundary
conditions used here can be divided into odd/even parts with-
out loss of generality.

At each time stepping of the vorticity equation, we first
have to find streamfunction � from vorticity � �=��; note
that the sign is flipped in the definition of �� by solving the
Poisson equation:

�D2 − ky,n
2 ��n = �n �A15�

for each Fourier mode n �in the y direction�. Instead of in-
verting the upper-triangular matrix �D2−ky,n

2 �, we multiply
the second integral operator �2�D−2 on both sides and obtain

��2�I − ky,n
2 �2�D−2��n = �2�D−2�n. �A16�

We may replace the first two rows of �A16� by two boundary
conditions, divide it into odd/even parts, and invert the re-
sulting operator on the left-hand side. All matrices appearing
in �A16� are tridiagonal when divided into odd/even parts
�plus one dense row corresponding to the boundary condi-
tions�, therefore, one can solve it by O�N� operations. Be-
sides, the operator ��2�I−ky,n

2 �2�D−2� is much better condi-
tioned than �D2−ky,n�: For details about the condition
numbers, see Ref. 24.

The same preconditioner is used for Crank-Nicholson
time integration. The reduced MHD equations �24� and �25�
basically consist of two parts that are convective �nonlinear�
terms described by the Poisson bracket and diffusive �linear�
terms described by the Laplacian. They are symbolically

written as
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�y

�t
= Ny + Ly , �A17�

where N and L denote nonlinear and linear terms, respec-
tively; especially, L� �D2−ky,n

2 � for the n th Fourier mode.
As is mentioned in Sec. IV A, we use Adams-Bashforth for
nonlinear, and Crank-Nicholson for linear terms, so the dis-
cretization would yield

�1 −
�t

2
L�y�n+1� = y�n� + �

t�n�

t�n+1�

Ny˜dt +
�t

2
Ly�n�, �A18�

where Ny˜ denotes the extrapolated polynomial described in
the previous section. Instead of inverting the upper-triangular
matrix �1−�t L /2� on the left-hand side, we first multiply
�2�D−2 on both sides from left and then only the band matrix
remains to be inverted.
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