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Abstract

We present a sublinear randomized algorithm to compute a sparse Fourier transform for
nonequispaced data. More precisely, we address the situation where a signal � is known to
consist of � equispaced samples, of which only ����� are available. This includes the case
of “equispaced data with gaps”; if the ratio �
	��
��� is smaller than 1, the available data are
typically non-equispaced samples, with little or no visible trace of the equispacing of the full
set of � samples. We extend an approach for equispaced data that was presented in [21]; the
extended algorithm reconstructs, from the incomplete data, a near-optimal � -term representa-
tion � with high probability ����� , in time and space ����������� �"!$#&%����(')�"!$#&%��*�+�,�*���-��'.')�"!$#&%/�*�+���0')�132/4 ' , such that 5��6�7� 5)88 9 �*�;: 1 '+5��7�7�=<>�?A@ 5B88 , where �=<>�?C@ is the optimal � -term Fourier
representation of signal � . The sublinear ����������!D#&%E�
' time is compared to the superlinearF ��� 4HGJILK32/4HMONQP !D#&%R�
' time requirement of the present best known Inverse Nonequispaced Fast
Fourier Transform (INFFT) algorithms, in the sense of weighted norm with the number of di-
mensions S , smoothness parameter T . Numerical experiments support the advantage in speed
of our algorithm over other methods for sparse signals: it already outperforms INFFT for large
but realistic size � and works well even in the situation of a large percentage of missing data
and in the presence of large noise.

1 Introduction
We consider the problem in which the recovery of a discrete time signal U of length V is sought
when only W signal values are known. In general, this is of course an insoluble problem; we
consider it here under the additional assumption that the signal has a sparse Fourier transform. Let
us fix the notations: the signal is denoted by UYX[ZQU=Z]\)^)^ @`_�a�bdcdcdc b e 2/4 , but we have at our disposal only
the ZHU=Zgf.^)^"h�i+j , where the set k is a subset of lnm�o�p0p�pqo3Vsrutwv and x kyx�XzW . The Fourier transform
of signal U is {U|X}Z~{U�Zgm�^+o0p�p�p+o
{U=ZHV�r�t�^)^ , defined by {U�Z���^=X 4� e�� e 2/4@`_�a U=Z�\)^)� 2 8*� h�� @ N e . In terms�
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of the Fourier basis functions �~��Z]\)^ X 4� e � 8*� h�� @ N e , U can be written as U�X � e 2/4� _�a {U�Z���^����JZ]\)^ ;
this is the (discrete) Fourier representation of U . A signal U is said to have a � -sparse Fourier
representation, if there exists a subset ���}lnm�o�p0p�p0oCVsr�twv with xd� xJX�� , and values �wZ���^��X�m
for ����� , such that U=Z]\)^�X � � i0¡ �wZ���^��/� . For a signal that does not have a � -sparse Fourier
representation, we denote by ¢ <>�?C@ ZHU£^ the optimal � -term Sparse Fourier representation of U .

This paper presents a sublinear algorithm to recover a � -sparse Fourier representation of a
signal U from incomplete data. Our algorithm also extends to the case where the Fourier transform{U is not � -sparse, where we aim to find a near-optimal � -term Fourier representation, i.e. ¢�X� �¤i�¡ �¥Z���^���� , such that ¦ U§r¨¢ ¦ 88�© ZBt-ª�«3^ ¦ U§r�¢ <>�?C@ ZQU;^ ¦ 88 p (1)

A typical situation where our study applies is the observation of non-equispaced data, where the
samples are nevertheless all elements of ¬�­ for some ¬6®¯m . For a signal with evenly spaced data,
the famous Fast Fourier Transform (FFT) computes all the Fourier coefficients in time °�ZgV²±�³,´£V7^ .
However, the requirement of equally distributed data by FFT raises challenges for many important
applications. For instance, because of the occurrence of instrumental drop-outs, the data may
be available only on a set of non-consecutive integers. Another example occurs in astronomy,
where the observers cannot completely control the availability of observational data: a telescope
can only see the universe on nights when skies are not cloudy. In fact, computing the Fourier
representation from irregularly spaced data has wide applications [20] in processing astrophysical
and seismic data, the spectral method on adaptive grids, the tracking of Lagrangian particles, and
the implementation of semi-Lagrangian methods.

In many of these applications, a few large Fourier coefficients already capture the major time-
invariant wave-like information of the signal, and we can thus ignore very small Fourier coeffi-
cients. To find a small set of the largest Fourier coefficients and hence a (near) optimal � -sparse
Fourier representation of a signal that describes most of the signal characteristics is a fundamental
task in applied Fourier Analysis.

An equivalent version of this problem is as follows: define the matrix µs¶LX·Zg� 8*� h¹¸ @»º ^"¸ _�a�bdcdcdc b e½¼¾ _�a�cdcdc b ¿ 2/4 ��À ¿¤b e , where the \ ¾ are the locations of the available samples. Given U=Z]\ ¾ ^ , we want to
reconstruct the signal U , or equivalently, its Fourier coefficients {UÁ¸ , so that µ {UÂX�U . This linear
system is under-determined. Several iterative algorithms [7][12][2][1][13] have provided efficient
approaches to solve this problem. Among all INFFT algorithms, the iterative ACT (or equivalently
CGNR) approach of [7] and CGNE algorithm with the fast Fourier Transforms at nonequsipaced
nodes (NFFT) in [13] are among the fastest methods. The latter takes time °
ZHW 4HGJILKC2/4HM`NQP ±�³w´-W£^ to
reconstruct the signal in the sense of weighted norm, where W is the number of available points,Ã

is the number of dimensions, and ÄÅ®Æt is the smoothness for the original signal. The super-
linearity relationship between the running time and V (recall W¯XÂÇ~V , where Ç is the percentage
of available data) poses difficulties in processing large dimensional signals, which have nothing to
do with the unequal spacing. It follows that identifying a sparse number of significant modes and
amplitudes is expensive for even fairly modest V . Our goal in this paper is to discuss much faster
(sublinear) algorithms that can identify the sparse representation or approximation with coefficientsÈ 4 o�p�p�p+o È < and modes � 4 o�p�p�pqo)� < for unevenly spaced data. These algorithms will not use all the
samples U=ZHm,^+o�p�p0pqoAU=ZgV}r|t�^ , but only a very sparse subset of them.
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Our approach is based on the work presented in [8], that develops a theoretical algorithm how to
construct the Fourier representation for a signal U with � -sparse Fourier representation in time and
space Ç~É¥Ê�ËÁZH�
o�±�³,´;VÌo/t�Íw«0o3±O³,´~Z"t�ÍwÎ¥^�^ on equal spacing data. The algorithm contains some random
elements (which do not depend on the signal); their approach guarantees that the error of estimation
is of order « ¦ U ¦ 88 with probability exceeding tÏryÎ . We have dubbed the whole family of algorithms
RA Ð STA (for Randomized Algorithm for Sparse Transform Approximation); when dealing only
with Fourier Transforms, as is the case here, we specialize it to RA Ð SFA (F for Fourier). Zou,
Gilbert, Strauss and Daubechies [21] presents a practical (and improved) implementation of the
algorithm, showing that it is of interest, i.e. it outperforms FFT for reasonably large V . It convinc-
ingly beats FFT when the number of grid points V is reasonably large. The crossover point lies atVÒÑzÓwm,m,m,m in one dimension, and at VÔÑÖÕ,m,m for data on a VØ×�V grid in two dimensions for a
eight-mode signal. When �ÙX²Ú¥Û , RA Ð SFA surpasses FFT at Üy×�t&m¤Ý .

In this paper, we modify the RA Ð SFA to solve the irregularly spaced data problem. The
NERA Ð SFA (Nonequispaced RA Ð SFA) uses sublinear time and space Ç~ÉnÊ�Ë�Zg�
o3±�³w´;W=o3« 2/4 o�±�³,´~Z"t�ÍwÎ¥^+o±�³w´~ZBt�Í�ZBt
ruÇÏ^)^ to find a near-optimal � -term Fourier representation, such that

¦ U�rÙ¢ ¦ 88�©ZBt-ªÞ«C^ ¦ U�rß¢ >�?C@ ¦ 88 with high probability t=r¨Î . Similar to the RA Ð SFA algorithm, it outperforms
existing INFFT algorithms in processing sparse signals of large size.

Notation and Terminology Denote by àáj a signal that equals 1 on a set k and zero elsewhere
in the time domain. We say a signal U is â percent pure, if there exists a frequency � and a
signal ã , such that UzX È � 8*� hL� @ N e ªuã , with x È x 8åä Z]â,æy^ ¦ U ¦ 88 . If a signal is Õ,m�æ pure, we call
the frequency � predominant. On the other hand, a frequency is significant, if xn{U�Z���^&x 8çä[è ¦ U ¦ 88
for some constant èéä m . To quantify the unevenness of the data, we introduce a parameterÇÞX�W£Í0V to be the percentage of the available data over all the data, where W is the number of
available data. Obviously a larger Ç corresponds to more information about the signal. We useÐ 8 -norm throughout the paper, which is denoted by

¦ p ¦ 8 . The convolution êìë�í is defined asêÂëîí
Z�\)^;X ��ï êðZQñ�^)íðZ]\ErÞñ�^ . It follows that òêÂëîí
Z���^½XÅó V·{êôZ���^£{íðZ���^ .
A Box-car filter with width õ,ö÷ªÂt is defined as follows:

àE¸,Z]\)^ÔX ø � e8 ¸ GJ4 if rÞö © \ © öm otherwise

In the frequency domain, this filter is in the form of

{àE¸,Z���^½X�ùûú�üdý IOI 8 ¸ GJ4HM � � N e MI 8 ¸ GJ4HM ú�üdý I � � N e M if �Å�XÂmt otherwise
(2)

A dilation operation on signal U with a dilation factor þ is defined as U I¹ÿqM Z�\)^;X�U=ZgþÁ\)^ for every
point \ .

Also, we define U 4 X²U(à�j , which is a new signal containing all the available information of U .
Organization The paper is organized as follows. In Section 2, we give the outline of the

RA Ð SFA algorithm. Section 3 presents the modification of RA Ð SFA that deals with the unavail-
ability of some samples by a greedy method. Finally, we compare numerical results with existing
algorithms in Section 4.
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2 Set-up of RA � SFA
Given a signal U of length V , the optimal � -term Fourier representation ¢ <>�?C@ ZQU;^ uses only �
frequencies; it is simply a truncated version of the Fourier representation of U , retaining only the� largest coefficients. The following theorem is the main result of [8].

Theorem 2.1. [8] Let an accuracy factor « , a failure probability Î , and a sparsity target � �� ZBt�^AoC��� V be given. Then for an arbitrary signal U of length V , RA Ð SFA will find a � -term
approximation ¢ to U , at a cost in time and space of order Ç~É¥Ê�ËÁZH�
o�±�³,´�ZHV ^Ao�t�Íw«qo3±�³,´/ZBt�ÍwÎ¥^�^ and
with probability exceeding t=r¨Î , so that

¦ U�r¨¢ ¦ 88 © ZBt-ª�«3^ ¦ U§r¨¢ <>�?C@ ZQU;^ ¦ 88 .
The striking fact is that RA Ð SFA can build a near-optimal representation ¢ in sublinear timeÇ~ÉnÊ�Ë�Z]±�³,´;V7^ instead of the °�ZHV�±O³,´;V ^ time requirement of other algorithms. Its speed surpasses

FFT as long as the length of a signal is sufficiently large. If a signal is composed of only � modes,
RA Ð SFA constructs U without any error.

The main procedure is a Greedy Pursuit [21] with the following steps:

Algorithm 2.2. [8]TOTAL SCHEME
Input: signal U , the number of nonzero modes � or its upper bound, accuracy factor « , success
probability t r�Î , the standard deviation of the white Gaussian noise þ , a small number � for
relative precision.

1. Initialize the representation signal ¢ to 0, set the maximum number of iterations k X�ß±�³w´~ZHV7^�±�³,´~Z"t�ÍwÎ¥^�Íw« 8 ,
2. Test whether either

¦ U¨r¯¢ ¦ © � ¦ ¢ ¦ 88 . If yes, return the representation signal ¢ and the
whole algorithm ends; else go to step 3.

3. Locate Fourier Modes � for the signal U�rÂ¢ by the isolation and group test procedures
below.

4. Estimate Fourier Coefficients at � : òZQU�r¨¢÷^0Z���^ .
5. If the total number of iterations is less than k , go to 2; else return the representation ¢ .

The greedy pursuit procedure captures one significant frequency each time and then reduces
the contribution of this frequency from the residual signal. In order to make this clear, we give an
illustration about how to capture the � Fourier modes in successive sweeps. Note as a randomized
algorithm, NERA Ð FA has different performance in each run. Suppose the signal is U�X�t&mwm�� 4 ªt,p»Û��,� 8 ª�twp�Û¤���;ªÂ��	 , where �Ï¸yXé� 8*� h$¸ @ N e . We try to find a 2-term Fourier approximation. One
possible run is as follows:

1. 1 Identify frequency �ßXÖt ; estimate {U�ZBt&^£X�t&m�õ , (not 100)
Update: ¢²XÖt&m,õ,� 4 , residual U�X�É�
¥f
� f�� È ÊÏr¨¢�XÖr õ,� 4 ªÂt,p»Û��,� 8 ªut,p»Û¤���Rª���	 .

2. 2 Next, identify ��Xét , estimate {U=ZBt&^îXér t,p�Õ , ¢zXìt&m,m�pOt�� 4 , and U�Xér m�pOt�� 4 ª�t,p»Û��,� 8 ªt,p»Û¤���
ª���	 .
4



Figure 1: The graph illustration of the isolation procedure. Left: a signal with three significant
modes. Right: Multiply the signal with a box-car filter in the frequency domain.

3. 3 Next, the frequency identification made some errors. Instead of the Fourier mode with the
second largest coefficient, it identifies �ßX²Ü , estimate {U=ZHÜ,^½Xzt,p�Ü�� , ¢�Xzt&mwm�pOt&� 4 ª¯t,p�Ü������ ,
and U Xzr m�p`t�� 4 ªÂt,p»Û��,� 8 ª�m�p�m�õ,���
ª���	 .

From the above example, we notice there are errors in both frequency location and coefficient
estimation. This is because we only use partial information about the signal. Fortunately, the
greedy pursuit would help to correct the errors gradually. The final result is as follows.

1. Original signal UYXzt&m,m�� 4 ªÂt,p»Û��,� 8 ªÂt,p»Û¤���Rª���	 .
2. Representation signal ¢�Xzt&mwm�pOt&� 4 ªÂt,p�Ü������ , error = m�pOt 8 ªÂt,p»Û�� 8 ªÞm�pLm,õ 8 ªÂt 8 X²Ü�p`t,t�õwÕ .
3. Optimal representation signal ¢ >�?C@ X t&m,m�� 4 ª�t,p»Û��,� 8 , optimal error X ¦ UÂr²¢ >�?C@ ¦ 88 Xt,p»Û 8 ªÂt 8 X�õ pLÕ,Ú . Obviously, the error is within the ZBt-ª�«3^ scope of the optimal error.

The most important part of the RA Ð SFA [8, 21] is to identify significant frequencies and estimate
their corresponding coefficients. In order to locate those nonzero frequencies, we first construct
a new signal where a previous significant frequency becomes predominant, (see the first graph
of Figure 1). This is implemented by convolving the original signal with a box-car filter, which
is equivalent to the multiplication of both signals in the frequency domain, as shown the second
graph of Figure 1. Therefore, we obtain a new signal with only one dominant frequency and other
frequencies’ amplitudes are very small.

Then a recursive approach called group test finds the exact label of this predominant mode, by
splitting intervals, comparing energies, and keeping only intervals with large energies. After the
frequency is located, the algorithm gives a good estimation of the coefficient, by taking means and
medians of random samples.
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Figure 2: The graph illustration of the isolation procedure. After the multiplication, if the sig-
nificant frequency falls in the pass region, most of its amplitudes is preserved. Otherwise, their
amplitudes diminish. Hence, we obtain a new signal with only one predominant frequency.

3 NERA � SFA with Greedy Technique
RA Ð SFA samples from a signal with a fixed cost per sample, implicitly assuming that uniform
and random sampling is possible. This raises challenges for processing unevenly spaced data.
Specifically speaking, coefficients and norms can not be estimated properly. Thus one has to
modify steps 3 and 4 of Algorithm 2.2 accordingly. In this section, NERA Ð SFA, a modified version
of RA Ð SFA with greedy technique, is introduced to overcome these problems.

The basic new ideas, which distinguish NERA Ð SFA from RA Ð SFA, are a greedy pursuit from
available data points or Lagrange interpolation to estimate the values of an unavailable data. We
propose two different approaches here for processing an unavailable data. Both of them adapt
greedy pursuit for an available data in estimating coefficients. They are distinct in norm estimation-
the first method would search exhaustively for an available data point U�Z�\)^ as the substitute by
generating random indices; in contrast, the second method takes Lagrange interpolation of its
three nearest neighbors to estimate the value of the missing point.

A good data structure is important to save the running time cost. We denote the availability
of a data point by a label, say +1 for available and 0 for unavailable. Hence, in order to check if
its corresponding sample is valid, we only need to look at the value of the label. An alternative
solution is to store all the sorted labels of available data in a long list. However, each search
takes time °
Zg±�³w´/ZHV7^�^ , which introduces a °
Zg±O³,´;V ^ 8 factor into the whole computation. As the
empirical results show, the running time of NERA Ð SFA algorithm is linear to ±�³,´£V . For this
reason, we selected the first data structure.

We now give a more detailed discussion of the different procedures used in steps 3 and 4 of
Algorithm 2.2; these correspond to the procedures detailed in [21]. For the sake of completeness,
we give the full description of the adapted algorithm (rather than lost only the changes with respect
to [21]) for the 1-dimensional case. It is an adaption of algorithms in [21], along the lines sketched
above.
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3.1 Estimating Fourier Coefficients
First, we give the procedure for estimating Fourier coefficients for unevenly spaced data as follows,
which is very similar to Algorithm 3.3 in [21], except its greedy pursuit for an available data.

Algorithm 3.1. ESTIMATING INDIVIDUAL FOURIER COEFFICIENTS

Input: a signal U , a frequency � , failure probability Î , accuracy factor « .
Initialize: �6X��gõ(±�³,´~Z"t�ÍwÎ¥^�� , �ÆX�����Íw« 8 � .

1. For fRXÖt,o�p0p�p0o��
For � Xztwo�p�p�p+o��

Randomly generate the index \ until U=Z]\)^ is available.
Then let \.h ¾ X|\ . Evaluate ö�Z�\"h ¾ ^;X��|U=Z]\.h ¾ ^�^BÎ @�� º oC�/�ÁZ]\.h ¾ ^�® .

2. Take the means of � samples ö�Z�\Bh ¾ ^ , i.e. ÇEZgf*^½X �! ¾ _ 4 ö�Z]\.h ¾ ^ , where fRXÖt,o0p�p�p0o"� .

3. Take the median of � samples ��X!�å� Ã f È �ÁhBZ$ÇEZgf*^�^ , where fRXzt,o�p0p�pqo"� .

4. Return � as the estimation of the Fourier coefficient {U=Z���^ .
Because of the high accuracy requirement of coefficient estimation, we typically only choose

greedy pursuit for a satisfactory data. Similar to the observation in [21], fewer samples are al-
ready able to give an estimation with desirable accuracy and probability. Instead of the theoreticalt&Ú,« 2 8 x"±�³,´/ZHÎ¥^�x samples requirement per coefficient, 150 samples per coefficient already obtain the
relative accuracy «�X t�m 2 	 . Also note that the multiplication ö�Z]\"h ¾ ^ôX�� U=Z]\.h ¾ ^)Î @�� º oA�/�ÁZ�\.h ¾ ^å® XU=Z]\.h ¾ ^)� 8*� � @�� º N e can be easily computed, assume � is already known.

Next, we show that using unevenly spaced data leads to a very good approximation to the true
coefficient. We know that by repeating an experiment enough times, a small probability event will
happen eventually. One easily checks that, in our case, only Ç¨X�W£Í0V percentage of the data is
available, so that öÌ®[x"±O³,´;Î/x Í(±�³,´�ZBt=r¨W£Í0V ^ trials are needed to generate one available data point
with success probability at least t=r¨Î .

We shall also need the observation that most of the Fourier coefficients of a characteristic
function on a typical set k are small, under some conditions. The following lemma makes this
more explicit.

Lemma 3.2. Suppose the components # ¾ of a discrete random variable #ûX}Z$# ¾ ^ e 2/4¾ _�a are iden-
tically and independently distributed in lnm�o0twv , with ÇßX&%'
¥É)(¥Z�# ¾ X t�^ . Define the random setkuX�l*�ð� lnm�o0p�p�p0o3V}r¯twv/x # ¾ X�twv to be the set of all available data; {àáj
Z���^½X 4� e�� @ iqj � 8*� � @ N e
is the discrete Fourier transform. If +,�¯õw�.- , Ç ä t�r0/*1 I`4.2/4HN e M8 / G 	32547698;:<2 M , where � X�õ�pLÓ�t<��õ=� , then%>
wÉ)(nZAx {à j
Z���^�x 8 ä +Ï^ © ¬ 8 p (3)
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Proof. First, we claim that ?
ZAx {àáj
Z���^�x 8 ^;X ? IO4.2 ? M eI e 2/4HM for all ���X�m . We have

x {à�j
Z���^�x 8 X tV @¾ b ¸qi+j � 8*� hL� I ¾ 2 ¸ M`N e (4)

X tV @ ¾ i+j t-ª tV @¾ b ¸qi+j b ¾BA_ ¸ � 8*� h�� I ¾ 2 ¸ MON e p
It follows that ?�ZAx {à�j
Z���^�x 8 ^;X¨Ç ª tV Ç Ç~V}r|tVÆr¯t e 2/4@¾ b ¸ _�a�b ¾.A_ ¸ � 8*� hL� I ¾ 2 ¸ M`N e p
Observe that � e 2/4¾ b ¸ _�a�b ¾BA_ ¸ � 8*� hL� I ¾ 2 ¸ M`N e Xéx � e 2/4¾ _�a � 8*� h�� ¾ N e x 8 r � e 2/4¾ _�a t XÙZgV7ÎC� b a ^ 8 r�V , hence?
ZAx {à j
Z���^�x 8 ^;X¨Ç ª ÇV Ç~VÆr¯tVÆr|t ZHV 8 ÎA� b a rßV ^;XÞÇ ø t-ª Ç/V�r�tV�r|t ZHV6ÎA� b a r|t&^)CX ÇZgV�r|t&^ lnV}r|t-ª²ZDÇ/V}r|t�^0ZgV7ÎA� b a r|t�^Av£p
By Chernoff’s Inequality [5], since +D�uõ¥�.- ,%>
¥É;(nZAx {à�jRZ���^&x 8 ä +J^ © �BE�ÇGFBr Z�+ÏÍ=?
ZAx {à�j
Z���^�x 8 ^
r|t�^ 8 ?�ZAx {à�j
Z���^�x 8 ^Û H (5)

X²�BE�Ç F r tÛDI + 8 Í=?�ZCx {à�j
Z���^&x 8 ^
rÞõ�+ ªJ?
ZAx {à j
Z���^�x 8 ^LK H
In order for %'
¥É)(¥ZCx {à jEZ���^�x 8 ä +J^ © ¬ 8 , it suffices that+ 8 Í=?
ZAx {à�j
Z���^�x 8 ^
rÞõ�+ ªM?�ZAx {à�j
Z���^�x 8 ^ ä ÛÁx"±O³,´
¬ 8 x (6)

The above inequality holds if + 8 Í;?�ZAx {à�j
Z���^�x 8 ^ ä I õ�+ ª¨ÛÁx"±�³w´(¬ 8 x7K (7)

Therefore, ?�ZCx {à�j
Z���^&x 8 ^ © + 8õ=+ ªÞÛÁx"±O³,´
¬ 8 x (8)

Since ?�ZAx {à jEZ���^�x 8 ^ X ? I`4.2 ? M ee 2/4 , we only need ÇEZ"t�r�ÇÏ^ © /N1 IO4.2/4HN e M8 / G 	32547698;: 1 2 . Therefore, when Ç ä t÷r/ 1 I`4.2/4HN e M8 / G 	32547698;:<2 M , %>
wÉ)(nZAx {à j
Z���^�x 8 ä +Ï^ © ¬ 8 p
In particular, we want both + and ¬ to be small, meaning that Ç cannot be too small itself.
Next, we consider the conditions for the two coefficients {U�Z���^ and {U 4 Z���^�X òUPO�à�j
Z���^ to be

close.
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Lemma 3.3. Suppose the parameters k , U , àEj
Z]\)^ , + , ¬ , Ç are as stated in Lemma 3.2, and defineU 4 Z�\)^£X²U�Z�\)^Bà�j
Z]\)^ . If Ç ä t=r / 1 I`4.2/4HN e M8 / G 	32547698;:<2 M , and ¬ ©RQ t�r|ZBt=r¨Îw^TSU , ó �V+,�²t , then, for any � ,x0{U�Z���^
r·{U 4 Z���^�x © ó �V+ ¦ U ¦ 8 p (9)

with probability exceeding Z"t=r�¬ 8 ^ < .

Proof. Suppose the significant terms of signal U are �(h , where fRXztwo�p�p�p+oC� .
Since U 4 Z]\)^½X�U=Z�\)^Bà�j
Z]\)^ and thus {U 4 Z���^½X {U�Z���^Eë {à�j
Z���^ , then

{U 4 Z���^½X <@ h _ 4 {U=Z��Rh�^ {à�j
Z��Yr �Eh]^½X {U�Z���^ {à�jRZgm�^ ª <@h _ 4 b � A_ � � {U�Z��Eh]^ {à�j
Z�� rY�Eh]^X {U�Z���^ ª <@h _ 4 b � A_ � � {U�Z��Rh�^ {à�j
Z�� rY�Eh]^Ap
Therefore x�{U 4 Z���^
rÒ{U=Z���^�x¥Xìx <@h _ 4 b � A_ � � {U�Z��Eh]^ {à�j
Z�� r �Eh�^�x (10)

© WXXY <@h _ 4 b � A_ � � x�{U=Z��Eh]^&x 8 WXXY <@h _ 4 b � A_ � � x {à�jRZ���r§�Rh�^�x 8 © ¦ U ¦ 8 WXXY <@h _ 4 b � A_ � � x {à�j
Z��Yr �Eh]^&x 8 p
Hence, we have x {à j
Z���^�x 8 © + with probability at least t�r�¬ 8 for any �Æ�X�m . This implies thatx0{U 4 Z���^RrÒ{U=Z���^&x © ó �V+ ¦ U ¦ 8 with probability at least ZBt=r ¬ 8 ^ < .
For those �zÍ� l��RhQo3fEXzt,o�p0p�p0oC�ôv ,

{U 4 Z���^½X <@ h _ 4 {U=Z���^ {à�jRZ�� rY�Eh]^Ao
(11)

and we conclude similarly that x&{U 4 Z���^�r {U=Z���^�x © ó ��+ ¦ U ¦ 8 p , with probability at least ZBtôr¬ 8 ^ < .

We shall use Algorithm 3.1 to estimate {U 4 Z���^ ; we now look at how close the approximation µ
(i.e. the output of Algorithm 3.1) of {U 4 Z���^ is to the true coefficient {U=Z���^ .
Theorem 3.4. For a set of parameters k , U , àEj
Z�\)^ , + , ¬ , Ç as stated in Lemma 3.2, if Ç ä t÷r/ 1 I`4.2/4HN e M8 / G 	32547698;:<2 M , then every application of Algorithm 3.1 produces, for each frequency � and each signalU , and each +7®¯m , with high probability exceeding ZBt-rYÎ¥^0Z"t�r ¬ 8 ^ < , an output µ (after inputtingZQU
oB��oC«0oCÎ¥^ ), such that x µ|rÒ{U=Z���^&x 8 © +EZBt-ª|ó �ç^ 8 ¦ U ¦ 88 .
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Proof. Lemma 4.2 in [21] says that the coefficient estimation algorithm returns µ , such thatx µ|r·{U 4 Z���^&x © ó + ¦ U ¦ 8 p (12)

By Lemma 3.3 x0{U 4 Z���^Rr·{U=Z���^�x © ó �V+ ¦ U ¦ 8 p (13)

Thus x µ|rÒ{U�Z���^�x © x µ|r·{U 4 Z���^&x+ª�x�{U 4 Z���^
r·{U�Z���^�x © Z ó + ª ó �V+Ï^ ¦ U ¦ 8 p (14)

From Z ó + ª ó �V+J^ 8 © õ=+RZg��ªut�^ , it follows thatx µ|r·{U�Z���^&x 8 © +RZ"t£ª ó �y^ 8 ¦ U ¦ 88 p (15)

When we are able to get most of the data, the computational cost for estimating Fourier coeffi-
cients on unevenly spaced data is only slightly more than for the evenly spaced data case.

The time to compute the available signal value remains the same as for the evenly spaced data
case. The extra time comes from visiting unavailable data.

Lemma 3.5. Algorithm 3.1 takes time � 47698 IO4HN[ZQM 47698 Z S\ 1 47698 I`4.2 ? M in the worst case to pursue � 47698 Z\ 1 available data

with success probability greater than Z"t�r¨Î 4 ^^]3_ `�acbd 1 .

Proof. We know that only Ç�X ¿e data are available. In order to achieve an available data with
probability t=r¨Î 4 in ö trials, we have Z"t=r ÇÏ^ ¸ © Î 4
which implies ö ä 47698 Z S47698 I`4.2 ? M . That is, for obtaining one available data with probability t r¯Î 4 , we

need at most 47698 Z S47698 IO4.2 ? M trails. According to Lemma 3.4 in [21], we hope that � 47698 I`4HN[Z*M\ 1 samples of U=Z]\)^
are able to produce a satisfactory estimation of {U=Z���^ , where � is some constant. Hence, the total
number of trials to obtain � 47698 Z\ 1 available samples would be � 47698 I`4HN[Z*M 47698 Z S\ 1 47698 IO4.2 ? M in the worst case, with

success probability exceeding Z"t�r¨Î 4 ^�]*_ `�a*bd 1 .

Fortunately, the operation of visiting samples is very fast and therefore contributes little to the
total time, especially when most of the data are available.

The theoretical condition of Theorem 3.4 is very restricted. Fortunately, heuristically, this
theorem holds for much broad situations.

Remark: as in [21], one can speed up the algorithm by using multi-step coarse-to-fine coeffi-
cient estimation procedures, which turns out to be more efficient than single-step accurate estima-
tion; the proof is entirely analogous to Lemma 4.3 in [21].
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3.2 Estimating Norms
The basic idea for locating the label of a significant frequency is to compare the energies (i.e.
the W 8 norm) of signals restricted mostly in different frequency intervals. If the energy of some
interval is relatively large, the significant mode would be in that region with higher probability. We
construct the following new signals to focus on certain intervalse ¾ Z]\)^;Xuà 4 Z�\)^)� 1gf � º
hi�j 1�k�l Snm ë�àpo 2rq S b q Sgs Z]þÁ\)^)� 1gf �thvuw ë�ZQUxO&à�jÁ^ (16)

where 2 â 4 ª²t is the filter width, ��Xzm�o�p�p�pqoc��ö ª�Û , þ and y are random dilation and modulation
factors. (Please see [21] for an explanation of the role of þ and y ). For convenience, we denotee ¾ Z]\)^ by

e Z]\)^ .
We need to evaluate values of

e Z�\)^ for random indices \î� lnm�o0p�p�p+oCV�råtwv . Note that the signale
results from the convolutions of two finite bandwidth Box-car filters with the partial information

of the original signal U . Therefore, any missing point needed by the two convolutions would lead
to a failure of computing

e Z]\)^ . The total number of signal points involved depends on the number
of nonzero taps in these two filters. Moreover, random dilation and modulation factors of the
second Box-car filter make computation more tricky. In this subsection, we propose two different
approaches to estimate norms.

3.2.1 Greedy Pursuit for an Available Data Point

One naive way is to dive into the two convolutions and sample each related signal point. If it is
not available, stop evaluating this

e Z�\)^ and start with a new index \ . This definitely increases time
cost by wasting abundant computation. For example, suppose five data are needed and only one
of them is missing, then the algorithm may compute four data in vain in the worst case, where the
missing data point is visited last in the sequence of 5.

To avoid the above situation, we first compute the locations of all the relevant points for the
convolution; only if they are all available will we start the computation. The following lemma
presents the rules of these location of points after random permutation.

Lemma 3.6. Suppose we have a signal
e Z�\)^�X�Z]à ILÿ S M4 ë÷Zgà ILÿ 1 Mq S ë�U£^ I¹ÿcz"M ^ I¹ÿ i M ^0Z�\)^ , where þ 4 , þ 8 , þ�� ,

and þ�	 are dilation factors. From the definition of Box car filter, the taps for à q S lies in the interval{ r â 4 o3â 4�| , the taps for à 8 in
{ r�â 8 o3â 8 | , then in order to evaluate

e Z�\)^ , we need values of U with
indices at þ��3þ}	C\
r�þ��Cþ 4 f rP��þ 8 , where integers fRX�â 4 o�p0p�pqo�â 4 , � Xzr â 8 o�p�p�pqo3â 8 .
Proof. To evaluate

e Z�\)^ , first let signal 
÷X[Zgà ILÿ 1 Mq S ë�U;^ ILÿcz"M , thene Z]\)^;XÙZ]à ILÿ S Mq S ë~
,^ I¹ÿ i M Z]\)^;X q S@h _ 2rq S à q S Zgþ 4 f*^^
�Zgþ}	C\Rrßþ 4 f.^ (17)

where
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�Z]þ}	3\(r þ 4 f.^;X[Zgà ILÿ 1 Mq 1 ë�U£^ I¹ÿcz"M Z]þ}	C\(r�þ 4 f*^£XÙZgà I¹ÿ 1 Mq 1 ë=U;^0Z]þ��3þ}	C\Rrßþ��Cþ 4 f.^X q 1@¾ _ 2rq 1 à q 1 Zgþ 8 � ^)U�Z]þ��Cþ}	3\(r þ��Cþ 4 fEr þ 8 ��^Ap (18)

Thus, in order to get the value of
e Z�\)^ , we need values of all U=Z]\L��^ , where \9�JXÂþ��Cþ}	C\wrçþ��Aþ 4 fnrçþ 8 � ,

with fRXzr â 4 o�p�p�pqo3â 4 and � Xzr�â 8 o�p0p�p0o3â 8 .
The scheme of the norm estimation algorithm is as follows. It is a variation form of Algorithm

3.6 in [21], with an added feature of exhaustive trials to obtain available data.

Algorithm 3.7. NORM ESTIMATION
Input: signal

e
, the failure probability Î

Initialize: the number of iterations � X��.twp¹õ(±���ZBt�Í¥Îw^9� , öôX²m .
While ö���� :

1. Randomly generate the index \)¸ .
2. Compute all indices needed by computing

e Z�\)^ in (16): �ØXûl&\L�"x \9��XÔþ��Cþ}	C\=rÂþ��Cþ 4 f�rþ 8 �,o3fRX�r�t,o3m�o�t,o9� Xzr�â 4 o�p�p0p0o3â 4 v .
3. If all the points \ � ��� are available, then compute

e Z]\)¸�^ and öåXÙö�ª²t ; else go to step 1
and generate another index \)¸ .

4. estimate = 60-th percentile of the sequence l/x e Z]\)¸�^&x 8 V�v , where öyX²m�o�p0p�p0o3� r|t .
The following lemma investigates the number of repetitions to get a satisfactory data group for

estimating norms.

Lemma 3.8. Suppose à q S and à q 1 are two Box-car filters with numbers of taps õ¥â 4 ª�t and õnâ 8 ª�t
respectively. Define � q S b q 1 X�à q S ë à q 1 . Then � q S b q 1 has õnâ 4 ª²õ¥â 8 ªÖt nonzero taps in the time
domain.

Lemma 3.9. Randomly choose an index \ for signal
e

, then after repetition for ö ®¯±O³,´;Î 8 Í(±�³,´�ZBt rZBt rYÇÏ^ 8 q S G 8 q 1 GJ4 ^ times, we can at least find one computable
e Z�\)^ with all available points, with

success probability t=rßÎ 8 .
Proof. Randomly generate a sample point \ . In order to compute

e Z]\)^ , we need all the relatedõ¥â 4 ªYõ¥â 8 ªÞt points available. This would happen with probability Ç 8 q S G 8 q 1 GJ4 . Suppose the failure
probability to find such an available data group is smaller than Î 8 , and ö is the number of trails for\ , we have ZBt=r Ç 8 q S G 8 q 1 GJ4 ^ ¸ © Î 8
which implies ö ä 47698 Z 147698 I`4.2 ? 1�� S l;1�� 1 l S M .
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If there exist satisfactory data groups, although maybe very few, the norm estimation will
eventually find them. However, when most data are unavailable, the program may try repeatedly
and take a huge amount of time. To avoid this situation, we introduce an upper bound on the
number of the trials. When the bound is reached, just use the available sample points found so far
to estimate the norms. This technique probably leads to a larger error, and thus hamper the success
of correct frequency identification. However, by repeating the whole greedy pursuit process, the
failure probability would be further reduced. Anyway we cannot hope to recover the signal, if there
are very few available data.

The greedy algorithm described above is fast when Ç is sufficiently large (e.g. Ç¨®Ùm�p¹Ó ). For
smaller Ç , the amount of time wasted to find available sample groups becomes unacceptably long.
For example, when �ÆXéõ , V XÆt�m,m , Ç�Xém�p�Û , the algorithm couldn’t find the signal within 200
greedy pursuit iterations. This motivates us to use an interpolation technique for estimating the
samples directly.

3.2.2 Lagrange Interpolation Techniques for Evaluating a Sample

Because the signals we seek to represent are supposed to have only very few modes and therefore
very smooth, a Lagrange interpolation from 3 available neighbors sandwiching the unavailable
point seemed an appropriate choice. We introduce the interpolation scheme only into estimating
norms. It turns out that the resulting algorithm is more efficient and more successful in smaller Ç
cases.

The idea is to estimate the value of a missing point by the Lagrange interpolation [18]. Suppose
the three nearest neighbors of \ are Z]\Bh.Z]\)^Ao e Z]\.h�^�^ , where f£Xét,oCõ�oCÜ�p Then the Lagrange interpola-
tion to approximate the value of

e Z�\)^ is%ðZ$EJ^½X Z$E
rGE 8 ^0Z�E�rGE��+^Z$E 4 rGE 8 ^0Z�E 4 r�E��+^ Ë 4 ª Z�E�rGE 4 ^qZ$Eðr�E��+^Z�E 8 rGE 4 ^qZ$E 8 r�E��A^ Ë 8 ª Z$Eðr�E 8 ^0Z�E
r�E 4 ^Z$E��£r�E 8 ^0Z�E��-r�E 4 ^ Ë=� (19)

Since this sample interpolation procedure was already good enough to improve the practical
performance of NERA Ð SFA, we didn’t try more fancier interpolation techniques. The detailed
algorithm for estimating norms is as follows.

Algorithm 3.10. ESTIMATE NORM WITH INTERPOLATION TECHNIQUE

Input: signal
e

.
Initialize: öðX�m , the maximum number of samples � .

1. Randomly generate the index \)¸ , where öyX²m�o�p0p�pqoc� r|t .
2. For each ö , if

e Z�\B¸�^ is not available, estimate
e Z�\)¸0^ by Lagrange interpolation; else com-

pute
e Z�\"¸&^ directly.

3. Estimation = 60-th percentile of the sequence l/x e Z]\)¸0^&x 8 V�v , where öôX²m�o�p0p�pqoc� r|t .
Note that we use interpolation only in norm estimation steps, where precision is less critical.

With less precise norm estimation, the localization of important modes can still work well when
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iterated. For coefficient estimation, which needs to be more precise, we always search for available
samples.

Here is a new scheme for estimating norms, which uses much fewer samples than the original
one and still achieves good estimation. In [21], we propose Lemma 3.7 that enabled us to achieve
a good norm estimation by only a few samples. The following lemma is its adaption to the case of
unevenly spaced data.

Lemma 3.11. Suppose a signal U is Õ,Ü,æ pure. Let three available nearest neighbors of an
unavailable point \ denoted by \BhBZ�\)^ , where fßX t,oCõ�oCÜ . For each \ , there exists some num-
ber �ÙZ]\)^ , such that x�� I � M Z]\)^�x © �ÙZ]\)^ . Let µ X 4� �ÙZ]\)^0Z�\÷rÖ\ 4 Z]\)^�^qZ]\÷rÅ\ 8 Z]\)^)^0Z�\�rÅ\��nZ]\)^�^ . Ifx µôx © � f��(ZHm�p�m�Ó�� ¦ U ¦ 8 Í ó VYowx U=Z]\)^&x ^ for all \ , the number of samples 
�® { ±�� Z"t,p�Õ,Ú�� a�c � ZBt r��^ a�c 	 ^ | 2/4 ±���ZBt�Í¥Îw^ , where �ÖX a�c a ÝI � a�c � � 2 � a�c � 2r� � e N"� 19� � 1 M 1 , the output of Algorithm 3.10 gives an esti-
mation of its energy which exceeds m�p�Ü ¦ U ¦ 88 with probability exceeding t�r�Î .
Proof. Suppose the signal U�X È �Ï� ªÂ� , where x È x 8 ®ém�pLÕ,Ü ¦ U ¦ 88 . We shall sample the signal U
independently for 
 times. For those unavailable U=Z]\)^ , we use Lagrange interpolation to substitute
its value. Therefore, the sample at \ is defined as follows.

For convenience, let \ 4 , \ 8 , and \^� denote \ 4 Z]\)^ , \ 8 Z�\)^ , and \^�&Z]\)^ .%ðZ]\)^;X�ù U=Z]\)^ if U=Z�\)^ is available oU=Z]\)^
r�� j z m Iv�"M� Z]\
r \ 4 ^0Z�\
r�\ 8 ^0Z]\
r \��+^ otherwise p
as stated in Algorithm 3.10. For convenience, let µ�X�� j z m It�"M� Z�\
r�\ 4 ^qZ]\Rr \ 8 ^0Z�\
r�\��+^ . LetkuX�l&\î¶¤V¨x7%ðZ]\)^&x 8 �|m�p�Ü ¦ U ¦ 88 vX�l&\î¶ ó VÞx %
Z�\)^�x © ó m�pLÜ ¦ U ¦ 8 vX�l&\î¶ ó VÞxdU�Z�\)^
rßµðx © ó m�pLÜ ¦ U ¦ 8 v
Suppose x U=Z�\)^�x�®Ùx µðx , thenkÅ�=k 4 XÖl&\î¶ ó V�xdU�Z�\)^�x&r�x µðx © ó m�pLÜ ¦ U ¦ 8 vX�l&\�¶ ó V¨x U=Z]\)^&x © ó m�p�Ü ¦ U ¦ 8 ªÞµ ó VYvX�l&\�¶ ó V¨x U=Z]\)^&x ©�� ó m�p�Ü�ªÞµ ó V Í ¦ U ¦ 8c� ¦ U ¦ 8 v
Also by the purity of U , we have

¦ � ¦ 88 © m�pLm�Ó ¦ U ¦ 88 . Since x U=Z]\)^&x ä x È �/�ÁZ]\)^&x�r²xd�¤Z�\)^�x , we obtainó V¨xd�¤Z]\)^&x ® È r ó V�x U=Z�\)^�x¹p (20)

then for any \î�7k , ó V�x �¤Z]\)^&x¤® ó m�p�Õ,Ü r ó m�pLÜ�r�µ ó V Í ¦ U ¦ 8 p
By the similar procedure in Lemma 3.7 in [21], it follows thatm�p�m�ÓwV ä V ¦ � ¦ 88 ä V @ @ iqj xd�¤Z]\)^&x 8 ä Z ó m�pLÕwÜ÷r ó m�p�Ü�rßµ ó V Í ¦ U ¦ 8 ^ 8 x kyx
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Hence, x kyx © m�pLm�ÓZ ó m�p�Õ,Ü r ó m�p�Ü�r�µ ó V Í ¦ U ¦ 8 ^ 8 V (21)

Since �§X 2 j�2e , it implies that ��� a�c a ÝI � a�c � � 2 � a�c � 2r� � e N"� � � 1 M 1 .%>
¥É;( I 60-th Ç~�.
¥�q�.�Ï\"f*Ê]���|m�p�Ü ¦ U ¦ 88 K © t,p�Õ,Ú�� a�c � Z"t�r��
^ a�c 	 (22)

The right hand side of (22) is increasing in � on the interval
{ m�oCm�pLÚ | . Similar to Lemma 3.7 in [21],

we want m�pLm,ÓZ ó m�p�Õ,Ü r ó m�pLÜ�r�µ ó V Í ¦ U ¦ 8 ^ 8 �¯m�p�Ú�p (23)

Which can be satisfied by the condition µ��|m�p�m�Ó�� ¦ U ¦ 8 Í ó V . Also,� Z"t=r��(^B� 2 a�c �9� ªM�
� a�c 	 �� 3¡ X � t,pLÕwÚ�� a�c � Z"t�r��(^ a�c 	  3¡ © � 2£¢ ¡
where ��X a�c a ÝI � a�c � � 2 � a�c � 2r� � e N"� � � 1 M 1 . So for 
 ä { ±��áZ"t,pLÕwÚ�� a�c � Z"t=r�� ^ a�c 	 ^ | 2/4 ±�� Z"t�ÍwÎ¥^ , we have%>
wÉ)(nZH°¥¤/\�Ç�¤/\-É;� \L¦�f.ñ È Êg��É)
nfH\L¦}� ä m�pLÜ ¦ U ¦ 88 ^½X§%'
¥É)(¥Z 60-th Ç~�.
w�+�.�J\"fQÊ]� É=��VÞxdU=Z]\)^�x 8 ä m�p�Ü ¦ U ¦ 88 ^ä t�r¨Î&p

This norm estimation procedure will be used repeatedly in the group testing step below. It
is true that the approximation effect of the interpolation remains open. Nevertheless, since only a
rough estimation of the norms are desired for the Group test, the Lagrange interpolation could serve
for this purpose in most cases. Also, we introduce certain tricks to avoid large errors. For example,
if three neighboring points are too far away from the sample point, we will choose another

e Z�\)^ .
3.3 Isolation
For a significant frequency in signal U , isolation aims to construct a series of new signals, such that
this significant frequency becomes predominant in at least one of the new isolation signals. The
following lemma is similar to Lemma 3.10 in [21].

Lemma 3.13. Given signals U , U 4 , and the parameters as stated in Lemma 3.2. Suppose ê I ¾ M4 Xe ¸ ë ¢©¨ ºAb ÿ º ZQU 4 ^ÌX e ¸÷ë ¢©¨ ºCb ÿ º ZHU(à jÁ^ , ê I ¾ M X e ¸ ë ¢©¨ ºAb ÿ º ZQU;^ , where �ÂX m�o�p�p�pqo3±�³w´/ZBt&ÍwÎw^ . IfÇ ä t�r /*1 IO4.2/4HN e M8 / G 	32�47698=:<2 M , è © t�Í¥� and ö ä t�õ�pLõ���Z)ZH�årçt�^�ª 8 Í è , then for each � with x&{U=Z���^&x 8 ®¯�V+ ¦ U ¦ 88 ,
isolation algorithm can create a signal ê�«4 , such thatx {ê «4 Z���^�x 8 ä m�p�Õ�� ¦ ê «4 ¦ 88 p (24)
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Proof. Since x�{U=Z���^&x 8 ®ì��+ ¦ U ¦ 88 , we have x0{U=Z���^&x ® ó �V+ ¦ U ¦ 8 . Then there exists some è ®[m ,
such that x�{U=Z���^&x ä Z ó è ª ó �V+Ï^ ¦ U ¦ 8 p Lemma 3.3 states that x�{U 4 Z���^�r {U=Z���^&x © ó �V+ ¦ U ¦ 8 .
Therefore x0{U 4 Z���^�x ä ó è ¦ U ¦ 8 ä ó è ¦ U 4 ¦ 8 p (25)

Isolation algorithm returns ê I ¾ M4 , as described in Lemma 3.9 in [21]. For any � with xn{U 4 Z���^&x 8
äè ¦ U 4 ¦ 88 , there exists some � , such thatx {ê I ¾ M4 Z���^�x 8 ä m�p�Õ�� ¦ ê I ¾ M4 ¦ 88 p (26)

Let ê¥«4 X�ê I ¾ M4 , then x {ê «4 Z���^�x 8 ä m�p�Õ�� ¦ ê «4 ¦ 88 p (27)

Not all of the êEh s are Õ���æ pure. Since it is difficult to discover its extent of purity, we shall
apply the further steps of the algorithm to each of the ê
h . A not-so-pure êRh may identify some
insignificant mode ¬� , which can be detected by the estimation of its coefficient. In the end, we
only output those significant modes.

The isolation procedure construct a new signal, where a frequency � with xn{U�Z���^&x 8 ä ¦ U ¦ 8 Íw�
would become dominant. This does not mean that NERA Ð SFA can only find those large amplitude
frequencies. Because the residual signal is updated by reducing the contribution of the relatively
large frequencies, a previously small amplitude modes becomes more important gradually. The
criteria of x {U=Z���^�x 8 ä ¦ U ¦ 8 Íw� would be eventually satisfied if the energy of the mode is well
beyond that of the white noise.

3.4 Group Testing
The goal of group testing is thus to find the most significant mode of the signal ê­«4 from isolation.
It repeatedly zooms in the signal, and employ MSB (Most Significant Bit) of norm testing to select
where to focus on.

The group test and most significant bit procedures for unevenly spaced data are the same as
Algorithm 3.11 and 3.12 in [21]. For the sake of selfcontainedness, we list them here again. Note
that MSB might find the wrong frequency sometimes. There are several possible reasons. For
example, if the isolation procedure constructs a new signal, which does not contain one predomi-
nant frequency. Another reason is that the inaccurate information provided by the norm estimation
leads to wrong judgment.

In each MSB step, we use a Box-car filter
e ¸ to subdivide the whole region into õ,öÌª�t

subregions. By estimating the energies and comparing the estimates for all these new signals,
we find the one with maximum energy, and we exclude those that have estimated energies much
smaller than this maximum energy. We then repeat on the remaining region, a more precisely
on the region obtained by removing the largest chain of excluded intervals; we dilate so that this
new region fills the whole original interval, and split again. The successive outputs of the retained
region gives an increasingly good approximation to the dominant frequencies. The following are
the Group testing procedures:
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Algorithm 3.12. [21] GROUP TESTING
Input: signal ê , the length V of the signal ê .
Initialize: set the signal ê to ê a , iterative step fRX²m , the length V of the signal, the accumulation
factor â÷Xzt .
In the f th iteration,

1. If â ä V , then return 0.

2. Find the most significant bit ® and the number of significant intervals � by the procedure
MSB.

3. Update f
XÂf¤ª¨t , modulate the signal ê
h by Iv¯)G a�c ° M e	 I 8 ¸ GJ4HM and dilate it by a factor of Û/ZQõ,öîªßt�^)Íw� .
Store it in êEh GJ4 .

4. Call the Group testing again with the new signal ê(h , store its result in � .

5. Update the accumulation factor â�X�â ë�Û~ZQõ,ö÷ªut�^�Íw� .
6. If �
®¯VyÍ,õ , then �yX±��r¨V .

7. return �åÉ Ã Z<� ]�²	 I 8 ¸ GJ4HM ª It¯)GJ4HN 8 M e	 I 8 ¸ GJ4HM ª�m�pv�)��o3V ^ ;
The MSB procedure is as follows.

Algorithm 3.13. [21]MSB (MOST SIGNIFICANT BIT)
Input: signal ê with length V , a threshold mV� è ��t .

1. Get a series of new signals í ¾ Z]\)^�X�ê
Z�\)^�³åZH� 8*� h ¾ @ N 	 I 8 ¸ GJ4HM e ¸0^ , �7X�m�o�p�p�pqoc��ö ª|Û . That is,
each signal í ¾ concentrates on the pass region

{ I ¾ 2/4HN 8 M e	 I 8 ¸ GJ4HM o I ¾ GJ4HN 8 M e	 I 8 ¸ GJ4HM | ¶LXÞÇ È ñ�ñ ¾ .
2. Estimate the energies � ¾ of í ¾ , �çXÂm�o�p�p0p0oc��ö÷ª¨Û .
3. Let Ê be the index for the signal with the maximum energy.

4. Compare the energies of all other signals with the Ê th signal. If ��h�� è �.´ , label it as an
interval with small energy.

5. Take the center ® ï of the longest chain of consecutive small energy intervals, suppose there
are � ï intervals altogether in this chain.

6. The center of the large energy intervals is ®ôX²Û~ZQõwö ªÂt�^
r�® ï , the number of intervals with
large energy is �=XuÛ~ZQõwö ªut�^
rß� ï .

7. If �Å® Û~ZQõ,ö6ª}t�^�Í,õ , then do the original MSB [8] to get ® and set �ÂX õ , and ®�X�+�.�J\B�.
½É;� \L¦/�Efµ�J\B�.
)® È Ê;¶ fH\L¦·� È E~f�� È Ê,�.���.
�� Ë .
8. Output the dilation factor � and the most significant bit ® .
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3.5 Adaptive Greedy Pursuit
In summary, given a signal U , for an accuracy « and for � modes, we can find a very good approx-
imation of the signal U by using Algorithm 2.2 in [21]. Since the Lagrange interpolation achieves
better performance, we give the following theoretical result.

Theorem 3.14. Given a signal U , an accuracy « , success probability t r�Î . If Algorithm 2.2 can
output a � -term representation ¢ with sum-square-error

¦ U rß¢ ¦ 88�© Z"t£ª�«C^ ¦ U�r¨¢ >�?C@ ¦ 88 , where¢ >�?C@ is the � -term representation for U with the least sum-square-error, with time and space costÇ~ÉnÊ�Ë�Zg�
o3±�³w´/ZHV7^+o 4\ o�±�³,´~Z"t�ÍwÎ¥^�^ for computing and
?A> ´¹¸ I < b 47698 eEb 47698 IO4HN[ZQM\ 1 47698 IO4.2 ? M for just visiting samples, where+ is defined in Lemma 3.2.

Proof. We omit the proof since it is very similar to Theorem 9 in [8]. Now we need to show that
the number of visiting operations are °
Z <\ 47698 I`4.2 ? M ^ in the worst case. The total number of greedy
pursuit iterations is °�Z < \ ^ . Hence, we need to estimate °�Z < \ ^ coefficients. For each coefficient, it
visits °
Z 47698 IO4HN[ZQM\ 47698 IO4.2 ? M samples. Therefore, the theorem holds.

A high-dimensional NERA Ð SFA are very similar and trivial. With the same greedy pursuit for
available points and interpolation techniques, it can derived from the high dimensional RA Ð SFA.

Above theoretical analysis set very tight restriction on parameters. Heuristically, much looser
parameter setting works fine, as the following numerical experiments support.

3.6 Extension to higher dimensions
The RA Ð SFA in [21] proposed a higher dimensional RA Ð SFA . With very similar techniques to
two dimension RA Ð SFA [8], this algorithm can be extended to process unevenly spaced data. As
we already pointed out, the unevenly spaced data causes the introduction of special techniques
in norm and coefficient estimation. For the coefficient estimation, we still pursuit an available
data greedily. The norm estimation can either employ the greedy pursuit technique, or the high
dimensional Lagrange interpolation.

First issue is to how to locate the four neighbors of a missing point and estimate the value.
In one dimension, values of missing points can be interpolated by its few nearest left and right
available neighbors. The idea can be extended to higher dimensional cases with more techniques.

For instance, in two dimensions, we first find four nearest available neighbors of a missing
point in each quadrant. Suppose a missing point is Z$Eáo3Ë�^ , its four neighbors are Z�E 4 o3Ë 4 ^ , Z�E 8 o3Ë 8 ^ ,Z$E��&o�Ë=�A^ , Z$E�	�o3Ë;	C^ . The weights of neighbors can be derived by solving the following linear system
of equations. º»»¼ E 4 E 8 E�� E�	Ë 4 Ë 8 Ë=� Ë;	E 4 Ë 4 E 8 Ë 8 E��CË=�½E�	AË;	t t t t

¾B¿¿À
º»»¼ ¶ 4¶ 8¶Á�¶Â	

¾B¿¿À X
º»»¼ E ËE~Ët

¾B¿¿À (28)

Since this content is standard, we omit the discussion of more complicated situations, for ex-
ample the singular matrix in (28).
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One easily sees that the system of equations (28) is translation invariant: the two linear system
of equationsº»»¼ E 4 ª�Ê E 8 ª�Ê E��(ªÞÊ E�	(ª�ÊË 4 ª�Ç Ë 8 ª Ç Ë=�Rª�Ç Ë)	(ª ÇZ�E 4 ªÞÊH^qZgË 4 ª ÇÏ^ Z$E 8 ª�Êg^0Z]Ë 8 ª�Ç~^ Z�E��(ªÞÊg^0ZgË;�Rª�ÇÏ^ Z$E�	(ª�Êg^qZgË;	
ª ÇÏ^t t t t

¾B¿¿À
º»»¼ ¶ 4¶ 8¶Á�¶Â	

¾B¿¿À X
º»»¼ ÊÇÊ¹Çt

¾B¿¿À
and

º»»¼ E 4 E 8 E�� E�	Ë 4 Ë 8 Ë;� Ë)	E 4 Ë 4 E 8 Ë 8 E��CË=�½E�	AË;	t t t t
¾ ¿¿À
º»»¼ ¶ 4¶ 8¶Á�¶Â	

¾ ¿¿À X
º»»¼ mmm t

¾ ¿¿À
have the same solutions for any Ê and Ç . That means the location of the missing points does not
influence the weights. Only the geometrical shape and relative distance of the available neighbors
of a missing point matters.

Thus, we compute weights for the geometrical shapes of available neighboring points which
occur most often. As we go through every missing point, we check if the shape of its neighboring
available points matches those popular ones; if it does, we can directly get the weights without
computation. This saves a huge amount of work, especially when Ç is large.

After computing all the weights �
h , we estimate the value of the missing point by

U=Z�Eáo3Ë�^
X 	@ h _ 4 �Eh]U=Z$E/h.o�Ë¥h�^+p (29)

4 Numerical Results
In this section, we present numerical results of NERA Ð SFA and compared to the Inverse Non-
equispaced Fast Fourier Transform (INFFT) algorithms. The popular software NFFT version 2.0
is used to give performance of INFFT, with default CGNE_R method and Dirichlet kernel. Its time
cost excludes the precomputation of sample values, which takes °�ZHW£^ . Numerical experiments
show the advantage of our NERA Ð SFA algorithm in processing large amount of data of sparse
signals. We begin in Section 4.1 with comparing NERA Ð SFA with INFFT for some one and two
dimensional examples with different length. In Section 4.2, the performance for different number
of modes is shown. Section 4.3 presents the result with different percentage of available data. We
explore the robustness of the NERA Ð SFA to noise in Section 4.4. Finally, we test the relationship
between error and running time.

All the experiments were run on an AMD Athlon(TM) XP1900+ machine with Cache size
256KB, total memory 512 MB, Linux kernel version 2.4.20-20.9 and compiler gcc version 3.2.2.
The numerical data is an average of 10 runs of the code; errors are given in the Ê 8 norm.
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N INFFT NERA Ð SFA NERA Ð SFA
(+sampling) (w/o sampling)õ � =512 0.01 0.63 0.31õ 4.4 =2048 0.03 0.77 0.37õ 4 � =8192 0.17 0.90 0.46õ 4 ° =32768 0.83 0.93 0.49õ 4 Ý =131072 4.30 1.03 0.51õ 4 � =524288 19.94 1.20 0.61

Table 3: Experiments with fixed ��XÃ� , ÇYXém�p¹Ó , Ã XÆt (one dimension), and varying length V
of signals; an i.i.d. white noise is added with þ|X}m�pv� , or U½V7¢Ä�Ær t�õ Ã � (see text). For each
length of the signal, 10 different runs were carried out; the average result is shown. Two kinds of
time costs for NERA Ð SFA are provided. One is the total running time and another is the running
time excluding the sampling time. The time of INFFT does not include the precomputation time
for samples.

4.1 Experiments with Different Length of Signals
We ran the comparison for a 8-mode superposition signal U�Z�\)^;X � <h _ 4 �/� � , plus white noise Å with
the standard deviation þßXzm�pÆ� , damped by a factor of t&Í ó V , ( so that

¦ Å ¦ 8 XÙþ 8 XÙm�pLõ�� ; since¦ U ¦ 8 X±� , this implies U½V7¢�XÖt&m½±�³,´ 4 a Ü�õ,Í0VÇ�²r�t�õ Ã � ). Other parameters are �ÙX±� , «-X²m�p�m�õ ,ÎðX�m�p�m�t , and Ç§XéÓwm,æ . The missing data are randomly and uniformly distributed. NERA Ð SFA
outperforms INFFT in speed when V is large; see Figure 4 and Table 3. The corresponding
crossover point is V ä õ 4 ° X Ü�õ,Ó¥Ú�� . For example, to process õ 4 � X �,õ¥Û�oAõ=��� data, more
than nineteen minutes (estimated) are needed for INFFT versus approximately one second for
NERA Ð SFA. Experiments support the theoretical conclusion that NERA Ð SFA would be faster than
INFFT after some V for a sparse signal; whatever the sparsity, i.e. whatever the value of � , there
always exists some crossover V .

In two dimensions, we test a noisy 6-mode superposition signal U=Z]\)^çX � <h _ 4 �/��È � ����É � ªÊÅ ,
where Å is a Gaussian white noise, �}X[Ú , «�X[m�p�m�õ , ÎôX[m�p�m�t , Ç�XË�wm�æ , and þßX[m�p`t . Missing
data are randomly and uniformly distributed. As the number of grid points V in each dimension
grows, two dimensional NERA Ð SFA outperforms two dimensional INFFT at V ä ��t�õ , as Figure
6 and Table 5 show. The crossover point becomes much smaller in high dimensions situation.
It would not be surprising that for recovering a 6-mode three dimensional signal, NERA Ð SFA
surpasses INFFT at a hundred grid points in each dimension.

4.2 Experiments with Different Number of Modes
The number of modes has an important influence on the running time since the crossover point
varies for signals with different � . To investigate this, we did the experiments with fixed V Xõ 4
Ì X õ¥Ú�õ�o�t&ÜwÕ , Ç²XØm�pLÓ and varying � . We take U=Z]\)^ Xût�Í�Z È ªÊÍ0³=ÎÏõ)ª�\)^ with fast decaying
Fourier coefficients and cut all the small coefficients with amplitudes smaller than t&m 2 ° , where the
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Figure 4: Time Comparison between INFFT and NERA Ð SFA for different V with �ÙX±� , Ç XÂm�p¹Ó ,Ã XÖt . The result in Table 3 is shown in the form of a graph here. The E coordinate is the ±O³,´ 8 ZHV7^ ,
the Ë coordinate presents the running time for each algorithm. NERA Ð SFA without sampling
surpasses INFFT at V X²õ 4 	 XÖt&ÚwÜ��wÛ .

N INFFT NERA Ð SFA NERA Ð SFA
(+sampling) (w/o sampling)t�õ=� 0.13 2.86 1.57

256 0.73 2.60 1.46
512 3.00 3.70 2.13

1024 11.59 4.31 2.94õ¥mwÛÏ� 54.94 6.56 4.90

Table 5: Experiments with fixed �ÔX Ú , Ç�X�m�pt� , Ã X õ (two dimensions), and varying lengthV of signals; an i.i.d white noise is added with þ X[m�p`t , or U½V7¢Ð�ìr�t�Û Ã � (see text). For each
length of the signal, 10 different runs were carried out; the average result is shown. Again, two
kinds of time costs for NERA Ð SFA, the one with and without sampling time is provided. The time
of INFFT excludes the sampling time.
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Figure 6: Time comparison between INFFT and NERA Ð SFA for different V with fixed �ÒX}Ú ,Ç�X m�pv� , Ã Xûõ . The E coordinate is the logarithm of length V of signal in each dimension.
INFFT is very fast when V is relatively small and slows down quickly as V increases. On the
contrary, it takes NERA Ð SFA similar time to process small and large V problem. NERA Ð SFA
without sampling outperforms INFFT at V X�õ Ì c ° =362.

parameter È directly determines the number of Fourier modes with the absolute value greater thant&m 2 ° . Available data are randomly distributed. Table 7 compares the running time for different� using INFFT and NERA Ð SFA. At first, NERA Ð SFA takes less time because V is so large.
However, the execution time of INFFT keeps constant for different number of modes � , while
that of modified RA Ð SFA is polynomial of higher order. INFFT is faster than NERA Ð SFA when� ä t<� . The regression techniques shows empirically that the order of � in NERA Ð SFA is greater
than quadratic. This is one of the characteristics of this version of the RA Ð SFA algorithms and
irrelevant to the nonequispaceness of the data. (A different version of RA Ð SFA in [9] is linear in� , but maybe less easily used when not all equispaced data are available. )

4.3 Experiments for Different Percentage of Missing Data
The advantage of interpolation techniques is to recover a signal even when a large percentage
of data is missing. Table 8 shows the recovery effect for a two-mode pure signal � 4 �/� S ªÂ� 8 �/� 1 ,V Xzt&m � with all the other parameters « and Î the same as before. When the percentage of available
data is large, both algorithms recover the signal well with similar running time.

We tried another example of signal when V X t&m,m . NERA Ð SFA without interpolation tech-
niques fails to recover the signal with high probability if more than ÛÏ�,æ data are unavailable. In
contrast, with the help of interpolation technique, the NERA Ð SFA can always recover the signal
with only õ��,æ available data.
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number of modes value NERA Ð SFA INFFT� È (+sampling)
2 400.00 0.35 10.75
9 60.00 3.98 10.85

17 6.00 10.07 11.03
33 2.20 35.78 11.31
63 1.30 59.21 11.98

Table 7: Experiments with fixed V XÒõwÚ�õ�o�t�Ü,Õ , Ç¯X·m�pLÓ , Ã X t (one dimension), and varying
number of modes � of signals. For each length of the signal, 10 different runs were carried
out; the average result is shown. For this function, NER Ð SFA only needs to sample Ç/É¥Ê�ËÁZg±�³w´;V ^
function values, whereas INFFT computes all the data.

p Time of NERA Ð SFA success Time of NERA Ð SFA success
(with interpolation) probability (w/o interpolation) probability

1 0.03 100 æ 0.03 100 æ
0.8 0.04 100 æ 0.06 100 æ
0.6 0.05 100 æ 0.49 100 æ
0.4 0.05 100 æ 0.45 100 æ
0.3 0.06 100 æ - 0 æ
0.2 0.06 100 æ - 0 æ
0.1 0.07 100 æ - 0 æt&m 2 8 0.11 100 æ - 0 æt&m 2 � 0.51 100 æ - 0 æt&m 2 	 4.58 100 æ - 0 æm�p�m,m,m,m,õ 758.22 97 æ - 0 æ

Table 8: Experiments with fixed ��X�õ , V XÆt�m � , no noise, and varying percentage of available
data. Each entry is based on the average of 10 different runs. In each run, the number of iterations
is limited to 200; (this also corresponds to a fixed limit to the number of samples taken.) the success
probability indicates the number of runs in which all 6 modes were found. When only Ü,m�æ of data
is available, the NERA Ð SFA without interpolation cannot find all two significant modes within 200
iterations.
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þ SNR Time of NERA Ð SFA Time of NERA Ð SFA Relative Error Success
(dB) (+sampling) ( w/o sampling) ( æ ) probability

0 - 0.48 0.21 0.02 100%
0.5 -37.38 0.56 0.22 2.00 100%
1.0 -43.40 0.87 0.32 4.50 90%
1.5 -46.91 3.94 1.59 5.83 80%
2.0 -49.41 4.78 1.86 7.67 50%
2.5 -51.35 7.96 2.14 8.50 30%

Table 9: Experiments with fixed �ÒX}Ú , V XÆõ 4 Ý , Ç¨X}m�pLÚ , and varying noise levels. For each
noise level, 10 different runs were carried out; the average result is shown. In each run, the number
of iterations is limited to 200; (this also corresponds to a fixed limit to the number of samples
taken.) the success probability indicates the number of runs in which all 6 modes were found. The
average relative error is the error of reconstructed signal with respect to the original signal.

Experiments also show that for NERA Ð SFA with interpolation technique, the total number of
available data, instead of the percentage of available data determines the success probability. On
the contrary, The success of NERA Ð SFA without interpolation is determined by the percentage.

These experiments also provide failure examples for the NERA Ð SFA. The algorithm could fail
when there are too few available data. Another failure example is as follows. Suppose the signal isU X�� h$¸ � , where öôX²m�o�p�p0p�V[r�t . We also assume the data is available only in the even grids. The
Lagrangian interpolation would find the function values on odd grids are 1, instead of -1. Hence,
the algorithm fails to find the correct significant mode and coefficient.

4.4 Experiments to Recover Noisy Signals
To recover a signal from very noisy data is a challenging problem. The following tests are done
for U=Z]\)^;X � <h _ 4 �Chg��� � ª�Å , �ÙX�Ú , «-X�m�p�m�õ , VsX�õ 4 Ý , Ç�X�m�p�Ú , and different standard deviation þ
for noise. As Table 9 shows, NERA Ð SFA excels at extracting information from noisy data even in
the case of small signal to noise ratio.

We also find this algorithm is able to recover the original signal from partial and noisy data.
Suppose we only have contaminated and partial information about the signal. In some intervals,
all the information are missing. Figure 10 shows the NERA Ð SFA can recover the signal very well
in the sense that it discovers most of the original pure signal information.

4.5 Experiments of the relationship between error and time
It is of particular interest to investigate how the running time increases for achieving different
errors. We take a signal U|X � Ì¾ _ 4 �A¸���� k , where �+¸ and �R¸ are randomly taken from the interval{ t,o�t&m | and all the integers in lnm�o�p0p�p0oCV r²twv . As a randomized algorithm, RA Ð SFA takes only a
little bit more time to achieve higher accuracy, as shown in Figure 11. This is reasonable since the
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Figure 10: Experiments with U=Z]\)^½XztwpLm�pLÍ�ZHõ�ª��+Éwñ¤ZQõ�ëÑª
ë;\)^�^AoQÇ
X²m�pLõ�oAU½V7¢�XÖr t&m Ã � . The true
signal (denoted by the dotted line) is contaminated by very large noise and some of its information
is missing. Hence, we only know the values of the dots. Then NERA Ð SFA recovers the signal
(denoted by the solid line) from the dots.

total running time of RA Ð SFA includes time for identifying significant modes and estimating their
coefficients, where the second part only takes a small fraction of the time. Also, as a randomized
algorithm, the performance of the algorithm varies in different runs. Hence, we notice that the
error-time line is not strictly decreasing soemtimes.

5 Conclusion
We provide a sublinear sampling algorithm that recovers, with high probability, a � -term Fourier
representation for an unevenly spaced signal. For those sparse signals of very large size, it is faster
than any existed methods, for example, when �ÙX±� , VsX²õ 4 ° , and Ç�X�m�p¹Ó . Moreover, it recovers
the signal in the situation of large percentage of missing data or large noise. The NERA Ð SFA also
denoises the signal much better successfully than INFFT.
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